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Spin diffusion from an inhomogeneous quench
in an integrable system
Marko Ljubotina1, Marko Žnidarič1 & Tomaž Prosen1

Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems

when prepared in generic inhomogeneous initial states. However, the ballistic contribution to

transport can vanish in systems with additional discrete symmetries. Here we perform large

scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2

chain starting from an inhomogeneous mixed initial state which is symmetric with respect to

a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we

find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of

the transported magnetization and scaling profiles of the spin density. While in the easy-axis

regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case

is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal

scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.
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I
ntegrable models, such as the classical Kepler problem,
harmonic oscillators, the planar Ising problem and so on,
form cornerstones of our understanding of nature. Their

equilibrium physics is usually well understood, even for the most
complicated among integrable models, for example, the ones
solvable by the Bethe ansatz1. Non-equilibrium physics of
quantum systems on the other hand is much less understood2,
particularly when going beyond the simplest integrability of
quadratic models. This theoretical gap is becoming even more
apparent with the advancement of experimental methods that are
offering us analogue simulation of models beyond the capability
of our best theoretical and numerical methods3,4.

Non-equilibrium dynamics of integrable quantum systems is
thus one of the main current focuses of both theoretical and
experimental condensed matter physics5. A macroscopic number
of conservation laws existing in such systems6 provide a variety
of ways to break ergodicity, manifesting, for instance, in
equilibration processes to non-thermal states or ballistic high-
temperature transport of conserved quantities, such as energy,
magnetization or charge. A naive classical reasoning might be
that, because integrable systems are distinguished by constants of
motion that force the dynamics to be simple and almost periodic
(for example, orbits winding up the torus), one should expect to
see ballistic transport. We shall demonstrate that this picture,
while being correct for trivially integrable noninteracting models,
such as harmonic oscillator chains7, can in fact be wrong for an
interacting quantum integrable model.

Recently, a generalization of hydrodynamics has been put
forward8,9 which successfully predicts ballistic currents and scaled
density profiles of integrable interacting systems quenched from
inhomogeneous initial states10–15, which is a convenient method
to study relaxation and non-equilibrium transport. In this
protocol, the system is prepared in the state where the left and
the right part, for xo0 and x40, respectively, are in different
equilibrium states, and then, at t¼ 0, let to evolve with a
homogeneous interacting Hamiltonian. However, when ballistic
transport is prohibited due to generic symmetries, such as is the
case for spin transport in the anisotropic Heisenberg spin chain in
the easy-axis (Ising) regime, this theory makes no prediction.

In extended interacting integrable system a macroscopic
number of local conservation laws exists, in number proportional
to the number of degrees of freedom, which can be exploited to
develop generalized hydrodynamics8. This theory for typical
inhomogeneous initial states predicts ballistic scaling f(x¼ x/t) of
densities and currents of conserved quantities, such as energy,
charge or magnetization. However, in systems with parity Z2ð Þ
symmetries, such as particle-hole exchange (or spin reversal), and
for observables that are odd under the parity and initial states that
are symmetric under the combined parity and spatial reflection
x-� x, the ballistic contribution to transport can vanish. In fact,
vanishing ballistic transport channel can then be related to the
absence of local or quasi-local conserved charges with odd
parity6,16. This means that the transported conserved quantity at
x¼ 0 grows slower than linear with t.

Here we propose a conjecture, based on large scale simulations,
that a quench from an inhomogeneous initial state will in
such cases generically result in diffusive spin dynamics. We
demonstrate our results on the anisotropic Heisenberg chain
(XXZ model). However, we stress that the XXZ model goes
beyond being a mere toy model—it has been instrumental in the
development of quantum integrability17,18 and describes
interaction in real spin chain materials19. Remarkably, in
the case of isotropic Heisenberg interaction, spin relaxation is
super-diffusive but with universal scaling dynamics which obey
the standard diffusion equation in nonlinearly scaled time. Our
results thus reveal a surprising property of an important

integrable model as well as pose a challenge to theories which
at present are unable to account for our observations. Because
the parity symmetry is ubiquitous, our set-up should be
widely applicable, for instance, we predict a similar physics in
the one-dimensional (1D) Hubbard model.

Results
The set-up. The Hamiltonian of the XXZ chain of n sites reads

H¼J
Xn=2� 1

x¼� n=2

sð1Þx sð1Þxþ 1þ sð2Þx sð2Þxþ 1þDsð3Þx sð3Þxþ 1

� �
; ð1Þ

where D is the anisotropy parameter and sðgÞk ¼ 1
2 s
ðgÞ
k are the spin

1/2 operators, with Cartesian component g¼ 1, 2, 3, expressed
in term of Pauli matrices sðgÞk (we use units J¼ :¼ 1). The
Hamiltonian preserves the total magnetization, M¼

P
x sð3Þx ,

½H;M�¼0. We are going to study the spin transport satisfying the
continuity equation dsð3Þx =dt¼jx� 1� jx � �rjx with the
current

jx¼sð1Þx sð2Þxþ 1� sð2Þx sð1Þxþ 1: ð2Þ
The existence of spin-reversal parity S¼

Q
x s
ð1Þ
x , ½H; S�¼0 and

odd current jxS¼ � Sjx, implies an absence of ballistic transport
channels based on local conserved charges20. We are going to
simulate the time evolution of an initial inhomogeneous state
composed of two halves with opposite magnetizations.

To this end we choose a product initial state described by a
density operator r,

rðt¼0Þ� 1þ m sð3Þ
� �� n

2 � 1�m sð3Þ
� �� n

2
; ð3Þ

where the parameter mA[� 1, 1] determines the initial magne-
tization, being hsð3Þx�0;o0i¼ � 1

2 m. Each of the initial halves can be

thought of as being in equilibrium state � e� h
P

x
sð3Þx at very

high temperature and finite magnetization. We are therefore
studying high-energy non-equilibrium physics of the model.
While the initial state is pure for |m|¼ 1 (a fully polarized domain
wall), evolution of which has been studied in the past21, the
choice of a mixed state offers several important advantages: it is
generic and not plagued by the speciality of m¼ 1 at D41 for
which the dynamics freezes due to the proximity to a gapped
eigenstate22, and it is, for small m, better suited for numerical
simulations. This allows us to study significantly longer timescales
as compared to existing literature and infer the scaling functions.
We also mention that such an initial state can be thought of
as representing an ensemble of pure states with randomized
angle j on the Bloch sphere (Methods section).

Scaling exponents. We focus our efforts on DZ1 where there are
no analytic results known for the magnetization transport, and
the method8,9 only predicts vanishing ballistic contribution. Two
representative examples of a time evolved state r(t), namely the
spin and current profiles sðx; tÞ¼ trrðtÞsð3Þx , j(x, t)¼ trr(t)jx, are
shown in Fig. 1. To obtain the exact type of transport we shall
quantitatively study equilibration of magnetization, in particular
the scaling of spin and current profiles as well as the transferred
magnetization between the two halves, whose asymptotic scaling
power a characterizes the transport type,

DsðtÞ¼
Z t

0
j 0; t0ð Þdt0 / ta; ð4Þ

where j(0, t) is the current at the half-cut. For a¼ 1/2 the
transport is diffusive, for 1/2oao1 it is called super-diffusive,
and finally, a¼ 1 corresponds to ballistic transport. We note that
the transport type is connected to current–current correlation
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function via Green–Kubo linear response theory. In case of
diffusive transport, the spin density satisfies the diffusion
equation. This notion of diffusion does not necessarily
correspond to De Gennes phenomenological theory of spin
diffusion which, under much stronger assumptions, in 1D
implies 1/

ffiffi
t
p

dependence of local spin density autocorrelation
function23,24.

We evolved the initial state r(0) (3) up to long times
(of order tE160) and set large enough n so that there was no
significant finite size effects. From the data we then infer the
exponent a using equation (4), see Fig. 2a,b for representative
plots. Dependence of the exponent a on D is summarized in
Fig. 2c. While the transport is found to be ballistic for Do1,
expectedly so for the integrable system, also known rigorously16,
at DZ1 we find rather clear non-ballistic relaxation. In particular,
at D¼ 1 it is super-diffusive while for D41 the transport is
diffusive, observed in driven steady-state setting25,26 as well as in
the Hamiltonian one24,27–30. At D¼ 1 we also observe small
dependence of a on m. While for small m, that is, small deviations

from an infinite temperature state rB1, the exponent is close to
2/3, closer to pure state m¼ 1 it appears to be closer to E3/5
(we note that a different numerical procedure is used in the two
regimes, see Methods).

Scaling functions. The scaling of the transferred magnetization
unequivocally shows a surprising non-ballistic transport in an
integrable system which, however, has been observed and
discussed before in related contexts, namely within local quench
and linear response theory24,27–30 and boundary driven Lindblad
approach25,26. But here we can do still more. In Fig. 3 we
demonstrate that the spin profiles can be described by a function
of a single-scaling variable x/ta—profiles at large times collapse
to a single curve. In addition, the profiles of current and
magnetization are proportional to each other at different times
(Fig. 3c,d), therefore validating Fick’s law j¼ �Drs where the
behaviour of the diffusion constant D with respect to the
anisotropy D is shown in the inset of Fig. 2c. This comes as no
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Figure 1 | Dynamics of spin and current densities. Time evolution of spin density sðx; tÞ¼ trðrðtÞsð3Þx Þ (a,b) and current (c,d) profile j(x, t)¼ tr(r(t)jx) for

the isotropic point D¼ 1 (a,c), and D¼ 2 (b,d), following an inhomogeneous quench. One can see that the spreading is much faster for D¼ 1, in both cases

though it is slower than ballistic. Dashed green curves guide the eye towards scaling xBt2/3 in a, and xBt1/2 in (b). Data are shown for n¼ 320 and small

initial polarization m¼ p/1,800.
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surprise in the diffusive regime D41 where the scaling function
of the magnetization (Fig. 3b) is simply the error function
sðx; tÞ¼� m

2 erf x=
ffiffiffiffiffiffiffiffi
4Dt
p� �

. However, the same can not be said for
the isotropic point D¼ 1. Proportionality between the
magnetization gradient and the current profile (Fig. 3c), this
time with a time-dependent ratio D ’ K

3 t1=3, suggests a diffusion
equation in a scaled time

@sðx; tÞ
@t

¼K
4
@2sðx; tÞ
@x2

; where t¼t4=3; ð5Þ

which again yields error function profile with a different scaling
variable sðx; tÞ¼� m

2 erf K � 1=2x=t2=3
� �

with K¼ 2.33±0.03. In
Fig. 3a we compare numerical profiles with the error function,
again finding good agreement within accuracy of our simulations.
Therefore, the scaling function is, in both cases, D¼ 1 and D41,
the error function, the difference being only in the scaling variable
which is x/t2/3 at the super-diffusive isotropic point. This result
is surprising, as anomalous diffusion is usually associated with
Levy processes and hence long (non-Gaussian) tails in the
profiles. Here it seems it all amounts to a nonlinear rescaling of
time. Theoretical explanation of this effect is urgent.

Entanglement entropy and simulation complexity. Finally, we
mention a numerical observation that explains why we can
simulate dynamics to such long times, and is an interesting
property on its own. We use a time-dependent density
matrix renormalization group method (tDMRG), see Methods.

The efficiency of tDMRG depends on the entanglement entropy,
that is, for pure state evolution on the Von Neumann entropy
S¼� tr rA lnrA½ � of the reduced state rA¼ trA|CihC|, whereas
for mixed states evolution on an analogous operator space
entanglement entropy S#, (ref. 31) of a vectorised density operator
r. When starting with a typical product initial state both
entropies typically grow linearly with time, regardless of the
system being integrable or not32,33, causing exponentially fast
growth of complexity and with it a failure of these numerical
methods. In our case though, see Fig. 4, entropies grow much
slower, namely in a power-law fashion

S� tb; or S # � tb; ð6Þ

with b being o1. The most efficient simulations have been
possible with density operators for small m where the exponent
b is typically between 0.3 and 0.5.

Discussion
Our numerical results can be interpreted as an evidence of normal
spin diffusion and spin Fick’s law in the easy-axis anisotropic
Heisenberg chain (for anisotropy D41), with spin density
satisfying the diffusion equation on large scales. Besides the case
D¼ 2 shown here, we provide additional data for D¼ 1.05, 1.1, 1.3,
1.5 demonstrating a clear convergence of the diffusive scaling
exponents a¼ 1/2 in all massive cases (Supplementary Note 1), and
data for massless cases D¼ 0, 0.5, 0.7, 0.9 which indicate
convergence to ballistic exponent a¼ 1 (Supplementary Note 2).
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Figure 2 | Scaling exponents of magnetization spreading. (a,b) Local exponent a(t) calculated as a numerical log-derivative d log Ds(t)/d log t for D¼ 1

(a) and D¼ 2 (b) (dashed lines indicate exponents 2/3 and 1/2, respectively, while dashed lines in the insets show best power-law fits to Ds(t)—red

curve), both for m¼p/1,800. (c) Conjecture for the dependence a(D) at high temperatures and small m. The inset shows the diffusion constant obtained

from Fick’s law for various values of D in the diffusive regime, converging to a finite value at large D (agreeing with ref. 28). (d) Dependence on m for D¼ 1

shows a small but significant change in the behaviour: for mE1 it is closer to a¼ 3/5 while for small m it becomes close to a¼ 2/3 (dashed). The blue

(circles) and red (crosses) symbols represent wave function and density operator evolutions respectively. We average over samples of 10–130 random

initial wave-functions for each blue data point. For intermediate m the error-bars (denoting the estimated s.d.) are larger since the simulation is less efficient

in that regime (Methods section).
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While for generic, non-spin-reversal-symmetric initial states, the
dominant contribution to transport is ballistic as determined
by generalized hydrodynamics (or generalized 1D Euler’s
equations)8,9,13–15, the next-to-leading term is now clearly

predicted to be diffusive, as following from our work. However, a
theoretical explanation, or even derivation of a diffusive contri-
bution to transport in an integrable system with a macroscopic
number of conservation laws is still pending. Even more surprising
is the discovery of anomalous super-diffusive transport in the
isotropic case (D¼ 1) with the scaling exponent equal to or very
close to 2/3. While this might suggest a behaviour described by
KPZ (Kardar–Parisi–Zhang) universality class, we find that
asymptotic spin density profiles obey the nonlinearly scaled
diffusion equation and are distinct from the KPZ profiles. One
might conjecture that the scaling exponent 2/3 is a consequence of
SU(2) symmetry and not the fact that the model there corresponds
to the marginal critical point D¼ 1. This would be consistent with
observed anomalous super-diffusive scalings in SU(4) spin ladders
in the set-up of driven steady-state Lindblad dynamics34 where the
scaling exponent appears to be a¼ 3/5. Curiously, all scaling
exponents observed in this work (1/1, 1/2, 2/3, 3/5) are ratios of
subsequent Fibonacci numbers35.

Methods
Numerical procedures. The time evolution is performed by means of the tDMRG
algorithm36,37. In particular, for small m data (which is mostly reported here) the
most efficient was the matrix product density operator version of tDMRG, with
which we could reach times of the order tC200 for system size nC2t using bond
dimensions 50–200 resulting in relative truncation errors o1%. One the other
hand, for mE1 (close to domain wall pure state), the pure state version of tDMRG
becomes more efficient as the corresponding entanglement entropy scaling
exponents b are smaller. The two approaches appear to complement one another as
can be seen in Fig. 2d. Neither approach allows us to observe long times in the
intermediate region of m, where the exponents b become closer to 1.

In order to simulate the desired density operator by evolving pure states we
define a set of initial states

Cðt¼0Þj i¼
O
xo0

c m;fxð Þj i �
O
x�0

c �m;fxð Þj i ð7Þ

where cðm;fÞj i¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞ=2

p
"j iþ eif

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mð Þ=2

p
#j i is simply the Bloch sphere

representation of a 2-level system and the fx are uniform independent random
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Figure 3 | Scaling profiles. Scaling of density and current profiles with x/ta. In (a,b) we show the scaling of magnetization profiles, (a) for D¼ 1 using

a¼ 2/3, and (b) for D¼ 2 and using a¼ 1/2 (note that the points for different times overlap almost perfectly; the insets show the convergence of the

relative root-mean-square difference (in %) between data s(x, t) and scaled erf-profiles (see text) as a function of time). Frames (c,d) show the

emergence of Fick’s law at late times (shown at t¼ 160), comparing current profiles (red) to gradients of spin density (blue)—both indistinguishable from

Gaussians, for D¼ 1 in (c) and D¼ 2 in (d). In all plots the system size is n¼ 320.
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numbers in the range [0, 2p). The density matrix is then obtained as an ensemble
average over a set of such pure random states rðtÞ¼E CðtÞj i CðtÞh jð Þ. It is clear that
an increasingly large set of random states is needed as the magnetization
approaches m-0, where the matrix product density operator simulation is
favourable anyway.

Data availability. Data are available on request from the authors.
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25. Prosen, T. & Žnidarič, M. Matrix product simulation of non-equilibrium steady
states of quantum spin chains. J. Stat. Mech. 2009, P02035 (2009).

26. Žnidarič, M. Spin transport in a one-dimensional anisotropic Heisenberg
model. Phys. Rev. Lett. 106, 220601 (2011).

27. Steinigeweg, R. & Gemmer, J. Density dynamics in translationally invariant
spin-1/2 chains at high temperatures: a current-autocorrelation approach to
finite time and length scales. Phys. Rev. B 80, 184402 (2009).

28. Karrasch, C., Moore, J. E. & Heidrich-Meisner, F. Real-time and real-space
spin and energy dynamics in one-dimensional spin-1/2 systems induced
by local quantum quenches at finite temperatures. Phys. Rev. B 89, 075139
(2014).

29. Steinigeweg, R., Gemmer, J. & Brenig, W. Spin-current autocorrelations from
single pure-state propagation. Phys. Rev. Lett. 112, 120601 (2014).

30. Steinigeweg, R. et al. Real-time broadening of nonequilibrium density profiles
and the role of the specific initial-state realization. Phys. Rev. B 95, 035155
(2017).
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