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Abstract

T cells patrol our bodies preventing pathogenic infections and malignant cell outgrowth. However, 

T cells must be properly controlled because aberrant or persistent T cell responses can damage 

tissues and contribute to autoimmune diseases and other chronic inflammatory diseases including 

metabolic syndrome. One regulatory mechanism utilized in immune cells is immunometabolic 

regulation, which ensures immune cells properly respond to systemic and peripheral metabolic 

cues. Recent work has suggested that deregulated metabolism in tumor cells creates a 

microenvironmental barrier for mounting effective anti-tumor immune responses. Here, we discuss 

how tumor cells evade immunosurveillance by modulating metabolic checkpoints in immune cells 

and discuss how memory T cells could provide effective anti-tumor responses by sustaining 

metabolic fitness and longevity.

Introduction

Tumor-infiltrating lymphocytes can play critical roles in regulating tumor outgrowth [1,2] 

and numerous forms of immunotherapies are now under investigation to enhance anti-tumor 

immune responses. Approaches such as vaccination and adoptive T cell transfer can expand 

the tumor-specific T cell population, but often in solid tumors, such beneficial responses are 

hindered by the immunosuppressive tumor microenvironment (TME) [2–6]. Programmed 

cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 

checkpoint blockade have been shown to successfully boost host anti-tumor immunity in a 

restricted portion of patients [2,7]. Intriguingly, this indicates that it is possible to subdue 

immunosuppressive features of the TME. Therefore, understanding in detail the mechanisms 

exploited by tumor cells to negate anti-tumor responses is essential for developing new 

interventions to work alone or with current cancer immunotherapies.
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Tumor cells display abnormal metabolic activities; consuming nutrients and generating 

metabolites differently compared to non-proliferative normal tissues and benign lesions 

[1,8]. These metabolic alterations, including Warburg glycolysis and de novo fatty acid 

synthesis, support the unrestricted proliferation and survival of tumor cells [8]. However, 

these intrinsically beneficial metabolic changes in tumor cells can also have extrinsic effects 

and modulate neighboring cell behavior through nutrient competition and exchanges of 

metabolic intermediates [9–14]. Details on how particular metabolic processes regulate 

immune cell function are covered elsewhere in this issue. Therefore, this piece will focus on 

how altered metabolic states of the tumor cells act extrinsically to influence the types of 

tumor infiltrating immune cells, their metabolic activities and functions, and how targeting T 

cell memory pathways could be an attractive strategy to sustain anti-tumor immunity.

Anti-tumor immune responses are impaired by the altered nutrient state of 

the tumor microenvironment (TME)

Acidosis and lactic acid in the TME

Otto Warburg discovered that, in normoxic conditions, rapidly growing tumor cells produce 

copius amounts of lactic acid from glucose, a process known as the Warburg glycolysis [15]. 

This process allows tumor cells to accumulate the metabolic intermediates, such as 

nucleotides and amino acids, to support macromolecule production necessary for cell 

division [15,16]. However, the lactic acids produced by tumor cells during this process 

acidify the TME and both the lower pH or the direct effects of lactate/lactic acid can 

modulate the neighboring immune cells in the TME [17–19]. Particularly in hypoxic areas in 

tumors where the low diffusion rates of oxygen further enhances tumor cell glycolysis and 

TME acidosis [16,20–22]. Lactic acids are co-transported with the proton concentration 

gradient through the monocarboxylate transporter (MCT). Therefore, MCT inhibitors, acting 

upon tumor cells, may neutralize acidosis and prevent lactic acid transport into T cells, 

thereby improving T cell functions [18,19]. However, it is possible that MCT inhibitors 

could also impair anti-tumor T cell responses because the reduced dissipation of lactic acids 

within activated T cells could raise intracellular pH to toxic levels [14,23,24]. Lactic acid is 

directly suppressive to T cell effector functions such as IFNγ and Granzyme B production 

[18,24,25] Lactate can also induce VEGF production in tumor associated macrophages that 

promotes angiogenesis and tumor growth [14] Intriguingly, the mobility of CD8+ and CD4+ 

T cells could be differentially suppressed by lactic acid and sodium lactate due to the 

expression of T cell subtype-specific transporters [18]. Additionally, a recent report showed 

that tumors with low lactate dehydrogenase A (LDHA) activity were more infiltrated by T 

and NK cells [24] These findings suggest that increased lactic acid production by tumors 

aides in tumor evasion by hindering T cell mobility and effector functions in the TME. Thus, 

targeting lactic acids and lactate in the tumor microenvironment may be an attractive 

strategy to unleash T cell and macrophage anti-tumor responses.
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Glucose and amino acids deprivation in the tumor microenvironment impairs anti-tumor 
immunity

Effector T cells utilize aerobic glycolysis and increased amino acid metabolism to support 

proliferation and production of effector molecules by modulating signaling cascades and 

transcriptional and translational events [26]. However, oncogenic mutations and hypoxia 

profoundly enhance the rate and ability of tumor cells to uptake glucose [15], which could in 

turn, restrict glucose availability to infiltrating T cells and other neighboring cells, such as 

antigen-presenting and endothelial cells. Glucose restriction in T cells promotes T cell 

dysfunction and impairs calcium signaling, mechanistic target of rapamycin (mTOR) 

activity, translation of effector molecules, and survival through various metabolic regulations 

[10,26–29]. Moreover, PD-1 signal suppresses glycolytic metabolism whilst stimulating 

fatty acid oxidation in T cells to further prevent T cells from achieving the metabolic 

demands required to sustain anti-tumor responses [30,31]. Recent studies support the notion 

that tumor infiltrating T cells fail to acquire sufficient glucose in certain types of tumors and 

that tumor cells displaying higher glycolytic activity are prone to escape 

immunosurveillance [12,13]. Intriguingly, boosting glycolytic activity by stabilizing HIF1α 
through PHD- or VHL-deficiency or metabolic rewiring tumor-specific T cells by 

overexpressing phosphoenolpyruvate carboxykinase 1 (PCK1) improved anti-tumor T cell 

activities [12,32,33]. These findings reveal ways by which the glycolytic activity of tumor 

cells can facilitate immune evasion. Thus, targeting oncogenic mutations that sustain 

anabolic metabolism in tumor cells (such as oncogenic BrafV600E in melanoma or EGF 

receptor tyrosine kinase in head and neck squamous cell carcinoma and non-small-cell lung 

cancer), might indirectly lead to improved T cell anti-tumor responses and metabolic fitness 

in part due to the suppressive effects of these drugs on tumor cell glycolysis [34–36]. 

Interestingly, the expression of ligands for co-inhibitory receptors, such as PD-L1 and B7-

H3, could enhance Warburg glycolysis and glucose uptake rates in tumor cells [13,37,38]. In 

these studies, targeting these ligands of co-inhibitory receptors could suppress glycolytic 

activity of tumor cells. Therefore, in addition to relief the inhibitory signal in T cells PD-1 

blockade may synergize with treatments targeting ligands of co-inhibitory receptors to boost 

the metabolic fitness of infiltrating T cells.

Amino acid metabolism is also highly regulated in the TME by tumor cells and other 

immunoregulatory cells. For example, tumor cells, M2-like TAMs and myeloid-derived 

suppressor cells (MDSCs) often have increased Arginase 1 (Arg1) and indoleamine-2,3-

dioxygenase (IDO) activity that metabolize arginine and tryptophan, key amino acids 

necessary for T cell receptor signaling, effector functions, proliferation and survival [26,39–

44]. Additionally, IDO catabolizes tryptophan into kynurenine [45], a metabolite that 

promotes CD4+ Treg differentiation and immunosuppression of effector T cells [46–48]. 

Given the immunosuppressive nature of Arg1 and IDO, inhibitors of Arg1 and IDO could 

mount effective anti-tumor T cell responses and suppress tumor progression in murine tumor 

models and how these inhibitors unleash host anti-tumor responses in patients are 

undergoing intensively investigations in multiple clinical trails [49]. In addition, increased 

glutaminolysis in tumor cells is critical to replenish metabolites through anaplerosis, which 

could result in deprivation of glutamine to tumor infiltrating T lymphocytes. Since glutamine 

metabolism in T cells controls T cell activation and self-renewal by enhancing mTOR 
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activation, protein O-GlcNAcylation, and is also a key substrate for the formation of 2-

ketoglutarate (2-KG) and S-2-hydroxyglutarate (S-2-HG) that regulate effector T cell 

functions and differentiation [50–52], inhibiting glutaminolysis and glutamine transporters 

in tumor cells might induce anti-tumor responses and synergize with other cancer 

immunotherapies. Taken together, these findings indicate that the TME could also suppress 

immunisurveillance by quenching amino acid availability to T cells.

Lipid metabolism: a new metabolic regulator for immune evasion

Prolific lipogenesis via de novo fatty acid synthesis and fatty acid uptake are other hallmarks 

of transformed cells that promote tumor progression, metastasis, and resistance to cellular 

stress [53,54]. Indeed, targeting lipogenesis in tumor cells suppresses tumor progression 

[53,55–57], but it remains unclear whether increased lipid synthesis in tumor cells impacts 

the neighboring cells in the TME. It is possible that free fatty acids accumulate in the TME 

by tumor cell necrosis, increased lipolysis of TAGs by lysophosphatidyl lipase (LPL) or 

local adipocytes may enhance the persistence or survival of lipid-oxidizing CD4+ Tregs and 

MDSCs, decrease antigen-presentation ability of dendritic cells, and/or suppress the effector 

functions of cytotoxic CD8+ and TH1 CD4+ T cells [27,58,59]. These findings suggest that 

lipid metabolism in tumors could be a regulator for anti-tumor immunity. Intriguingly, 

emerging evidence revealed that short-chain fatty acids (SCFAs) could promote Tregs 

formation but middle- and long-chain fatty acids support differentiation of Th1 and Th17 

cells in gut [60]. Thus, we postulate that in the TME, tumor cells may disarm T cell anti-

tumor immunity by feeding unique fatty acids to reorient their effector functions and 

differentiation states. Taken together, it will be critical for future research to determine how 

immune cells adapt their immune functions in response to particular species of lipid and 

lipid composition, both in vitro and in vivo.

Superior anti-tumor immunity induced by tumor-specific memory T cells

Developing long-lived immunity to cancer is an ultimate goal for effective cancer therapy 

and may reduce incidence of recurrence in patients. Given that adoptive cell transfer (ACT) 

is a strategy to select and manipulate cellular activities of tumor-specific CTLs, ACT 

becomes a platform to understand the qualitative difference of the in vitro expanded tumor-

specific CTLs. Interestingly, in contrast to transferring effector CD8+ T cells that have a 

limited lifespan, the same amount of memory CD8+ T cells elicit stronger anti-tumor 

responses and give prolonged protection for tumor recurrence [2]. These findings suggest 

that a promising anti-tumor strategy would be to manipulate the memory phenotype of 

tumor-specific CD8+ T cells during the in vitro expansion of transferred T cells. In contrast 

to utilizing anabolic metabolism in effector CD8+ T cells, memory CD8+ T cells prefer to 

engage catabolic metabolism, including increased oxidative metabolism and fatty acid 

oxidation, to support metabolic demands [26,61–63]. Therefore, it may be possible to force 

the generation of memory CD8+ T cells by manipulating the metabolic pathways during in 
vitro T cell expansion. Indeed, several recent studies have shown that treating T cells with 2-

deoxyglucose or an Akt inhibitor produces memory-like T cell populations with stronger 

anti-tumor responses and survival potential [64,65]. In addition, increasing L-Arginine 

availability could increase T cell mitochondrial respiration in an in vitro culture and these T 
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cells display memory phenotypes and superior anti-tumor responses [66]. These findings 

lend credence to the idea that tailoring metabolic program of transferred T cells may elicit 

different anti-tumor responses, and further indicates that memory CD8+ T cells may adapt 

their metabolic demands to the nutrient composition in the TME. In support of this 

possibility, a recent study using chimeric antigen receptor (CAR) T-cells discovered that the 

newest generation of CAR allows T cells to increase growth and survival by engaging a 

metabolic phenotype seen in memory CD8+ T cells [67]. These studies indicate that 

metabolically modulated adoptively transferred T cells, including endogenous and CAR T 

cells, can achieve longer-lasting and possibly more potent anti-tumor responses; however, it 

remains unclear why memory CD8+ T cells can perform better in the TME. Since 

mitochondrial activity and fatty acid oxidation support the metabolic demands of memory T 

cells [61–63], we postulate that these properties may augment the persistence and 

proliferative capacity of memory T cells in the TME. Indeed, declined mitochondrial content 

and inability to engage mitochondrial biogenesis in tumor infiltrating CD8+ T cells was 

recently shown to result in metabolic insufficiency and poor anti-tumor responses [68]. 

Intriguingly, overexpressing peroxisome proliferator-activated receptor gamma co-activator 

1-alpha (PGC1α) in tumor antigen-specific CD8+ T cells could enhance their anti-tumor 

responses by promoting mitochondrial biogenesis [68]. Since increasing mitochondrial 

content is a metabolic hallmark of memory T cells, it is likely that overexpression of PGC1α 
could skew activated CD8+ T cells into a memory-like phenotype. In addition to 

mitochondrial content, memory T cells have been reported to display fused mitochondrial 

structure and promoting mitochondrial fusion in T cells could lead to a memory-like 

phenotype and stronger anti-tumor activities [69]. Interestingly, the formation of tubular and 

fused network of mitochondria has been shown to allow fibroblasts to adapt their metabolic 

demands during nutrient starvation [70]. Thus, in addition to anabolic metabolism, the 

mitochondrial fitness and activity in memory T cells might also play critical roles to sustain 

their survival and proliferation in the TME (Figure 1). Altogether, these findings indicate 

that targeting metabolic regulations of memory T cells could be applied in cell-based 

immunotherapies to elicit superior anti-tumor responses and long-lasting protection for 

tumor recurrence. However, an important direction for future studies is to determine if and 

how memory T cells and secondary effector T cells derived from memory T cells could 

resist the metabolic crisis that can occur in the TME.

Conclusions and future directions

We are at a remarkable point in the new era of immunotherapy and cancer immunology, and 

as we deepen our understanding of immunometabolism by elucidating how particular 

metabolic pathways and nutrients influence T cell differentiation, function and trafficking, 

this may reveal new types of drugs and/or treatments that could be combined with other 

forms of immunotherapy. Even the handful of recent reports described herein offers several 

clinically-viable possibilities for new cancer treatments that could be implemented in the 

very near future. Considering memory T cells provide superior anti-tumor immunity, it is 

critical to determine how metabolic pathway(s) of memory T cells support their survival, 

function and proliferative capacity in the TME. It would also be critical to examine how the 

TME impairs the mitochondrial fitness of tumor infiltrating T cells and determine how 
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mitochondria of T cells could orchestrate desired anti-tumor responses. The knowledge 

gained from these studies would serve as a springboard for tailoring T cell-based cancer 

immunotherapies.
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Highlights

• Metabolic stress in tumors impairs T cell anti-tumor immunity.

• Memory T cells could be optimal cell type to sustain metabolic fitness in 

tumors.

• Skewing memory T cell formation is a promising strategy in adoptive cell 

therapy.

• Mitochondrial metabolism may be critical to sustain T cell tumoricidal 

functions.
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Figure 1. Mitochondria-mediated metabolic support in memory T cell anti-tumor immunity
The metabolic stresses in the tumor microenvironment, including nutrient deprivation, 

hypoxia, acidic environment and immunosuppressive cytokine milieu, suppress anti-tumor 

responses and metabolic fitness in effector T cells. These microenviornmental barriers could 

affect mitochondrial mass and activity that lead to impaired TCA cycle and changes in 

bioenergetic programm. However, memory T cells might maintain their anti-tumor 

immunity by resisting to these microenvironmental barriers or sustaining their mitochondrial 

mass and functions.
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