
NIH Image to ImageJ: 25 years of Image Analysis

Caroline A. Schneider1, Wayne S. Rasband2, and Kevin W. Eliceiri1,#

1Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison,
Madison, WI 2Section on Instrumentation, National Institutes of Health, Bethesda, Maryland

Abstract

For the past twenty five years the NIH family of imaging software, NIH Image and ImageJ have

been pioneers as open tools for scientific image analysis. We discuss the origins, challenges and

solutions of these two programs, and how their history can serve to advise and inform other

software projects.

The last fifty years have seen tremendous technological advances, few greater than in the

area of scientific computing. One of the fields where scientific computing has made

particular inroads has been in the area of biological imaging. The modern computer coupled

to advances in microscopy technology is enabling new frontiers in biology to be visualized.

While the role of the optical technologies and methods have been well documented, the role

of scientific imaging software and its origins have been seldom discussed in any historical

context. This is due in part to the relative youth of the field, the wide variety of imaging

software tools available, sheer diversity of sub fields and specialized tools, and the constant

creation and evolution of new tools. Yet in this great diversity and change, one software tool

has not only survived but thrived. The scientific image analysis program, ImageJ1, 2, known

in previous incarnations as NIH Image3, is an early pioneer in image analysis. Yet 25 years

later the program not only persists but continues to push and drive the field. Interestingly, the

program has done so not by continuously reinventing itself but instead by sticking to a core

set of design principles that have allowed it to become a modern image processing platform

and yet retain an interface that a user from over 20 years ago would recognize and readily

use.

Given the great success and impact of ImageJ one would expect that this application was a

software initiative with official backing and formal planning by a central funding body.

Despite its original name, NIH image, and its home at the National Institutes of Health

(NIH) for over 30 years in some form, ImageJ is a product of need and user driven

development and collaboration rather than a specific plan by the NIH to create it at the onset.

#Corresponding author: Kevin W. Eliceiri, eliceiri@wisc.edu.

Author contributions
CAS and KWE wrote the manuscript based on interviews with WR, with input from members of their research groups and software
projects.

Competing financial interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2017 August 13.

Published in final edited form as:
Nat Methods. 2012 July ; 9(7): 671–675.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ImageJ became what it is through years of collaborative effort and NIH best nurtured it by

providing the resources to support the primary programmer, Wayne Rasband, throughout

this period. In this current age of careful oversight and scrutiny from administrative bodies,

the story of ImageJ and the independent track that Rasband had in its development is both

interesting and telling for other projects. To best understand this, one needs to look at how

ImageJ started.

NIH Image, the predecessor to ImageJ, was created by Wayne Rasband at NIH in 1987, but

the early foundation for this program started even earlier at the beginning of Rasband’s

career. Rasband received his bachelor’s in math from the University of New Mexico in 1965.

He was involved early on with the IBM computer punch card systems while still in school

and leveraged this expertise to get a job with the State of New Mexico’s Department of

Automated Processing. While there Rasband was involved in COBOL programming and

general systems programming. Shortly after, Rasband was drafted by the army and assigned

to the Pentagon. While there Rasband became aware of a University of Maryland graduate

program that would allow him to pursue his Masters in computer science and thus leave the

service early. One day in 1970 in the commons at the University of Maryland he saw a

notice for a part time programming position at NIH in Bethesda working on the LINC

(Laboratory INstrument Computer) created at MIT. Rasband applied for this position, was

hired and worked at the NIH until he retired in 2010.

NIH Image: Image analysis on the Mac

At the time Rasband began working at the Research Services Branch at the National Institute

of Mental Health, part of the intramural campus of the NIH, most scientific data processing

was done on mainframe computers and the personal computer revolution was just beginning.

There was no image analysis program for the Macintosh computer, and Rasband had just

obtained one of the first Mac IIs. Rasband realized that it had the appropriate hardware and

low level software to be an ideal base for a small, low-cost image analysis system; all it

needed was some software for image analysis. Rasband decided to write that software in

support of the imaging analysis needs he saw at the time, chiefly, better access in terms both

of ease of adoption and cost.

It was his goal to have a low cost image analysis system that the average bench scientist

could afford and deploy. Rasband wanted to create a system that was smaller and more

affordable than the software systems that required the $150,000 PDP-11 minicomputers in

use at the time. He had developed an image analysis program called “Image” for the PDP-11

minicomputer. The program ran an imaging system that used a rotating drum film scanner to

digitize images and a 512×512 frame buffer to display the digitized images and supported a

custom-built joystick that could be used to outline objects. The PDP-11 systems were used

to analyze gels, autoradiographs, and CT, MRI and PET images.

As a successor to “Image” Rasband set out to build a program that would provide the same

utility but could be used on the desktop computers that were just becoming widely available,

chief among them the Apple Macintosh (Mac) II (Apple Inc.) The Mac II with its relative

low cost of adoption, widespread use, easy graphic interface and good developer support

Schneider et al. Page 2

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

provided the ideal program for a new “Image” program. The Mac II had several key

additions over the earlier Mac that made his vision of NIH Image possible 1) expansion

slots- the ability to add third party acquisition boards 2) Advanced Graphics- the ability to

handle not only color but most importantly 8 bit 256 grays, the mainstay format of light

microscopy 3) support for the Pascal programming language to allow third party developers

to easily develop their own applications.

In spring of 1987, just a few months after Rasband had gotten the Mac II computer, copies

of the NIH Image program were handed out on floppy disks to anyone who asked. NIH

Image was also promoted on the Mac forum on the CompuServe (CompuServe Information

Service) electronic bulletin boards and was available on several Mac bulletin board systems.

Rasband wanted to create a general-purpose extensible image analysis program that could be

used by anyone who wanted to capture, display and enhance images and never targeted a

specific biological application or type of imaging such as microscopy. His goal was to let the

users drive the applications for NIH Image. Rasband continued to develop the program but

through innovative concepts such as mailing lists, free reusable code, plugins and macros he

also encouraged the users to develop their own code to address their own application needs.

Medical researchers were some of the first users of the program as autoradiographs, CAT or

PET scans and X-rays could be viewed, analyzed and notated. As NIH Image became

increasingly used in many fields—biological microscopy being the largest—the

functionality of the program and application base grew.

The move to other operating systems

As the code could be freely used in any form, NIH Image found itself in a diverse range of

use cases including spinoffs and related programs like Scion Image (Scion Corporation) for

the PC platform. Scion Image was a notable effort by the Scion Corporation to address an

unmet need—providing an NIH Image for the PC (Microsoft Windows, Microsoft

Corporation) community. In the early 90s the PC had caught up to the Mac and had the

graphics functionality and extensibility needed to run a program like NIH image but the NIH

Image program was Macintosh only. Scion Corporation’s products were very popular with

NIH Image users as they made a frame grabber board that was the principal way users

collected their images in NIH Image, whether from a gel imager or analog microscopy

camera. Scion saw the opportunity to expand its hardware framegrabber market to the PC by

making a Windows version of NIH Image. On their own, with no input from Rasband, they

did a full port of the Pascal based NIH Image to the C programming language and released

the resulting program as Scion Image. Unfortunately, users found it to be buggy and since

the program was closed source there was no way for Rasband and the community to fix

these problems. Scion Image never did achieve a large user base and the need for NIH Image

for Windows largely remained unmet.

After NIH Image had been established, Rasband started thinking about expanding its

capabilities to any operating system, not just the Mac. He saw increasing interest in the

Scion Image program due to it running on Microsoft Windows and yet frustration that it

didn’t work as well as NIH Image. He also saw the danger in having a separate Windows

program both in terms of support and in diluting the user base and plugins. Yet the climate

Schneider et al. Page 3

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

and timing was such that he felt he had to have a solution beyond the Mac platform. The late

1990s was a notable period in Apple history as the Mac was in a period of decline with the

PC rapidly gaining ground. In scientific research the Mac still had a loyal following but it

too was being eroded, both due to technology only available on the PC platform and the

lower hardware cost of the PC. Rasband faced a major challenge; how to continue a program

for the Mac and yet support the PC. Rasband did not want to port NIH Image to the PC and

didn’t want to maintain two programs or trust a third party to maintain one.

In 1995 Sun Microsystems created the Java programming language and runtime

environment in a bid to create an operating system agnostic programming platform that

would allow programmers to “write once, run anywhere”—free from having to choose what

operating system to support. Rasband found this idea appealing and liked the idea of

maintaining a single code base that could run in any operating system with the Java runtime

environment installed or on a Web browser as a Java applet, thus allowing a single program

to be run not only on the Mac and Windows platforms but also on the Unix operating system

that was becoming popular among scientists. Furthermore, after using Pascal for over 20

years, Rasband was ready to try another programming language.

In the transition of NIH Image to Java, Rasband wanted to retain the elements of NIH Image

that had made it so successful but felt the software deserved a new name and chose ImageJ

to maintain the connection to NIH Image but with a “J” to indicate its Java foundation. The

transition from NIH Image to ImageJ was not without its problems, however, as the cross-

platform compatibility proved difficult at times. The first public implementation of Java had

many rough edges. Instead of ‘write once, run everywhere’, Rasband found himself writing

once and debugging everywhere. As one of the first end user scientific programs to widely

use Java, there were many difficulties in getting ImageJ to work properly on different

platforms and Java environment distributions. As an early Java adopter Rasband had to

tackle many software interface issues from talking to native hardware code for data

acquisition to dealing with varying levels of Java support on different operating systems. But

over time, as the Java runtime environments improved and coding problems were solved,

porting NIH Image to Java set the stage for ImageJ to achieve even greater success.

During the many years developing NIH Image and ImageJ at NIH occasionally a concerned

lawyer or administrator would come see Rasband with questions or concerns about the open

nature of ImageJ and its commercial potential. Nothing came of these infrequent meetings,

and Rasband was left unfettered to develop the program as he wanted.

A driving design criteria of both NIH Image and ImageJ was to keep the program simple

with no complex user interfaces. Upon opening ImageJ, just a single toolbar appears, and it

is from this straightforward interface that all of the capabilities of ImageJ can be found and

used. The ImageJ toolbar has stayed basically the same for 15 years similar to how NIH

Image largely remained the same (Figure 1). Rasband wanted a stable program interface that

wouldn’t change on users, but he also needed a way to add new functionality based on the

needs of his user community. This philosophy of limiting complexity also drove how he

decided what functionality to integrate into the program directly or distribute as plugins.

Schneider et al. Page 4

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Community contribution of plugins and macros

To facilitate community input into NIH Image and ImageJ, Rasband established a

community driven development model with several key elements: 1) user driven need and

request on list for Rasband 2) user driven need and another member of the community fixes

and contributes back 3) user developer creates their own solution to their own need but then

shares with community 4) user feedback on existing feature to either improve functionality

or add new functionality. A single developer driven model where all code is developed by

one person would have resulted in a monolithic program. While this would provide the

simplicity of having only one way of doing things the breadth and depth of the solutions

would be greatly attenuated. Rasband instead chose a more flexible approach that would

allow users to add functionality on their own, but in a manner that would allow the

functionality to be shared with others. This was accomplished through the use of macros and

plugins.

Macros are simple custom programming scripts that automate tasks inside a large piece of

software. Due to its rather basic programming format, general users can create macros with

no formal programming experience. Rasband added a macro language to NIH Image in 1989

after Rasband saw an article titled “Building Your Own C Interpreter.” He realized he could

use the source code that was included in the article to create a Pascal language interpreter.

The macro language of ImageJ is based on that in NIH Image. Similar to how the Pascal

based macro language stayed very constant in NIH Image, ImageJ’s macro language has

stayed very stable over the last 15 years. Many new commands have been added, but the

early commands all still work. While macros are used by programmers, they are especially

useful to the bench biologist with approximately 325 macros currently available on the

ImageJ website. The macros require little or no programming experience and novel features

like the macro recorder directly facilitate this, allowing the user to record any actions they

manually do. This recording is put into a macro syntax that users can execute for future

application of this workflow, modify as necessary and share with others. ImageJ has since

evolved in its scripting capabilities and now allows other scripting environments to be

harnessed such as JavaScript or calling other languages such as Python through an ImageJ

Jython Bridge.

In many cases, linking together existing functionality using macros is insufficient for a

necessary application and users need to add new functionality. In 1993, Rasband saw the

great utility of plugins being used by Adobe Photoshop (Adobe Systems Incorporated) to

add new functionality to that software and decided to add these modular software elements

to NIH Image. NIH Image was one of the first scientific imaging processing tools to have

plugins and the first with such a large user base. Example plugins included facilities for 3D

rendering of images and particle analysis. ImageJ has had plugin support from its inception

and plugin numbers have increased rapidly, with over 500 plugins covering a wide range of

functions available on the ImageJ website (Figure 2). Many of these plugins are now

distributed with the core ImageJ. Rasband’s philosophy of limiting complexity drove how he

decided what functionality to integrate into the program directly or distribute as plugins.

Many of the plugins built into ImageJ are from outside contributors and the decision to

Schneider et al. Page 5

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

include a plugin in the base distribution was based on whether Rasband thought it would

have widespread use.

It is important to note that Rasband never sought to replace commercial image analysis

solutions. In part, this is because a good part of the functionality of NIH Image or ImageJ

was created as a result of there not being another solution, commercial or open source to do

it. Of course, out of necessity to be a full featured program, NIH Image and ImageJ

recapitulated many of the features present in a commercial image processing program such

as Adobe Photoshop. Certainly, many of the NIH image and ImageJ users were first

attracted to using the software because they couldn’t afford an expensive seat license for

specialized commercial image analysis packages. But many users of ImageJ also use

commercial software, so clearly that is not the only draw and in fact many imaging software

companies also use and recommend ImageJ. As well, many commercial tools have emulated

the key concepts of ImageJ, for example most modern analysis programs now offer some

sort of scripting functionality.

File format challenges

One of the main challenges of image analysis programs is being able to open any of the

myriad image file formats that have been developed over the years. Due to code

contributions and add-ons from various sources through its community development model,

NIH Image was able to read multiple image types, a rare capability among the early image

analysis programs. The majority of the formats were added by users needing support for

proprietary formats from microscopes and other imaging equipment. As one of the first

programs to widely support proprietary formats, it had the best supported and functional

readers, modular software code used to read a file format and translate it into the open

formats used by the software. These readers led to the development of reader code used not

only in NIH Image and ImageJ but other programs as well. A major example of this, and a

vast improvement to ImageJ’s ability to read and parse proprietary image data, was the

advent of Bio-Formats4, a library from the Open Microscopy Environment

(www.openmicroscopy.org) for reading proprietary image formats. While Bio-formats is a

general library used by many programs, ImageJ is its biggest user with the Bio-formats

ImageJ Plugin used by over 30,000 laboratories. ImageJ has been far more than just a user of

Bio-Formats; without the community driven model of ImageJ and the resulting vetting and

testing process for every new format, Bio-Formats arguably would not have the performance

and functionality it currently has. In this way ImageJ continues to benefit other programs

that don’t directly use ImageJ but that take advantage of its framework and plugins and other

code such as Bio-Formats.

Integration with other tools

Biologists often need to use a variety of different software to acquire and analyze data and

connectivity between these tools can be crucial. Due to the Mac-only support of NIH image

and its pioneering status there were few early examples of NIH Image connecting with

external programs. There were several prominent examples mediated by export of an open

file format however, such as the export of a .csv file for statistical analysis. From the

Schneider et al. Page 6

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

beginning of ImageJ there was interest in directly connecting to external toolkits without the

need for exporting and opening files and early connections to MATLAB (MathWorks Inc.)

are a prime example. ImageJ’s third party tool connections have allowed it to be used in

image workflows and take advantage of algorithmic strengths provided by MATLAB.

ImageJ connectivity with other software programs, such as Imaris, Cell Profiler5 and

Knime6–8, have also been established. While these collaborations were not specifically

envisioned by Rasband when designing the program, they enable a variety of new

functionality ranging from automated screening and segmentation-based measurements to

sophisticated signal processing analysis, thus further extending the utility of ImageJ.

A prominent example of how ImageJ has been adopted by the community is Fiji (Fiji Is Just

ImageJ) and ImageJ2. The goal of Fiji (see Fiji paper9 for a thorough review) was to design

a complete installation identical on any platform and which was easy to download and

unpack. ImageJ2 (http://developer.imagej.net), the next generation of ImageJ is an NIH-

funded collaboration between several institutions, groups and individuals, including

Rasband. The ImageJ2 collaboration hopes to create more extensibility, modularity and

interoperability as well as extend ImageJ community resources. ImageJ2 retains the interface

of ImageJ but adds new architecture to remove some of the current limitations of ImageJ,

such as data types, image size and dimensions. In addition to Fiji and ImageJ2, several other

variants and programs based on ImageJ are currently available (Table 1).

These variants were all developed out of targeting a specific community need that NIH

Image or ImageJ didn’t have, organizing or adding additional tools for convenience in one

bundle, or making a custom version that is very use case specific. This is more than just

tolerated by Rasband, he has encouraged it as another mechanism for addressing the diverse

needs of the ImageJ analysis community. For example when NIH Image core development

ceased in favor of focusing on ImageJ, this resulted in NIH Image not being ported to the

OSX (Apple Inc.) operating system. There was a population of electron microscopists that

did not want to change their workflow and ported NIH Image to ImageSXM that runs on

OSX with a focus on electron microscopy analysis. Other variants gave rise because of the

desire to improve access to new users and provide documentation. MBF_ImageJ was

developed by Collins and colleagues to provide a comprehensive user manual with an

organized preloaded plugin and macro structure for ImageJ so that users could follow the

instructions to do certain steps such as thresholding and 3D rendering. ImageJA was

developed to allow for an applet version of ImageJ that could be run in any web browser and

this is now integrated into Fiji. SalsaJ was a targeted version of ImageJ with an interface and

content for astronomy users. There have also been several attempts to extend the

functionality and data model of ImageJ including ImageJX and ImageJ2X. These are no

longer active initiatives, but ideas from those projects have been incorporated in current

ImageJ efforts including the ImageJ2 project. Other applications are not variants of ImageJ

but use components of ImageJ such as the plugins; these include MicroManager10, Icy11,

Cell Profiler5, 12, 13 and Bio7.

As the ImageJ family of programs moves forward, Rasband continues to play a large part in

maintenance and support of ImageJ. While he retired in 2010 after 40 years as a programmer

at the Research Services Branch, he now volunteers with the Section of Instrumentation at

Schneider et al. Page 7

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://developer.imagej.net

NIH and works closely with the Center for Information Technology at the NIH, which hosts

the ImageJ website and mailing list. Rasband works to fix bugs, add features requested by

users, and manage the website and mailing list. The continued popularity and growth of

ImageJ throughout the scientific community has surprised Rasband. The ImageJ website

gets about 7,000 visitors a day, and there are about 1,900 subscribers to the ImageJ mailing

list. A recent PubMed Central search of “ImageJ” returned over 20,000 papers over its life

span. Furthermore, ImageJ has been used in teaching such as with the creation of an image

processing textbook 14 that illustrates imaging processing examples using ImageJ. Rasband

hopes to see the continued use and evolution of ImageJ as a teaching and research tool as

more people recognize and understand its capabilities.

In 10 years, Rasband expects to still be working on ImageJ. While the program and its

variants will continue to develop and other programs will be developed based on ImageJ, he

expects the program and its variants to retain the two fundamental hallmarks of ImageJ,

flexibility and extensibility developed over 25 years ago. He also expects ImageJ to continue

to be used for diverse applications ranging from materials science and soil science,

astronomy and climate science, to medical imaging and crystallography.

Acknowledgments

The authors thank members of their research groups and software projects for helpful feedback on the article, in
particular Curtis Rueden, Jimmy Fong and Johannes Schindelin for input on the manuscript and help with the
figures. This work was supported in part by NIH grant RC2 GM092519 (to K.W.E.), but the opinions expressed are
solely those of the authors.

References

1. Abramoff, M., Magalhaes, P., Ram, S. Biophotonics International. LAURIN Publishing; 2004.
Image processing with ImageJ.

2. Collins TJ. ImageJ for microscopy. Biotechniques. 2007; 43:25–30.

3. Girish V, Vijayalakshmi A. Affordable image analysis using NIH Image/ImageJ. Indian J Cancer.
2004; 41:47. [PubMed: 15105580]

4. Linkert M, et al. Metadata matters: access to image data in the real world. J Cell Biol. 189:777–782.

5. Kamentsky L, et al. Improved structure, function and compatibility for CellProfiler: modular high-
throughput image analysis software. Bioinformatics. 27:1179–1180.

6. Lindenbaum P, Le Scouarnec S, Portero V, Redon R. Knime4Bio: a set of custom nodes for the
interpretation of next-generation sequencing data with KNIME dagger. Bioinformatics. 2011;
27:3200–3201. [PubMed: 21984761]

7. Jagla B, Wiswedel B, Coppee JY. Extending KNIME for next-generation sequencing data analysis.
Bioinformatics. 2011; 27:2907–2909. [PubMed: 21873641]

8. Saubern S, Guha R, Baell JB. KNIME Workflow to Assess PAINS Filters in SMARTS Format.
Comparison of RDKit and Indigo Cheminformatics Libraries. Mol Inform. 2011; 30:847–850.
[PubMed: 27468104]

9. Schindelin J, et al. Fiji - an Open Source platform for biological image analysis. Nature Methods.
2012 In Press.

10. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control of microscopes using
microManager. Curr Protoc Mol Biol. Chapter 14(Unit14):20.

11. de Chaumont F, et al. Icy: an open bioimage informatics platform for extended reproducible
research. Nature Methods. 2012 In Press.

12. Carpenter AE, et al. CellProfiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biol. 2006; 7:R100. [PubMed: 17076895]

Schneider et al. Page 8

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

13. Lamprecht MR, Sabatini DM, Carpenter AE. CellProfiler: free, versatile software for automated
biological image analysis. Biotechniques. 2007; 42:71–75. [PubMed: 17269487]

14. Burger, W., Burge, MJ. Digital image processing : an algorithmic introduction using Java.
Springer; New York, NY: 2010.

Schneider et al. Page 9

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Appearance of NIH Image and ImageJ. Screenshots of NIH Image in 199X (a) and ImageJ

1.45s in 2012 (b). Note that while the look and feel is slightly different, the overall feature

layout and menu structure is basically the same.

Schneider et al. Page 10

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
ImageJ plugins bundled with each ImageJ release over time.

Schneider et al. Page 11

Nat Methods. Author manuscript; available in PMC 2017 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schneider et al. Page 12

Table 1

List of NIH Image and ImageJ Variants

Program Name Date Initiated Description

NIH Image 1987 The predecessor of ImageJ created by Rasband; made for the Macintosh; no longer under active
development

ImageSXM May 1993 A version of NIH Image for OS X extended by Steve Barrett; intended to handle loading, display
and analysis of images from the scanning microscope

ImageJ 1997 The current version of ImageJ developed by Rasband; sometimes called ImageJ1

ImageJ2× Unknown An offshoot of ImageJ; modified to use Swing interface; no longer under active development

ImageJA July 2005 An offshoot of ImageJ developed by Johannes Schindelin; used as the core of Fiji

Fiji December 2007 Fiji Is Just ImageJ; a “batteries included” distribution of ImageJ popular in the life sciences

ImageJX March 2009 Created by Grant Harris to discuss improvements to ImageJ; formed the basis of an application to
NIH which launched ImageJDev

ImageJ2 (ImageJDev) December 2009 Under development by the ImageJDev project; a complete rewrite of ImageJ; includes ImageJ1 to
allow for old-style plugins and macros

MBF_ImageJ 2005 Bundle developed by Tony Collins for light microscopists; plugins from MBF_ImageJ can be
installed on Fiji combining the programs

SalsaJ Unknown An offshoot of ImageJ intended for astronomy; designed for use in classrooms; available in over
30 languages

CellProfiler Free, open-source software started by Anne Carpenter and Thouis Jones; aids biologists without
computer vision training to quantitatively measure cell images automatically

ICY
Created by the Quantitative Image Analysis Unit at Institute Pasteur, ICY provides integrated
software to bridge the gap between users and developers through open-source software and a

central website

Bio7 Application used for ecological modeling; integrated development environment; focuses on
individual-based modeling and spatially explicit models

Micro-Manager
Open-source microscopy software; controls automated microscopes; comprehensive imaging

solution when used with ImageJ; developed by Arthur Edelstein, Ziah Dean, Henry Pinkard and
Nico Stuurman

Nat Methods. Author manuscript; available in PMC 2017 August 13.

	Abstract
	NIH Image: Image analysis on the Mac
	The move to other operating systems
	Community contribution of plugins and macros
	File format challenges
	Integration with other tools
	References
	Figure 1
	Figure 2
	Table 1

