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Abstract
Patients treated with platinum-based chemotherapy 
frequently experience neurotoxic symptoms, which may 
lead to premature discontinuation of therapy. Despite 

discontinuation of platinum drugs, these symptoms can 
persist over a long period of time. Cisplatin and oxaliplatin, 
among all platinum drugs, have significant neurotoxic 
potential. A distal dose-dependent symmetrical sensory 
neuropathy is the most common presentation of platinum 
neurotoxicity. DNA damage-induced apoptosis of dorsal 
root ganglion (DRG) neurons seems to be the principal 
cause of neurological symptoms. However, DRG injury 
alone cannot explain some unique symptoms such as 
cold-aggravated burning pain affecting distal extremities 
that is observed with oxaliplatin administration. In this 
article, we briefly reviewed potential mechanisms for the 
development of platinum drugs-associated neurological 
manifestations. 
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Core tip: Platinum drug-based chemotherapies may 
lead to intolerable neuropathic symptoms, preventing 
their administration at the optimal effective doses and 
duration. A better understanding of potential mechanisms 
underlying these symptoms can help clinicians better 
manage patients experiencing acute and/or cumulative 
neurotoxicity during treatment with platinum-containing 
chemotherapy. 
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INTRODUCTION
Platinum drugs, including cisplatin (cis-diamminedi-
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chloroplatinum Ⅱ), carboplatin (cis-diammine-1, 1-cyclo-
butane dicarboxylate platinum Ⅱ), and oxaliplatin 
(trans-R,R-cyclohexane-1,2-diamineoxalatoplatinum 
Ⅱ) have become an important part of the combination 
chemotherapy regimens used to treat different types 
of solid tumors. Despite their favorable anti-tumor 
properties, platinum drugs can cause serious side effects 
such as neurotoxicity[1-3]. 

Carboplatin neurotoxicity is negligible compared with 
that of cisplatin and oxaliplatin, however, it can develop, 
particularly high doses are administered[3,4]. Exposure of 
rat sensory neurons in culture to cisplatin, oxaliplatin or 
carboplatin in vitro caused a concentration-dependent 
increase in cell death and apoptotic cells[5]. However, 
carboplatin required a 10-fold higher drug concentration 
than cisplatin to induce a similar degree of cytotoxic 
effect. In addition, both cisplatin and oxaliplatin led 
to increased reactive oxygen species production and 
8-oxoguanine DNA damage, but carboplatin did not[5]. 
These preclinical observations may partly explain why 
carboplatin has less neurotoxic effects.

Conversely, conventional-dose cisplatin- or oxa-
liplatin-based therapies can sometimes lead to into-
lerable neuropathic symptoms, preventing their admi-
nistration at the optimal effective doses and duration. 
Large-diameter sensory nerve fibers appear to be the 
most affected by platinum drugs, leading to symmetrical 
glove and stocking type of sensory loss, numbness, 
tingling, pain, and burning sensation[4]. Some of these 
symptoms may persist for months or even years. 
Furthermore, in some cases, they may continue to 
worsen even after treatment cessation, a phenomenon 
known as “coasting”[6].

Platinum-induced neurologic symptoms become 
evident when certain cumulative drug doses have 
been administered. Cumulative doses of cisplatin and 
oxaliplatin of 350 mg/m2 and 550 mg/m2, respectively, 
have been considered as the threshold values for 
neurotoxicity development[6]. Some clinical and genetic 
features of patients may make them more susceptible 
to developing severe neurotoxicity during treatment 
with platinum drugs. A recent study by Velasco et al[7] 
found that among patients treated with oxaliplatin-based 
chemotherapy, male patients, patients experiencing 
more severe acute neuropathic symptoms, patients 
with abnormal findings on mid-treatment nerve con-
duction velocity studies, and patients receiving higher 
cumulative oxaliplatin doses have an increased risk of 
developing significant neuropathic symptoms. Several 
recent pharmacogenomics studies have suggested 
that patients with polymorphisms in the Glutathione 
S-transferases genes (GSTM1, GSTT1, and GSTP1) are 
more likely to develop grade 3-4 cumulative neuropathy 
during oxaliplatin treatment due to decreased drug 
detoxification[8]. 

Oxaliplatin may also cause acute dose-independent 
neurotoxicity, which can occur in approximately 90% 
of patients during or shortly after infusion, and is 
characterized by transient cold-induced paresthesias 

and dysesthesias affecting the distal extremities, and 
perioral and pharyngolaryngeal regions[9,10]. 

A better understanding of the potential mechanisms 
underlying cisplatin or oxaliplatin neurotoxicity will 
certainly help clinicians identify the optimal clinical 
management of this side effect. The aim of this review 
was, therefore, to summarize the current knowledge 
on the neuronal events induced during platinum-based 
therapy. 

Nuclear DNA damage in dorsal root ganglion neurons 
The accumulation of platinum compounds and their 
metabolites in the dorsal root ganglion (DRG) after their 
systemic administration and formation of platinum-
DNA adducts are considered key steps in neurotoxicity 
development (Figure 1)[2,11]. The presence of an abun-
dant fenestrated capillary network and the absence 
of blood-brain barrier in DRG allow platinum drugs to 
preferentially accumulate in DRG with easy access to 
sensory neurons[2,11,12]. 

Recently, it was demonstrated that the uptake of 
platinum drugs into DRG neurons may be facilitated by 
two different types of neuronal membrane transporters: 
Copper transporter-1 (CTR1) and organic cation trans-
porter-2 (OCT2)[13-15]. The overexpression of these 
transporters in neurons, therefore, can contribute to the 
development or aggravation of neurotoxicity. For example, 
a 16- to 35-fold increase in the cellular oxaliplatin uptake 
was observed in neurons overexpressing mouse OCT2 
or human OCT2, and this process resulted in significantly 
increased DNA platination and neurotoxicity[15]. 

Once the platinum drugs reach the neuronal cell 
nucleus, they attack the nuclear DNA to form adducts. 
They usually form same types of adducts on the same 
DNA sites, including 1,2-intrastrand d (GpG) (between 
adjacent guanine bases on the same DNA strand) and 
1,2-intrastrand d (ApG) (between adenine and adjacent 
guanine bases on the same DNA strand) crosslinks. A 
correlation between adduct levels and the degree of 
neurotoxicity has been reported[16]. The platinum-DNA 
adduct levels produced by cisplatin were found to be 
approximately three times higher than those generated 
by equimolar oxaliplatin doses. Concordantly, in vitro 
cisplatin caused significantly more neuronal cell death 
than oxaliplatin[16]. DNA repair ability of DRG neurons for 
adducts (primarily performed by the nucleoid excision 
repair) is an important factor determining neurotoxicity 
severity[17]. Chronic cisplatin administration resulted in 
an accelerated accumulation of unrepaired platinum-
DNA adducts in DRG neurons of DNA repair-deficient 
mice, which induced early neurophysiological alterations 
and led to an increase in neuronal cell death[17].

Inhibition of the global transcriptional activity of 
DRG neurons is one of the major consequences of 
DNA adduct formation[18]. DRG neurons need a high 
level of active transcription to sustain their large size, 
high metabolism, and long axons. Therefore, platinum-
induced DNA damage leads to neuronal atrophy and 
disruption of their distant axonal connections[18]. 
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Several preclinical studies have reported that pla-
tinum-induced DNA damage also induces apoptosis 
and neuron loss in DRG both in vivo and in vitro[19-22]. 
Cisplatin has been shown to initiate several apoptotic 
events in neuronal cells, including p53 activation, Bax 
translocation, mitochondrial cytochrome c release, 
and activation of caspase-3 and caspase-9. Gill and 
Windebank demonstrated that following exposure to 
cisplatin, DRG neurons attempt to re-enter the cell 
cycle from G0 phase, and this event can be a prelude to 
triggering neuronal cell death[22]. 

Mitochondrial DNA damage 
Mitochondrial dysfunction in DRG neurons was first 
described as a potential mechanism for platinum drugs 
neurotoxicity by Podratz et al[23]. They demonstrated 
that cisplatin also directly binds to mitochondrial DNA 
with similar binding affinity as nuclear DNA. Cisplatin-
mitochondrial DNA adducts inhibit mitochondrial DNA 
transcription and replication, and cause morphological 
changes in the mitochondria. This can lead to disruption 
of the electron transport chain, loss of adenosine tri-
phosphate (ATP) generation, energy failure, and over-
production of reactive oxygen species. All these events 
cause the opening of mitochondrial permeability transition 
pores, mitochondrial membrane depolarization, intra-
cellular calcium accumulation, and expression of apo-
ptotic proteins. 

Cisplatin may also impair mitochondrial transport 
dynamics in neurons[24]. Proper mitochondrial transport 
in neurons is critical to cellular homeostasis. A new 

study in Drosophila has shown that cisplatin can 
significantly reduce mitochondrial movement frequency 
in axons[24]. This is probably caused by both ATP 
depletion and cellular calcium accumulation. 

Some studies have demonstrated that cisplatin can 
alter the expression of mitochondrial fusion and fission 
proteins in peripheral nerves[25]. These proteins regulate 
mitochondrial shape, size, and number. Bobylev et al[25] 
detected a significant decrease in the mitochondrial 
fusion protein mitofusin 2 expression levels in DRG 
and tibial nerves of cisplatin-treated mice, resulting in 
mitochondrial swelling and vacuolization. 

Voltage-gated ion channels dysfunction 
(channelopathies) 
Oxaliplatin exhibits a tetrodotoxin-like inhibitory effect 
on the neuron voltage-gated sodium (Na+) chan-
nels[26-30]. It remarkably slows their inactivation and 
reduces the peak Na+ current, leading to an increase in 
the duration of the relative refractory period of sensory 
neurons. Oxaliplatin may also affect the Na+ channels 
indirectly via the chelation of extracellular calcium 
ions by its metabolite oxalate (diaminocyclohexane-
platinum-C2O4)[26]. Because of Na+ channel dysfunction, 
sensory neurons become hyperexcitable and eventually 
generate spontaneous ectopic discharges. 

Oxaliplatin can display isoform-specific effects on 
voltage-gated Na+ channels leading to the development 
of unique neuropathy symptoms such as cold-aggra-
vated peripheral pain[31,32]. It has been suggested that 
oxaliplatin-induced Nav1.6 dysfunction may play a 
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Figure 1  Proposed mechanisms of platinum-induced neurotoxicity. Dorsal root ganglion (DRG) is the main target of platinum drugs that preferentially 
accumulate in DRG neurons. Membrane transporters, copper transporter-1 (CTR1) and organic cation transporter-2 (OCT2), can facilitate the cellular uptake of 
platinum drugs. Platinum-DNA adducts inhibit replication and transcription, which results in caspase activation and subsequent cell death. Neuronal mitochondrial 
damage leads to cellular ATP depletion and increased reactive oxygen species (ROS) production. The voltage-gated sodium (Na+), potassium (K+) and calcium 
(Ca2+) channels dysfunction, and the enhanced expression and responsiveness of transient receptor potential channels (TRPA1, transient receptor potential 
ankyrin-1; TRPM8, transient receptor potential melastatin 8; TRPV1, transient receptor potential vanilloid 1) play an important role in the development of platinum-
induced neurotoxicity.
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role in cold allodynia development[33,34]. Cooling in the 
presence of oxaliplatin increased Nav1.6-mediated 
persistent and resurgent Na+ currents in large-diameter 
DRG neurons and resulted in the generation of action 
potential burst firing[31]. 

Peripheral nerve axonal excitability studies performed 
before and immediately after oxaliplatin administration 
have confirmed the above mentioned in vitro findings and 
revealed acute abnormalities in sensory nerve function 
related to Na+ channel dysfunction, including decreased 
refractoriness and increased superexcitability[35]. 
Interestingly, it was shown that these excitability 
abnormalities can be detected in the initial oxaliplatin 
treatment cycles and may serve as a predictive tool to 
identify patients who are more likely to develop moderate 
or severe neurotoxicity. 

Kagiava et al[33] suggested that altered voltage-
gated potassium channel activity may be involved 
in oxaliplatin-induced neurotoxicity development. In 
their study, the effects of oxaliplatin on the compound 
action potential of rat sciatic nerve were observed to be 
similar to those with the potassium channel blockers 
4-aminopyridine and tetraethylammonium. Oxaliplatin 
was found to cause broadening of action potentials and 
repetitive firing, suggesting its antagonistic effect on 
neuronal fast and slow potassium channels. This finding 
is indirectly supported by Sittl et al[34]. They showed 
that enhancement of axonal potassium conductance 
by flupirtine may reduce oxaliplatin-induced peripheral 
nerve hyperexcitability. 

Conversely, voltage-gated potassium channels are 
unlikely to be the primary target for oxaliplatin because 
patch-clamp studies failed to show any effect of oxaliplatin 
on Shaker-type potassium channels[36]. Kagiava et al[37] 
found some evidence indicating that potassium channel 
dysfunction during oxaliplatin treatment can occur 
due to malfunction of the gap junction (GJ) channels 
and hemichannels in myelinated fibers. According to 
their findings, oxaliplatin causes prolonged opening of 
GJ channels and hemichannels, leading to excessive 
potassium accumulation in the periaxonal space and its 
osmotic swelling. This event is likely to have a disturbing 
effect on the voltage-gated potassium channel function. 

Cisplatin does not appear to have a prominent 
effect on the neuronal sodium or potassium channel 
function. Initial studies using whole cell patch-clamp 
electrophysiological technique reported that cisplatin 
decreases the calcium channel currents, particularly in 
small-diameter neurons of rat DRG[38]. However, a new 
study revealed an increase in calcium influx through 
N-type calcium channels in rat DRG neurons after 
exposure to cisplatin[39]. This was mainly caused by the 
upregulation of the N-type calcium channels. Increased 
intracellular calcium levels led to caspase-3 activation 
and apoptosis induction. 

Enhanced responsiveness of thermosensitive transient 
receptor potential ion channels
Sensory neurons express various types of transient 

receptor potential (TRP) channels, including TRPA1, 
TRPM8, and TRVP1, which all play an important role 
in the generation and sensation of inflammatory and 
neuropathic pain[40-45]. 

Nassini et al[40] showed that oxaliplatin- and cisplatin-
induced mechanical and cold hyperalgesia in rats are 
mediated by transient receptor potential ankyrin-1 
(TRPA1), and TRPA1 activation is most likely caused by 
glutathione-sensitive molecules. Subsequently, Zhao et 
al[44] reported that oxaliplatin-induced cold hyperalgesia 
could be related to increased responsiveness of TRPA1. 
Pretreatment of the cultured DRG neurons with oxa-
liplatin resulted in an increase in the number of allyl-
isothiocyanate (a TRPA1 agonist)-sensitive neurons. 

The results of a recent study suggested that alu-
minum accumulation in DRG may augment oxaliplatin-
induced neuropathic pain through activation of TRPA1 
and stimulation of apoptotic cell death[46]. In this study, 
aluminum concentration of in DRG was greater in mice 
treated with aluminum chloride and oxaliplatin than in 
those treated with aluminum chloride alone. 

Gauchan et al[43] revealed that oxaliplatin treatment 
increased the cold receptor transient receptor potential 
melastatin 8 (TRPM8) expression in rat DRG neurons, 
which resulted in enhanced sensitivity to cooling sti-
mulation. Capsazepine, a blocker of both TRMP8 and 
TRPV1 channels, but not the selective TRV1 blocker 
5’-Iodoresiniferatoxin, was able to inhibit oxaliplatin-
induced cold allodynia. These findings suggested that 
TRPM8 plays a role in cold allodynia caused by oxaliplatin.

Ta et al[41] showed that mice DRG neurons treated 
with cisplatin or oxaliplatin displayed an increase in 
transient receptor potential vanilloid 1 (TRPV1), TRPA1, 
and TRMP8 mRNA expression. Trigeminal ganglion 
neurons from the cisplatin-treated animals showed 
increased TRPV1 and TRPA1 mRNA expression, and 
this was associated with enhanced heat and mechanical 
hypersensitivity. Conversely, oxaliplatin affected only 
TRPA1 expression, which induced cold and mechanic 
hypersensitivity. 

Glial activation
Di Cesare Mannelli et al[47,48] first suggested a link between 
oxaliplatin-induced neuropathic pain and glial activation. In 
a rat model with oxaliplatin-induced peripheral neuropathy, 
they showed a transient activation of microglia and 
astrocytes in the spinal cord and supraspinal areas 
involved with pain modulation accompanied by a decrease 
in mechanical and thermal pain thresholds following 
intraperitoneal oxaliplatin administration[48]. Intrathecal 
co-administration of microglial inhibitor minocycline was 
able to prevent microglial activation, but had no effect 
on the response of astrocytes. The astrocytic activation 
could be inhibited by intrathecal injection of fluorocitrate, 
an astrocyte specific metabolic inhibitor. Fluorocitrate did 
not influence oxaliplatin-induced microglial activation. 
Both drugs increased pain tolerance, but fluorocitrate 
produced greater pain relief than minocycline. However, 
neither minocycline nor fluorocitrate prevented oxaliplatin-
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dependent morphological alterations in DRG neurons[48]. 
These findings provide some evidence for the participation 
of glial cells in oxaliplatin-induced neuropathy. 

Involvement of nicotinic receptors
Oxaliplatin treatment was found to induce down regulation 
of alpha7 nicotinic acetylcholine receptor (nAChR) 
in the rat sciatic nerve, DRG, and spinal cord[49]. The 
administration of the selective alpha7 nAChR agonists 
(R)-ICH3 and PNU-282987 could prevent receptor down 
regulation and increase the pain threshold by oxaliplatin. 
These two agonists also could inhibit oxaliplatin-induced 
morphological changes in DRG and peripheral nerves, 
and upregulate glial cell density in the spinal cord, 
thalamus, and somatosensory area 1. CDP-choline, the 
other selective alpha7 nAChR agonist, was also found to 
be effective in reducing oxaliplatin-induced mechanical 
hyperalgesia when administered into the cerebral 
ventricles[50]. These findings suggested a neuroprotective 
role of alpha7 nAChR during oxaliplatin treatment. 

DETECTION AND ASSESSMENT OF 
PLATINUM-INDUCED NEUROTOXICITY 
Currently, no standard clinical method for the early 
detection and comprehensive assessment of platinum-
induced neurotoxicity is known. The use of self-repor-
ting questionnaires developed by the United States 
National Cancer Institute and European Organization 
for Research and Treatment of Cancer throughout the 
treatment course has been recommended as a simple 
clinical tool for determining and grading a pre-existing 
or new neuropathy[51,52]. These questionnaires contain 
items that evaluate the occurrence, severity, degree of 
distress, and frequency of neuropathic symptoms and 
their negative impacts on the patient daily activities. 

Among neurophysiological techniques, nerve con-
duction velocity studies and electromyography remain 
the gold standard technique for detecting the location 
and extent of neuronal damage due to treatment 
with platinum drugs[1,6]. Nerve excitability studies 
performed before and immediately after oxaliplatin 
infusion have emerged as novel non-invasive tests for 
early identification of patients at high risk for severe 
neurotoxicity[35,53].

PREVENTION AND TREATMENT 
STRATEGIES
A recent Cochrane review examined the effects of the 
potential chemo-protective agents against neurotoxicity 
of platinum analogs[54]. This review included 29 ran-
domized controlled trials (RCTs) and analyzed data from 
2906 participants who received platinum-containing 
chemotherapy (cisplatin, carboplatin, or oxaliplatin) alone 
or in combination with a potential chemo-protectant, 
including amifostine, calcium/magnesium infusion, 
glutathione, Org 2766, acetylcysteine, oxcarbazepine, or 

vitamin E[54]. The data obtained in this study were found 
to be insufficient to recommend any particular agent to 
prevent or limit platinum drug neurotoxicity. 

In 2014, the American Society of Clinical Oncology 
convened an expert panel to develop a clinical practice 
guideline for the prevention and treatment of chemo-
therapy-induced neuropathies in adult cancer survivors[55]. 
The experts reviewed 48 RCTs that investigated 
the efficacy of pharmacological agents, including 
antiepileptic drugs (carbamazepine and oxcarbazepine), 
antidepressants (amitriptyline, nortriptyline, venlafaxine 
and duloxetine), vitamins/minerals (calcium/magnesium 
infusions, vitamin E, and glutamine), and antioxidants 
(glutathione, N-acetylcysteine, and amifostine) against 
neuropathic pain caused by platinum compounds, pac-
litaxel or vinca alkaloids. They concluded that enough 
evidence to support routine clinical implementation of these 
agents for the prevention of platinum-induced peripheral 
neurotoxicity was not found. Conversely, duloxetine was 
found potentially useful for treating oxaliplatin-induced 
neuropathic pain. 

CONCLUSION
The apoptotic loss of DRG neurons plays a central 
role in the initiation and progression of platinum-
induced neurotoxicity. Recent evidence suggests that 
secondary mitochondrial dysfunction can mediate 
and aggravate cisplatin-mediated neuronal damage. 
Impaired activity of voltage-gated ion channels and/
or increased sensitivity of TRP channels in sensory 
neurons seem to be the major events leading to the 
development of oxaliplatin-induced acute neurological 
side effects, including cold-induced paresthesias and 
painful dysesthesias. The potential roles of glial cells 
and nAChRs in platinum-induced neurotoxicity deserve 
further investigation to explore new strategies to 
prevent and to treat this side effect. 
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