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regulating physiopathological processes in
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The biology of H2S is a still developing area of research and several biological functions have been recently attributed to this
gaseous molecule in many physiological systems, including the cardiovascular, urogenital, respiratory, digestive and central
nervous system (CNS). H2S exerts anti-inflammatory effects and can be considered an endogenous mediator with potential effects
on gastrointestinal motility. During the last few years, we have investigated the role of H2S as a regulator of gastrointestinal
motility using both animal and human tissues. The aim of the present work is to review published data regarding the potential role
of H2S as a signalling molecule regulating physiopathological processes in gastrointestinal motor function. H2S is endogenously
produced by defined enzymic pathways in different cell types of the intestinal wall including neurons and smooth muscle. Inhi-
bition of H2S biosynthesis increases motility and H2S donors cause smooth muscle relaxation and inhibition of propulsive motor
patterns. Impaired H2S production has been described in animal models with gastrointestinal motor dysfunction. The mechanism
(s) of action underlying these effects may include several ion channels, although no specific receptor has been identified. At this
time, even though there is much experimental evidence for H2S as a modulator of gastrointestinal motility, we still do not have
conclusive experimental evidence to definitively propose H2S as an inhibitory neurotransmitter in the gastrointestinal tract,
causing nerve-mediated relaxation.
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Introduction
Hydrogen sulphide (H2S) is a toxic gas that may lead to
inhibition of the mitochondrial cytochrome c oxidase
(Reiffenstein et al., 1992). However, it is also an endogenous
gasomediator with potential physiological roles in a wide
range of systems, including the cardiovascular, urogenital,
respiratory, digestive systems and the CNS (Abe and Kimura,
1996; Patacchini et al., 2004; Trevisani et al., 2005; Yang
et al., 2008; d’Emmanuele et al., 2009; Wallace et al., 2010;
Gur et al., 2015). In the vascular system, H2S acts as an
inhibitory endothelium-derived factor with similar functions
to NO, causing smooth muscle relaxation and hypotension
(Skovgaard et al., 2011). Regarding the gastrointestinal (GI)
tract, H2S has been proposed as an anti-inflammatory
mediator (Fiorucci and Distrutti, 2011; Vandiver and Snyder,
2012; Takeuchi et al., 2015; Wallace et al., 2015) and as an
endogenously synthesized molecule through-specific enzy-
mic pathways with potential effects on GI motility (Jimenez,
2010). H2S produced by luminal bacteria has the potential to
modify GI function and participates in motility disorders
when intestinal microbiota is altered. The epithelium plays
an important role as a barrier between the internal and
external milieu. Nowadays, many authors consider H2S to
be an inhibitory neurotransmitter in the GI tract with
functions similar to those of NO. However, this needs a
discussion based on experimental data. During the last years,
our research group has been investigating the role of H2S as a
regulator of GI motility using both animal and human
tissues. The aim of the present review is to analyse published
data regarding the potential role of H2S as a signalling mole-
cule regulating physiopathological processes in GI motility.

Synthesis of H2S in the GI tract
In mammalian cells, two pyridoxal phosphate
(PLP)-dependent enzymes are responsible for the synthesis

of H2S from the amino acid L-cysteine: cystathionine
β-synthase (CBS) and cystathionine γ-lyase (CSE)
(Cavallini et al., 1962; Braunstein et al., 1971; Stipanuk and
Beck, 1982; Yang et al., 2008). A third route of H2S synthesis
involving L-cysteine is the one performed by the enzyme
2-oxoglutarate aminotransferase in cooperation with
3-mercaptopyruvate sulfurtransferase (3-MPST)
(Stipanuk and Beck, 1982; Shibuya et al., 2009a, b) (Table 1).
Recently, a new pathway for H2S biosynthesis has been
reported using D-cysteine as a substrate (Shibuya et al.,
2013). Although the mechanisms regulating H2S release
remain unclear, it has been proposed that H2S might be
synthesized on demand or, alternatively, released from
sulphur stores in response to physiological signals. Selective
activation of CSE by calcium–calmodulin has been
suggested (Yang et al., 2008) although opposite results have
also been published (Mikami et al., 2013). Release of H2S in
response to reducing conditions has been reported as well
(Ishigami et al., 2009; Kimura, 2010). In the latter, H2S
might be stored in the cytoplasm as bound sulphane
sulphur, a divalent sulphur bound with other sulphur atoms
present in intracellular proteins (Ishigami et al., 2009;
Kimura, 2010).

Both CBS and CSE are localized along the entire GI tract in
mammals (Table 2). CSE is expressed in neurons of both the
submucosal (SMP) and myenteric plexuses (MPs) as well as
in certain subclasses of interstitial cells of Cajal (ICC) (Linden
et al., 2008; Schicho et al., 2006). Both enzymes are expressed
in the epithelium and muscle wall in the rat colon (Hennig
and Diener, 2009; Gil et al., 2011). CBS immunoreactivity is
detected in enteric neurons from guinea pigs and humans
(Schicho et al., 2006; Quan et al., 2015). Similar results have
been reported in the murine colon with expression of these
two enzymes in a wide variety of cellular types (Linden
et al., 2008; Hennig and Diener, 2009; Martin et al., 2010;
Liu et al., 2013). 3-MPST and CSE are expressed in smooth
muscle cells (SMCs) isolated from the rabbit stomach,
suggesting that both enzymes might participate in H2S

Table 1
Enzymes responsible for H2S production in mammalian cells

Nomenclature
(EC number)

Common
Abbreviation

Endogenous
substrates Cofactors Inhibitors

Cystathionine β-synthase (4.2.1.22) CBS L-cysteine
L-homocysteine

Pyridoxal phosphate AOAA

Cystathionine γ-lyase (4.4.1.1) CSE L-cysteine Pyridoxal phosphate Aminoethoxyvinylglycine

AOAA

β-cyano-L-alanine

Propargylglycine

L-cysteine : 2 oxoglutarate
aminotransferase (4.4.1.13)

CAT L-cysteine Pyridoxal Phosphate Compound 3a

3-mercaptopyruvate
sulfurtransferase (2.8.1.2)

3-MPST 3-mercaptopyruvic acid Zn2+
–

CAT and 3-MPST function in combination to generate H2S.
Adapted from (Alexander et al., 2015a).
CAT, Cysteine:2-oxoglutarate aminotransferase.
aToutle et al. 2013.
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synthesis in smooth muscle (Nalli et al., 2015). According to
these data, several types of intestinal cells possess the
enzymic machinery to produce H2S (Table 2).

Experimental approaches to investigate
the functional role of H2S in GI function
An important limitation in the characterization of the role
played by H2S in GI motility is the lack of a clearly identified
receptor to be targeted as a possible pharmacological
approach. For NO, in contrast, although it has many
signalling pathways, soluble guanylyl cyclase (sGC) has
been identified as its primary target leading to smooth muscle
hyperpolarization and relaxation in the GI tract (Lies et al.,
2013, 2014; Mane et al., 2014b). However, several experimental
approaches have been used to investigate the putative role of
H2S in GI physiology.

H2S synthesis inhibition
The first approach is to characterize the role of endoge-
nous H2S by blocking its production. This can be
achieved through the use of H2S synthesis inhibitors
(Table 1). L-propargylglycine (PAG), an inhibitor of CSE;

amino-oxyacetic acid (AOAA), an inhibitor of both CBS
and CSE; and hydroxylamine (HA), a CBS inhibitor (Wang,
2002; Szabo, 2007; Linden et al., 2010), are the most
commonly used inhibitors of H2S biosynthesis. AOAA and
HA are non-selective PLP-dependent enzyme inhibitors,
whereas PAG is an irreversible inhibitor of CSE (John and
Charteris, 1978; Sun et al., 2009; Linden et al., 2010). These
compounds have beenwidely used in experiments with tissue
homogenates and at a cellular level (Stipanuk and Beck, 1982;
Hosoki et al., 1997; Szabo, 2007; Linden et al., 2010). This
experimental approach has the limitation of the selectivity
of the pharmacological tools available and the presence of
multiple pathways of H2S synthesis (Whiteman et al., 2011;
Asimakopoulou et al., 2013).

Genetically modified animals
Another experimental approach that blocks H2S production
is the use of genetically modified animals that lack a specific
synthesis pathway. This is an interesting approach since CSE
knockout (KO) mice have been used to demonstrate that
endogenous H2S maintains a smooth muscle relaxation and
hypotension in the vascular system (Yang et al., 2008),
although hypertension was not observed in CSE KO mice
used in a similar study (Ishii et al., 2010). This might be due
to the fact that different H2S synthesis pathways are present

Table 2
Distribution of CSE, CBS and 3-MPST in the GI tract

Species Organ Enzyme Cell type/layer Method References

Mouse Stomach CBS/CSE SMC IHC/WB Han et al., 2011
Huang et al., 2013

Small intestine CBS/CSE SMC (tunica muscularis) WB Guo et al., 2012

Colon CBS Lamina propia RT-PCR/IHC Linden et al., 2008

CSE MP (lamina propia
and SMC diffuse)

Guinea Pig Ileum and Colon CBS MP,SMC IHC Schicho et al., 2006

CSE MP, SMP, ICC

Human Colon CBS/CSE SMP IHC Schicho et al., 2006

CBS/CSE Epithelium WB Martin et al., 2010

Rat Stomach CBS/CSE Epithelium (mucosa) RT-PCR Fiorucci et al., 2005

Jejunum CBS/CSE MP IHC Kasparek et al., 2012

Colon CBS/CSE Epithelium, SMC IHC Hennig and
Diener, 2009

CBS Muscularis mucosa,
SMP, lamina propia

IHC/WB Martin et al., 2010

CSE General diffuse

CBS Epithelium, SMC (diffuse) IHC Gil et al., 2011

CSE MP, SMP, SMC (mucosa
and submucosa diffuse)

CBS MP, epithelium (SMC diffuse) IHC Liu et al., 2013

CSE MP, SMC (mucosa and
submucosa diffuse)

Rabbit Stomach CSE/3-MPST SMC RT-PCR/WB Nalli et al., 2015

Enzymes: CSE, 3-MPST. Techniques: IHC, immunohistochemistry; RT-PCR; WB, Western blot. Cells/layers: SMC, MP, SMP, ICC.
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in the GI tract and the three gasomediators [NO, carbon
monoxide (CO) and H2S] might have overlapping and
interacting functions.

H2S donors
A third approach is the use of compounds that increase the
concentration of H2S. This can be achieved by using H2S
donors such as sodium hydrosulphide (NaHS) or H2S
slow-releasing organic compounds and H2S precursors such
as L-cysteine or by blocking the degradation pathway of
H2S. NaHS is widely used to study the biological effects of
H2S (Hosoki et al., 1997; Wang, 2002; Szabo, 2007; Linden
et al., 2010). In the case of NaHS and L-cysteine, one of the
crucial points of discussion is the concentration of the
compound. The limit between physiological, pharmacologi-
cal and even toxic concentrations is unknown. Moreover,
the effects obtained with NaHS incubation are not always
equivalent to those obtained with promotion of endogenous
H2S synthesis (Figure 1). L-cysteine might be binding to other
receptors in the plasma membrane of different cell types.

H2S and smooth muscle contractility
Experiments performed with colonic samples in which the
mucosa and submucosa were removed demonstrated that
H2S can be enzymically produced from L-cysteine in the
mouse and rat colon (Linden et al., 2008; Gil et al., 2011).
PAG and AOAA significantly reduced H2S production (Linden
et al., 2008; Gil et al., 2011). Therefore, these experiments
demonstrate that under these experimental conditions, H2S
is endogenously produced by defined enzymic pathways in
the colonic wall.

In vitro, intestinal preparations have the ability to ‘sponta-
neously’ release inhibitory neurotransmitters from enteric
motor neurons (Gil et al., 2010). Therefore, incubation with
the neuronal blocker tetrodotoxin (TTX) causes smooth
muscle depolarization and enhances the frequency and
amplitude of spontaneous contractions due to the inhibition
of the neuronal inhibitory tone. Similar results are observed
with the inhibitor of neuronal NOS (nNOS), Nω-nitro-l-argi-
nine (L-NNA) or the sGC blocker ODQ, showing that NO is
the responsible for the inhibitory neuronal tone (Gil et al.,
2010). If H2S also contributes to smooth muscle inhibition,
smooth muscle depolarization and increase of tone and/or
an increase in spontaneous contractions should be observed
after inhibition of H2S synthesis. Interestingly, PAG causes
smooth muscle depolarization and increases the frequency
of spontaneous contractions in rat colonic circular muscle
(Figure 1), whereas AOAA caused a mild increase in muscle
contraction without major changes in the membrane
potential (Gil et al., 2013). A second study reported that both
PAG and AOAA increased spontaneous contractions in both
circularly and longitudinally oriented rat colonic prepara-
tions (Liu et al., 2013). This suggests that H2S, synthesized
by CSE and possibly also by CBS, is tonically inhibiting
colonic motility. Interestingly, the depolarization and
motility increase observed with PAG are still observed after
neuronal blockade with TTX (Gil et al., 2011), suggesting that
H2S synthesis is not dependent on sodium-mediated action
potentials in neurons and, therefore, a potential non- neuro-
nal source of H2S might be present in the GI tract.

In human colonic samples, the presence of an inhibitory
neuronal tone is still under discussion (Jimenez et al., 2014).
Several issues such as regional differences or differences in
sample handling (i.e. time interval from extraction to
experimentation) can be important to detect a functional
inhibitory neuronal tone in vitro. Incubation with PAG and
AOAA causes a smooth muscle depolarization and a transient
increase in tone and amplitude of spontaneous contractions
(Martinez-Cutillas et al., 2015), suggesting that, as previously
shown in rats, H2S contributes to an endogenous neuronal
tone in human colonic samples. However, these compounds
are non-selective inhibitors of CSE and CBS and show effects
on several other enzymes and receptors (John and Charteris,
1978; Teague et al., 2002; Szabo, 2007; Whiteman et al.,
2011). Therefore, the interpretation of the results obtained
with these pharmacological tools must always be carried out
with the support of other experimental findings (Szabo,
2007; Jimenez, 2010; Whiteman et al., 2011).

It is important to note that HA is not only a H2S-producing
enzyme inhibitor but also has been described as an NO donor
(Iversen et al., 1994; Correia et al., 2000). For instance, HA
causes smooth muscle hyperpolarization leading to an
inhibition of spontaneous contractility in both the rat and
human colons (Gil et al., 2011; Martinez-Cutillas et al.,
2015). This response is sensitive to the sGC inhibitor ODQ.
Accordingly, we strongly recommend not using HA as an
inhibitor of CBS in biological processes involving the GI tract
where the role of NO is extremely relevant.

Participation of H2S in the transwall
gradient of smooth muscle membrane
potential
The resting membrane potential (RMP) of the colonic muscle is
graded through the colonic muscle wall; that is, SMCs located
near the SMP are more hyperpolarized than the cells near the
MP (Sha et al., 2010). Several factors such as ICC-SMP
themselves that are electrically coupled to smooth muscle or
inhibitory mediators released by SMP neurons may contribute
to setting this gradient in the RMP of the circular muscle. An
excellent work using haem oxygenase-2-KO (Sha et al., 2010)
and CSE KO mice (Sha et al., 2014) demonstrated that the
transwall gradient is probably due to CO and potentiated by
H2S. Both NO and CO are possibly released by SMP neurons.
CO and H2S produced by the mucosa itself might also
contribute to inhibit motility in the circular layer (Martin-Cano
et al., 2014). The consequence of this organization is that SMCs
near the SMP are considerably more hyperpolarized than the
cells near the MP and have the ability to oscillate at a
frequency paced by ICC-SMP (Mane et al., 2014b).

Effect of NaHS on GI function
In the GI tract, NaHS exerts pro-secretory effects both through
neuronal mechanisms involving afferent neurons and by direct
stimulation of the intestinal epithelium (Schicho et al., 2006;
Hennig and Diener, 2009; Krueger et al., 2010; Pouokam et al.,
2011). Both anti-nociceptive and pro-nociceptive effects have
been observed in response to NaHS when administrated
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Figure 1
Muscle bath recordings showing the effect of NaHS on spontaneous contractions in the human colon [(A) NaHS at 3 mM; Martinez-Cutillas
et al., 2015] and rat colon [(B) NaHS at 1 mM; Gil et al., 2013]. (C) Intracellular microelectrode recording showing the effect of NaHS
(1 mM) on the RMP of the rat mid-colon (obtained from Gil et al., 2013). Mechanical (left) and intracellular recording (right) showing
the increase of spontaneous motility and the depolarization of the RMP elicited by PAG (2 mM) (D, E) and L-cysteine (L-cys; 1 mM)
(F, G) in the rat colon (unpublished results).
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intraperitoneally and intracolonically respectively (Distrutti
et al., 2006; Matsunami et al., 2009; Schemann and Grundy,
2009). Anti-inflammatory properties have also been described
for H2S as administration of NaHS accelerates healing of gastric
ulcers and significantly contributes to the resolution of colitis
(Wallace et al., 2007, 2009, 2012).

Regarding its role in modulating smooth muscle activity,
contractile but more often inhibitory responses have been
reported. For example, in the guinea pig and mouse stomach,
NaHS causes a dual effect, producing contraction at low
concentrations and relaxation at high concentrations (Zhao
et al., 2009; Han et al., 2011). Spontaneous circular smooth
muscle contractions recorded in vitro in rat and human
colonic preparations are concentration-dependently
inhibited by NaHS (Gallego et al., 2008) (Figure 1). NaHS
concentration-dependently relaxed circular muscle strips of
mouse fundus and distal colon, contracted by PGF2α (Dhaese
and Lefebvre, 2009; Dhaese et al., 2010). NaHS also exerted
relaxant effects on guinea pig, rabbit and rat ileum and
jejunum preparations (Hosoki et al., 1997; Teague et al.,
2002; Nagao et al., 2011, 2012; Kasparek et al., 2012).
However, the concentrations of NaHS used to induce
relaxation in the GI tract are high and the physiological
relevance of this action is still unknown (Figures 1 and 2).

Inorganic sulphide salts such as NaHS induce a
short-lasting increase in H2S concentration that can reach
non-physiological concentrations, and furthermore, they
can be easily oxidized. For these disadvantages to be solved,
organic slow-releasing H2S agents such as GYY4137 have
been developed. However, the effect of these compounds on
GI motility has not yet been tested.

Effect of NaHS on intestinal motor
patterns
NaHS inhibits peristaltic activity in the mouse small intestine
and colon (Gallego et al., 2008). In rats, video recordings of
spontaneous active colonic segments reveal two types of
movements: (i) low-frequency high-amplitude aboral
propulsive motor movements and (ii) high-frequency non-
propulsive low-amplitude contractions (ripples) (Huizinga
et al., 2011). Propulsive movements cause outflow of
intraluminal contents, and consequently, their most likely
function is to propel pellets in an aboral direction. In
contrast, ripples probably participate in segmentation motor
patterns responsible for mixing movements (Huizinga et al.,
2011). Both motility patterns are probably related to the
presence of two pacemaker systems in the colon (Pluja et al.,
2001; Alberti et al., 2005; Mane et al., 2014b). NaHS produces
a decrease of propulsive contractions without major changes
on ripples (Gil et al., 2013). It is important to notice that both
rhythmic activities are differently affected by smooth muscle
hyperpolarization, which is a potential effect of H2S. A second
potential effect of NaHS is inhibition of neurally mediated excit-
atory responses involving post-junctional mechanisms. A third
potential effect of NaHS is a direct effect on pacemaker activity.

Smooth muscle hyperpolarization
Activation of ATP-sensitive potassium (Kir 6.1 and 6.2;
KATP) channels by H2S has been proposed in a wide variety
of studies with vascular SMCs (Zhao et al., 2001; Cheng
et al., 2004; Dombkowski et al., 2004; d’Emmanuele et al.,

Figure 2
(A) Effect of NaHS (1 mM) on cholinergic contractions in the human colon (Martinez-Cutillas et al., 2015) and on the excitatory junction potential
(B) in the rat colon (Gil et al., 2013). (C) Increase of the amplitude of cholinergic contractions elicited by L-cysteine (L-cys; 3 mM) in the rat colon
(unpublished results). EFS, electrical field stimulation.
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2009). Participation of these channels in the relaxant effect of
NaHS has also been reported in the colon (Zhao et al., 2001;
Distrutti et al., 2006; Gallego et al., 2008; Nagao et al., 2012;
Liu et al., 2013). Both KATP and small-conductance calcium-
activated potassium (KCa2.2/KCa2.3; SKCa) channels might
participate in smooth muscle hyperpolarization in both
human and rat colonic tissues (Gallego et al., 2008; Gil et al.,
2013). sGC may indirectly participate in the mediation of
NaHS responses in the colon by releasing NO from
nitrosothiols, as observed in the brain (Ondrias et al., 2008).
Also, H2S inhibits phosphodiesterase activity and, therefore,
accumulation of cGMP takes place in post-junctional cells
(Bucci et al., 2010). All these mechanisms might account for
the crosstalk between NO and H2S pathways. A complex
interaction between H2S and NO also occurs in the vascular
system (Dunn et al., 2016) where the crosstalk between the
two gaseous compounds has been more extensively studied
(Figure 1).

Inhibition of excitatory neurally mediated
responses
In addition to muscle hyperpolarization, H2S might also
produce its inhibitory effects by inhibiting excitatory
neuromuscular transmission. In the rat colon, NaHS is able to
inhibit atropine-sensitive excitatory junction potentials and
contractions elicited by electrical field stimulation (Gil et al.,
2013) (Figure 2). Similar results have been observed in the
human colon where NaHS reduced both cholinergic (Figure 2)
and tachykinergic neural responses. In contrast, purinergic
inhibitory junction potentials were not affected (Martinez-
Cutillas et al., 2015). NaHS also reduced carbachol- and
neurokininA- evoked responses, suggesting that NaHS effects
are at a post-junctional level (Martinez-Cutillas et al., 2015).
Smooth muscle contractions are calcium-calmodulin
dependent and due to the activation of myosin light-chain
kinase and inhibition of the myosin-light chain phosphatase
(MLCP). Rho kinase and protein kinase C (PKC) inhibit
MLCP, causing a sustained contraction. Exogenous (NaHS)
and endogenous (L-cysteine) H2S reduced carbachol-induced
contractions in isolated rabbit gastric SMCs. This reduction is
due to the activation of MLCP and inhibition of Rho kinase
and PKC activities leading to the dephosphorylation of the my-
osin light chain and inhibition of contraction (Nalli et al., 2015).
These results suggest that H2S might be inhibiting contractions
by targeting specific post-junctional pathways (Figure 2).

Effect on pacemaker activity
Electrophysiological experiments and intracellular calcium
analysis demonstrated that high concentrations of NaHS
(0.5–1 mM) are needed to inhibit pacemaker currents in
cultured ICC isolated from the mouse small intestine
(Parajuli et al., 2010). However, with low concentrations of
NO donors, low concentrations of NaHS potentiate the
inhibitory effect exerted by NO on the pacemaker system,
suggesting a possible interaction between mediators (Yoon
et al., 2011). Despite the effects observed in isolated ICC,
NaHS at a concentration of 1 mM does not modify the ampli-
tude, duration or frequency of slow-wave activity originated
in ICC-SMP in whole thickness preparations from rat colon
(Gil et al., 2013). In fact, neither hyperpolarization nor

dihydropyridines modify electrical slow-wave activity in
intact tissue (Mane et al., 2014b). In contrast, propulsive
contractions are reduced by NaHS (Gallego et al., 2008; Gil
et al., 2013). This inhibition of low-frequency contractions
has been attributed to the hyperpolarization of the smooth
muscle (Gil et al., 2013) and/or a direct effect on L-type
calcium channels (Cav1.2) (Quan et al., 2015) needed for
the generation of the pacemaker, which is nifedipine-
sensitive.

Mechanism of action
NaHS exerts its biological effects through a wide variety of
mechanisms of action that include activation of cAMP-
dependent pathways (Kimura, 2000); activation of the MLCP
(Dhaese and Lefebvre, 2009; Nagao et al., 2012); opening of
KATP channels (Gallego et al., 2008; Zhao et al., 2009; Nagao
et al., 2012), SKCa channels (Gallego et al., 2008), Nav1.5
voltage-dependent sodium channels (Strege et al., 2011),
Cav3.2-T-type channels (Matsunami et al., 2009), TRPV1
and TRPA1 cation channels (Schicho et al., 2006;
Macpherson et al., 2007; Krueger et al., 2010); and inhibi-
tion of phosphodiesterase activity (Bucci et al., 2010).
Recently, it has been demonstrated using patch clamp
experiments that NaHS inhibits L-type calcium channels
in rat colonic SMCs. This effect might also be responsible
for its inhibitory effect on spontaneous contractions.
However, inhibition of large-conductance calcium-activated
potassium channels (KCa1.1) has also been reported (Quan
et al., 2015). Why is the effect of H2S so diverse? It has been
hypothesized that sulfhydration of different proteins mod-
ulating a wide variety of cellular functions might explain
the ‘promiscuity’ of H2S (Mustafa et al., 2009a, b; Paul
and Snyder, 2015).

Comparison of responses to L-cysteine
and to NaHS
L-cysteine is the precursor of H2S synthesis, and as previously
mentioned, it is often used to stimulate endogenous H2S
production. Ideally, the response obtained with endogenous
H2S production should be similar to the response obtained
with exogenous NaHS (Nalli et al., 2015). Although this
might be the case in some studies, in others, different or even
opposite results have been reported (Figures 1 and 2).
Although NaHS inhibited contractile activity in the rat small
intestine, L-cysteine did not (Nagao et al., 2011; Kasparek
et al., 2012). Furthermore, in the rat colon, recent experi-
ments performed in our laboratory show that, whereas NaHS
inhibits motility, L-cysteine increases spontaneous contrac-
tions (Figure 1). Moreover, L-cysteine increased atropine
sensitive nerve-mediated contractions (Figure 2), whereas
NaHS decreased them (Figure 2). One possible explanation
is that, because of the high concentrations of L-cysteine
(i.e. 1 to 10mM) needed tomeasure H2S production (Gil et al.,
2013) and to observe an inhibitory effect (Yamane et al.,
2014), this amino-acid could target many receptors and
channels (Kendig et al., 2014).
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H2S degradation
Enzymes involved in the degradation of H2S are crucial in the
termination of H2S signalling. H2S can be metabolized to
thiosulphate by the serial action of three mitochondrial
enzymes: sulphide quinone reductase (SQR), sulphur dioxy-
genase [ethylmalonic encephalopathy 1 (Ethe1)] and sulphur
transferase (Hildebrandt and Grieshaber, 2008; Tiranti et al.,
2009). This functional unit of enzymes has been described
in themitochondria of colonic epithelial cells and is probably
responsible for the degradation of luminal H2S (Mimoun
et al., 2012). Interestingly, SQR has been identified in the
muscle layer and MP of the mouse colon. In addition,
pharmacological blockade of SQR induces an increase of the
tissue levels of H2S (Linden et al., 2012). However, Ethe1
and sulphur transferase have not been detected in colonic
muscle cells. Therefore, it is possible that there are other
downstream enzymes for the degradation of H2S in this tissue
(Linden et al., 2012) although the level of H2S degradation in
the musculature is negligible, when compared with that in
the mucosa (Flannigan et al., 2013).

Bacteria as a potential source of H2S in
the GI tract
In the large intestine, luminal bacteria also represent a
potential source of H2S (Blachier et al., 2010). However,
despite the fact that high concentrations of H2S are present
in the colon (mM range), the vast majority of this H2S is
bound to luminal contents (Jorgensen and Mortensen,
2001; Levitt et al., 2002). Thus, low levels (~60 μM in the

human colon, measured with spectrophotometry) of free
H2S are available in the colonic lumen (Jorgensen and
Mortensen, 2001; Mimoun et al., 2012). Furthermore,
luminal H2S is quickly oxidized to thiosulphate by colonic
epithelial cells (Furne et al., 2001; Ramasamy et al., 2006;
Goubern et al., 2007; Mimoun et al., 2012). Therefore, under
physiological conditions, the concentration of H2S that
reaches the submucosa and the muscle layers could be much
lower. Accordingly, NaHS infused into the lumen is not able
to cause motor changes in the colonic mechanical activity
in rats (Gil et al., 2013). Therefore, it can be hypothesized that
this source of H2S will not be able tomodify colonic functions
when the integrity of the barrier is preserved. Further studies
are needed to evaluate if under pathological conditions that
imply barrier disruption or impairment of epithelium
metabolism, the H2S produced in the lumen can reach the
effector cell and consequently modify motility. Interestingly,
instability in microbiota has been recently reported in
patients with flatulence. In these patients, Bacteroides fragilis
or Bilophila wadsworthia correlated with number of gas
evacuations or volume of gas evacuated respectively. Bilophila
wadsworthia has strong catalase activity and produces H2S
from sulphur-containing amino acids. Excessive gas
including H2S production can participate in physiopatholog-
ical abdominal symptoms including distention and pain
(Pozuelo et al., 2015). Figure 3 is a schematic overview of the
potential role of H2S on GI function.

H2S in motility dysfunction
Few data are available on a possible role for endogenous H2S
in GI motility dysfunction. Both central and peripheral

Figure 3
H2S is produced by luminal bacteria. Enterocytes participate in H2S detoxification. H2S can be produced by different cell types including neurons,
SMCs or interstitial cells. H2S causes smooth muscle relaxation possibly acting on different mechanisms including the contractile apparatus,
channels (Kir6, KCa, Cav) and receptors. Smooth muscle hyperpolarization and inhibition of nerve-mediated contractions are potential
mechanisms to inhibit propulsion. Neurally mediated relaxation is mediated by NO and purines. More experiments are needed to determine if
H2S is an inhibitory neurotransmitter in the GI tract. CAT, L-cysteine: 2-oxoglutarate aminotransferase; SP, substance P.
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mechanisms may contribute to the physiopathological pro-
cesses underlying esophageal motility, gastric emptying or
colonic hypermotility.

Achalasia is an oesophageal motor disorder characterized
by aperistalsis of the oesophageal body and impaired
relaxation of the lower oesophageal sphincter. Accordingly,
mechanisms that participate in pre- or post-junctional
nerve-mediated relaxation could be impaired in achalasia.
Lack of functional nNOS has been described in the lower
oesophageal sphincter (Mearin et al., 1993; Shteyer et al.,
2015) and a mutation in sGC disrupts NO signalling, causing
achalasia (Wallace et al., 2016). Regarding the H2S pathway,
reduced expression of both CBS and CSE has been reported
in patients with achalasia (Zhang et al., 2015). However, it is
unknown if the loss of H2S producing enzymes is the
consequence of the loss of myenteric neurons (De Giorgio
et al., 1999).

H2S enhances gastric emptying in rats through a periph-
eral mechanism that involves pyloric relaxation (Medeiros
et al., 2012). Neurons expressing CBS have been detected in
the dorsal motor nucleus of the vagus, and central adminis-
tration of NaHS inhibits gastric motility and enhances gastric
secretion (Sun et al., 2015). Recently, decreased H2S produc-
tion has been associated with gastroparesis in an experimen-
tal model of diabetic rats (Mard et al., 2016). This is consistent
with a dual effect of NaHS on gastric contractility producing
contraction at low concentrations and relaxation at high
concentrations (Zhao et al., 2009; Han et al., 2011; Mard
et al., 2016).

Colonic hypermotility has been associated with
decreased H2S synthesis in an experimental model of stress
in rats. Under these experimental conditions, both lower
H2S production and CBS/CSE down-regulation were
observed. This lower production was also accompanied by
lower NaHS smooth muscle sensitivity associated with
up-regulation of KATP channels (Liu et al., 2013). CBS and
CSE were also down-regulated in a model of partial ileal
obstruction with ICC loss, although these changes have
been associated with inflammation with TNFα as the
central mediator (Guo et al., 2012). Increase of H2S during
inflammation has shown to decrease the proliferation of
smooth muscle during ulcerative colitis in rats (Wallace
et al., 2009), which will definitely also affect GI motility.
More studies should be conducted to ascertain if there is
a role for H2S in abnormal GI motility and whether this
gaseous mediator is a key factor in diseases affecting the
GI tract or not.

H2S as a potential therapeutic agent
The aim of the present review is not to discuss the role of
H2S as a potential therapeutic molecule. However, there is
solid experimental evidence to suggest that H2S is as a
potential anti-inflammatory mediator, in combination with
non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs
that release H2S have enhanced activity and/or improved
safety profiles. Gaseous mediators improve blood flow,
reduce oxidative stress, prevent GI mucosa injury, enhance
anti-inflammatory effects of NSAIDS and promote resolu-
tion of inflammation, angiogenesis and epithelialization
(see Sulaieva and Wallace, 2015).

Final remarks: can we consider H2S an
inhibitory neurotransmitter in the GI
tract?
In spite of many reports of H2S as an inhibitory gasotrans-
mitter in the enteric nervous system, with functions similar
to those of NO, we strongly believe that we do not have
enough experimental evidence to support this conclusion.
For H2S to be considered an inhibitory neurotransmitter, it
should be demonstrated that stimulation of inhibitory motor
neurons releases H2S and that the release is blocked by Na+

channel blockers such as TTX. Pre-junctional calcium
channel blockers such as ω-Conotoxin GVIA that block
nerve-mediated relaxation should also block H2S release.
Moreover, it is well known that NOS inhibitors such as
L-NNA decrease nerve-mediated relaxation, and to our
knowledge, this has never been reported for H2S synthesis
inhibitors. Another important limitation to demonstrate
the putative role of H2S as an inhibitory gasotransmitter
is the lack of a specific post-junctional receptor. A classical
experimental approach with in vitro preparations is tissue
incubation with ODQ (sGC inhibitor) that blocks nitrergic
inhibitory responses, and animals with cell-specific dele-
tion of sGC have impaired nitrergic neurotransmission
(Lies et al., 2014). This experimental approach identifies
the receptor and possible post-junctional pathways (ICC
vs. SMCs) that contribute to nitrergic nerve-mediated re-
laxation (Lies et al., 2015). None of these experiments
can be carried out if post-junctional receptors are not iden-
tified. We have recently performed a variety of
experiments by using different voltage and frequencies of
stimulation and by measuring electrophysiological post-
junctional responses. In these, L-NNA and MRS2500
totally blocked inhibitory responses in a wide variety of
experimental conditions, and therefore, inhibitory neuro-
transmission in the GI tract can be said to involve NO
and a purine acting on P2Y1 receptors (Mane et al.,
2014a,b; Mane et al., 2016). In the context of H2S, we do
not have sufficient clear experimental evidence to demon-
strate that H2S is an inhibitory gasotransmitter in the GI
tract leading to nerve-mediated smooth muscle relaxation
(Figure 3). Further experiments with more selective phar-
macological tools are needed to identify the exact physio-
logical role of H2S in motor function and dysfunction.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked
to corresponding entries in http://www.guidetopharma-
cology.org, the common portal for data from the
IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al.,
2016), and are permanently archived in the Concise Guide
to PHARMACOLOGY 2015/16 (Alexander et al., 2015a,b,c).
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