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Chromosome movement during mitosis is powered in part by
energy released through the depolymerization of kinetochore
microtubules (MTs). Strong but indirect evidence suggests the
existence of a specialized coupling between kinetochores and MT
plus ends that enables this transduction of chemical energy into
mechanical work. Analysis of this phenomenon is important for
learning how energy is stored within the MT lattice, how it is
transduced, and how efficient the process can be, given coupling
devices of different designs. Here we use a recently developed
molecular-mechanical model of MTs to examine the mechanism of
disassembly dependent force generation. Our approach is based on
changes in tubulin dimer conformation that occur during MT
disassembly. We find that all of the energy of polymerization-
associated GTP hydrolysis can be stored as deformations of the
longitudinal bonds between tubulin dimers, and its optimal use
does not require the weakening of lateral bonds between dimers.
Maximum utilization of this stored energy and, hence, the gener-
ation of the strongest possible force, is achieved by a protofilament
power-stroke mechanism, so long as the coupling device does not
restrict full dissociation of the lateral bonds between tubulin
dimers.

mathematical model � tubulin � kinetochore � protofilament

M icrotubules (MTs) are the primary structural elements of
mitotic spindles, where they are intimately involved in the

processes of chromosome segregation. These thin, polar fibers
grow by polymerization of ��-tubulin dimers and can undergo
rapid shrinking as a result of their dynamic instability (reviewed
in refs. 1 and 2). It is now well established that this behavior is
related to structural changes in the tubulin dimers that occur
soon after polymerization and are tightly linked with the hydro-
lysis of tubulin-bound GTP (reviewed in refs. 3 and 4). The
minimum energy conformation of GDP-bound dimers is more
bent than that of the polymerization-competent, GTP-bound
protein (5, 6). Tubulin dimers, therefore, display a nucleotide
hydrolysis-dependent conformational change that is likely to be
the driving force behind rapid MT shrinking (reviewed in ref. 7).
Once tubulin depolymerization has been triggered, the lateral
bonds between dimers dissociate quickly, beginning at MT ends.
As a result, individual tubulin protofilaments (PFs) curl outward,
which can be observed directly under conditions that preserve
the subtleties of MT structure (8).

Both the polymerization of tubulin and the shortening of MTs
can be viewed as molecular machines that generate force and can
accomplish mechanical work by pushing or pulling, respectively,
on appropriately attached objects (9). The polymerization motor
is thought to use a Brownian ratchet mechanism, in which a
newly added dimer rectifies movements that occurred through
thermal fluctuations (reviewed in ref. 10). Growing MTs have
been shown to generate pushing forces in vitro, and with a lesser
certainty, in vivo; theoretical descriptions of the underlying
mechanism are quite advanced (reviewed in ref. 11). In contrast,
the mechanism by which MT depolymerization generates a
pulling force remains relatively unknown, in part, because of the

conceptual difficulty of specifying the device that would allow an
object to follow the end of a depolymerizing MT without losing
its mechanical connection. In the best characterized example of
a depolymerization-driven motion in vitro, a microbead covered
with certain motor proteins followed the plus end of a depoly-
merizing MT, even in the absence of ATP (12). Two theories
describing this phenomenon were also based on a ratchet: one
considered biased one-dimensional diffusion (12), and the other,
rotational diffusion of the bead along the MT lattice, where a
hypothetical free energy gradient near the depolymerizing end
prevented the bead’s detachment (13, 14). A rotation mechanism
is, however, unlikely to be relevant for chromosome movement
in mitosis, because neither the chromosome nor its parts are
known to rotate as they move toward the poles. Instead, the butts
of MT plus ends attach directly to kinetochores and, in a majority
of cell types, tubulin depolymerization from this MT end ac-
companies pole-directed chromosome movements (reviewed in
refs. 15 and 16).

There is substantial evidence that chromosome motions in
mitosis can be driven primarily by MT depolymerization (re-
viewed in refs. 17 and 18). For example, anaphase movements
can occur in very low concentrations of ATP, both in perme-
abilized cells (19, 20) and in vitro (21–23). Chromosome-to-pole
motion in yeast cells appears to occur in strains that are deleted
for all known kinetochore-associated motor enzymes (24, 25).

The coupling device that enables force production through the
depolymerization of MTs attached to a chromosome is fre-
quently referred to as a lateral tip attachment complex (26;
reviewed in refs. 17 and 27). It is thought to form multiple weak
bonds between the MT wall and some attachment proteins that
form a cylindrical coat around the MT wall near its end. The
most detailed theoretical description of such a mechanism was
formulated by Hill and Kirschner (28, 29). MT movement inside
this coat, or ‘‘sleeve,’’ occurs through thermal fluctuations and
is biased by the free energy of a MT’s binding to its inner surface.
In this model, the plus end of the MT can exchange subunits with
a pool of free tubulin inside the sleeve. Because the free energy
of the system is a minimum when some optimal number of the
binding sites is occupied, both shortening and elongation of
the MT end are compensated by polymer sliding. Thus, if the
kinetochore MT depolymerizes from its sleeve-associated plus
end, the chromosome will follow without detachment.

A second hypothesis takes direct advantage of a more recently
discovered pathway for MT depolymerization and is frequently
called the ‘‘conformational wave model’’ (27, 30). In this model,
force is produced by a ‘‘power-stroke’’ mechanism in which the
curling PFs of the disassembling MT push directly on a cylin-
drical collar and drive its sliding toward the MT minus end. Such
movement is powered by the release of strain stored in the MT
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lattice. In this work, we analyze force production by depolymer-
izing MTs and examine the effectiveness of the above coupling
devices by applying a mathematical model that describes me-
chanical changes associated with MT depolymerization.

Mathematical Model
General Description. Our recently described molecular-mechani-
cal model of MTs (31) has been modified to include interactions
between an MT end and a hypothetical coupling device (de-
scribed below). Briefly, the model used in the current study
assumes that dimers are positioned in a helix with zero pitch (a
13�0 lattice), so all of the PFs are identical. The MT space is
divided into 13 half planes, each originating at the MT’s central
axis and separated from its neighbors by 2��13 rad. The bending
of an individual PF during MT shortening occurs only in its
respective plane (Fig. 1). Within the MT wall, each dimer
interacts with its neighbors at six points: two ‘‘head-to-tail’’
points that provide longitudinal interactions and four points that
define the sites of lateral attachment. The interactions at these
points are characterized by two different functions. The longi-
tudinal interactions are described by the potential g(�) (Eq. 1),
according to which dimer pair tends to assume a characteristic
equilibrium angle �o. The model assumes that these longitudinal
bonds are not extensible, and they do not break. These assump-
tions simplify the calculations but do not interfere with a study
of the work produced by bending PFs.

g��� � �1�2�B�� � �o�
2, �o � �o

D or �o
T [1]

where B is a parameter characterizing stiffness of the longitu-
dinal bond; � is the angle between two adjacent head-to-tail
dimers in the plane of their PF; �o

D and �o
T are the equilibrium

angles for GDP-associated dimer (D) and GTP-associated dimer
(T). In this paper, their values are assumed to be 0.4 and 0.2 rad,
respectively.

The lateral forces, described by the potential v(r) (Eq. 2 and
Fig. 4), depend only on the lateral distance r between the points

of interaction on adjacent dimers. For simplicity, the strength of
the lateral bond between two �-tubulins is assumed to be
independent of GTP hydrolysis and equal to the strength of the
GTP-bound �-� bond. Because the strength of the latter bond
is unlikely to decrease significantly after GTP hydrolysis (31), we
have also assumed the same strength for the GDP �-� bond.

v�r� � A�r�ro�
2 exp(�r�ro), [2]

where ro characterizes bond length and A characterizes its
stiffness. This equation has been modified compared to (31) so
A is measured in energy units, which simplifies its utilization
here.

The total potential energy of the MT, U, is the sum of the
interaction energies at all points in the lattice. The steady-state MT
configuration has been determined by using MATLAB 6.5 (Math-
works, Natick, MA) to identify a local minimum of U for initial
conditions that correspond to a straight MT configuration (31).

Estimating the Stiffness of Lateral and Longitudinal Bonds and the
Value of ro. Although exact values for these parameters are not
known, they can be estimated with reasonable certainty from
indirect evidence. During MT depolymerization, the PFs peel
back from the shortening end(s), so the lateral bonds between
dimers in neighboring PFs dissociate while the longitudinal
bonds within a PF are still intact. Thus, the rate of MT shortening
is determined mostly by the rate of dissociation of lateral bonds.
The activation energy Ea for lateral bond dissociation and,
hence, A can therefore be estimated from the temperature
dependence of the rates of MT depolymerization by using an
expression derived from the Arrhenius equation:

Ea � ln�k2
d�k1

d�
1

1�kBT1 � 1�kBT2
, [3]

where kB is a Boltsman constant and kn
d is the dimer dissociation

rate constant at temperature Tn.
We used experimental data from refs. 32–37 and data for

�20°C from ref. 38 to calculate the average activation energy
over a temperature range of 21–39°C: Ea � 4.8 � 0.6 kcal�mol.
This value is a relatively large energy barrier that is comparable
with the energy of hydrolysis of GTP under standard conditions,
�7.3 kcal�mol (39). Parameter A can then be calculated from
Eq. 2: Ea � vmax � v(2ro), so for two bonds A � 1�8 Eae2 � 4.4
kcal�mol.

The value of B, which describes the stiffness of the longitudinal
bond, can be estimated from the above value for A and a given
ro by using our molecular-mechanical model of the MT, in which
a MT’s stability is determined by the ratio of lateral and
longitudinal bond stiffness: a � A�B (31). It is easy to see that
when the longitudinal bonds are very strong (smaller a), the
capped MT will undergo a catastrophe regardless of the size of
the GTP-cap. Correspondingly, when the longitudinal bonds are
weak (larger a), the MT will be stable even if there is no
GTP-cap. Thus, a � A�B is limited by acr

T � a � acr, where acr
T

and acr are two critical values that limit the range of values for
a over which only a capped MT is stable. For such a range of a
(which depends on the value of ro), one can determine the
corresponding plausible ranges for B and the bending energy go,
where go � 1�2B(�o

D)2. Using this approach, we estimate ro in the
range of 2–3 Å. (For smaller ro, the bending energy go exceeds
the maximum that is thermodynamically possible, given the free
energy of GTP hydrolysis.) In ref. 31, we have used ro � 1.2 Å,
but our analysis here suggests that this value may have been an
underestimate. Unless stated otherwise, all calculations here
were done for ro � 2.4 Å, for which the range of plausible go is
6.7–7.3 kcal�mol.

Fig. 1. Side view of a bending PF and its interaction with a coupling device.
(A) Schematic diagram of a PF; its head-to-tail attached dimers consist of lower
�- (gray) and upper �-tubulin (white) monomers. Arrow on z axis points
toward the MT’s plus end; higher positioned dimers are referred to as more
distal. Dimers are numbered from bottom to top (i � 1, . . . , N). Bending of the
PF (exaggerated) occurs in a plane (x, z), where it is described by the angles �i

between each pair of adjacent dimers and �i between the ith dimer and the z
axis. During bending, the PF can exert force with a vertical component F (thick
black arrow) by pushing against the hypothetical ring positioned at an arbi-
trary distance w from the outer surface of a straight PF. The ring is represented
here by the fulcrum point (dark circle). (B) The bending PF accomplishes work
if the ring moves a distance 	z downward parallel to the MT’s axis (open
circle). During this process, the PF’s configuration changes (open contours
with thinner solid borders), and it can accomplish biologically useful work (see
Mathematical Model for other details).
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Calculating the Equilibrium Force Produced by a Depolymerizing MT.
PF bending energy can be put to work. For example, the MT can
be inserted into a coupling device, such as a ring that can slide
along the polymer (30). For a 13_0 MT enclosed by a symmet-
rical ring, all PFs are identical, and one can simply calculate the
force produced by a single PF interacting with a ring at one point
of contact, which we call a fulcrum (Fig. 1 A). We first examine
a PF pushing at a fulcrum that does not slide and is positioned
at an arbitrary distance w from the MT’s outer surface. Thus,
bending of the PF is restricted, and the site of its contact with the
fulcrum cannot deviate farther than w. The equilibrium config-
uration of such a PF is found by minimizing its total potential
energy over all variables with one additional condition:

l�
p�1

i�1

sin�p � dsin� i � �D�2��1 � cos� i� � w , [4]

where i is the number of the dimer that comes in contact with
the fulcrum, the angle � describes this dimer’s tilt relative to the
PF’s axis, and l and D are the dimer’s length (8 nm) and width
(6.5 nm), respectively (40) (Fig. 1B). Thus, the left part of Eq. 4
describes the coordinates of the contact site on the surface of the
ith-dimer, which is located a distance d away from the dimer’s
lower surface.

To calculate the work that can be accomplished by a PF
pushing on a fulcrum, its position is moved slightly downward.
We assume that the PF achieves the new minimum of its
potential energy promptly, i.e., changes in the PF configuration
occur significantly faster than any movement of the fulcrum.
Also, the fulcrum’s movement is assumed to be slow, so any
forces that depend on the rate of movement are negligible.
During the fulcrum’s sliding from z into z
, its contact site with
a PF moves along the PF’s surface. If the new contact site is
situated on the dimer’s surface at d
 � d (Fig. 1B), the corre-
sponding potential energy can be calculated with Eq. 4 simply by
substituting d with d
. The maximal work that can be accom-
plished during this transition is given by the difference between
the potential energies at the initial and final configurations. If all
this energy is transformed into work, the average maximal force
F with which the PF pushes against the ring in the direction
parallel to MT’s axis is

�F� �
U�z
 � U�z

	z
, 	z � z
 � z. [5]

Choosing a small 	z, one can calculate force production as a
function of different parameters, such as the size of the ring and
parameters that describe the tubulin-tubulin bonds.

All graphs in this paper depict the vertical component of the
force that is produced by a single PF, because it is the more
relevant component biologically. For a complete MT, the force
is 13 times larger. Note that for a symmetrical coupling device,
the components perpendicular to the MT axis cancel. For
obvious reasons, we refer to this force as ‘‘pushing,’’ although if
the ring were attached to a load, e.g., a chromosome, the
depolymerizing MT would be pulling that object. All calculations
are carried out for the MT plus end, but all of the same principles
apply to disassembly at the minus end.

Results
Lateral Bonds Break During PF Bending in a Highly Sequential Manner.
We first used our molecular-mechanical model to calculate the
shape of a MT that was capped with two layers of GTP-tubulin
subunits and enclosed by a motionless ring whose inner rim was
positioned at distance w � 2 nm from the MT outer surface (Fig.
2A). As described in Mathematical Model, such a MT is stable and
all dimers except the most terminal are oriented highly parallel

to the MT axis with radial deformations �0.005 Å (31). As
expected, this configuration is unaffected by the presence of the
ring, so long as the ring’s diameter is larger than that of the MT
and there is no interaction between them.

When similar calculations are carried out for MTs without a
cap, i.e., consisting entirely of the D dimers, the PFs curl outward
and come into contact with the ring’s inner surface (Fig. 2B).
The resulting equilibrium shape of the bent PF depends on the
ring’s size in a complex way. With increasing ring diameter, the
bonds between the terminal, plus-end dimer N and its two lateral
neighbors must stretch for the subunit to touch the ring. Thus,
the tilting angle � of the terminal dimer gradually increases,
whereas its more proximal neighbors remain straight (Figs. 2B
and 3A). With wider rings, the lateral bonds between terminal
subunits will ultimately break (Fig. 3, compare A and B), leading
to an abrupt change in the shape of the MT plus end (visualized
as unevenness in the distribution of PF profiles on Fig. 2B). Note
that because the lateral bond between �-monomers is located
approximately three times farther away from the rotation point
(i.e., the head-to-tail attachment site with the lower neighbor)
than the bond between �-monomers, its contribution to adhesion
between PFs is approximately three times greater than that of
the �-monomers, and the overall bending of the dimer is
determined mostly by the behavior of the �-� bond. Just as the
terminal dimer separates from its lateral neighbors and reaches
its equilibrium bend, the lateral bonds in its lower neighbor
(N � 1) become stretched. Similarly, the third dimer from the
top will begin to bend when its upper neighbor has almost
achieved the equilibrium bend and lost its contacts with the
neighboring PFs. Therefore, dimer bending and the accompa-
nying breaking of lateral bonds occur in a domino-like fashion:
significant stretching of a lateral bond begins when all more
distal bonds have already separated.

Fig. 2. Steady-state configurations of a PF pushing at fixed fulcrums. Each
contour is the result of a calculation that used a 13_0 MT consisting of N � 10
dimers, A � 4.43 kcal�mol, B � 93.8 kcal�(mol�rad2). Note the difference in
scale between vertical and horizontal axes, both in nanometers. This differ-
ence makes a dimer look longer as it changes orientation. (A) Side view of last
four dimers in a PF from the 2T-capped MT calculated for the fulcrum (inner
side of the ring in the plane of this PF, F) positioned at w � 2 nm to the right
from the uppermost point of the terminal dimer. Obviously, the PF shape is
unaffected if the fulcrum is positioned at lower z. Area to the left of the
contour corresponds to inner side of MT wall; black and gray segments
represent G and T dimers, respectively. (B) The series of contours depicting side
views of the PF as in A except from a homogeneous, GDP-containing MT. Each
contour corresponds to a PF bent to its steady-state position while pushing
against a fulcrum positioned at a different distance from the MT surface (w �
0–9 nm, 0.24 nm increment). For consistency, the PF always contacts the
fulcrum at the uppermost site on its terminal dimer (Eq. 4). The F shows
fulcrum’s position corresponding to the most bent PF.
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Maximal Force Is Developed as the Lateral Bonds Between the Dimers
Dissociate Completely. Although the above conclusions are intu-
itively clear in the context of our model, understanding the
pathway of dimer bending is essential for explaining the accom-
panying generation of force. As shown on Fig. 3C, the equilib-
rium force production during this process depends on the size of
the ring in a complex, nonlinear way. When w 	 0.5 nm, the
paraxial force developed by bending PFs is very small. In part,
this result is a simple consequence of the system’s geometry.
However, a more significant role in limiting the force at small w,
as well as in creating its nonmonotonic behavior at larger w, is
played by the sequential breakage of the lateral bonds. The
underlying mechanism is best understood by considering the
shape of the energy potential for lateral interactions between
tubulin monomers (Eq. 2). When the longitudinal bond between
adjacent dimers is only slightly bent, the lateral bonds in the
upper dimer are stretched but remain shorter than the distance
from the center of the potential well to the barrier’s maximum
(i.e., the system remains within the potential well of the lateral
bonds). Thus, there are strong attraction forces between this
dimer and its two lateral neighbors that counteract the tendency
of GDP dimers to tilt. Once the lateral bond is stretched beyond
the maximum of the potential barrier, the attractive lateral force
changes into a repelling one. Therefore, depending on the ring’s
size, the lateral interactions can either counteract the bending or
promote it (Fig. 3, compare B and C).

Accordingly, when w is very small, the force that can be
developed is negligible because the energy stored in the lattice
is mostly used to overcome the potential barrier in the lateral
interactions of the most terminal dimer. This force increases with
increasing w and reaches its local maximum when the lateral
bonds between terminal dimers break, and this dimer begins to
experience repulsion from its neighbors (Fig. 3C). With further
increase in w, the pushing force begins to decline, because it is
now used in part to stretch the lateral bonds of the next dimer,
which still interacts with its lateral neighbors. Depressions in the
curve for developed force appear periodically, but their ampli-
tude decreases with w, because the dimers more distant from the
fulcrum have less impact on force development. When w � 10
nm, the developed force decreases gradually because of the

increase in lever arm at the fulcrum, i.e., the distance between
the fulcrum and the dimer whose lateral bonds are stretched at
this w. We conclude that the optimal size of a ring-shaped device
for coupling MT depolymerization to force generation is one
that positions its inner edge 5–7 nm from the MT’s surface.

Strong Lateral Forces Between Dimers Do Not Impede Efficient Force
Production if the Ring Is Appropriately Wide. To further analyze the
role of lateral interactions between tubulin monomers, we
examined directly how reasonable variations in the shape of their
energy potential would affect force production. With increasing
ro (the length of this bond), the fluctuations in the force
produced diminish visibly (Fig. 4A). The impact of lateral bond
strength decreases because the walls of the potential well become
less steep, weakening the force that counteracts bending. Sim-
ilarly, with decreasing barrier height, Ea, the maximum strength
of the dimer interactions also decreases, and the force curve
becomes more monotonic while tending smoothly to a virtually
unchanged maximum (Fig. 4B). With a narrow ring (w 	 0.5 nm,
which is comparable to the bond’s length) the force produced is
relatively small regardless of ro and Ea. It is also smaller for
shorter bonds and larger barriers, consistent with the notion that
strong lateral forces impede force production in a narrow sleeve.
Importantly, these graphs demonstrate that the maximal force
that can be developed by PF pushing on a wider ring is
independent of the strength of lateral interactions between
dimers in the MT lattice.

The above analysis was carried out for bonds that neither
produce nor consume energy when broken, i.e., ones whose
potential well has a minimum value of 0. Although ro and Ea can
be estimated with reasonable accuracy (see Mathematical

Fig. 3. Tilt, energy potential, and equilibrium force with which a PF pushes
as a function of the ring’s size. (A) Tilting angle � for the three terminal
dimers as a function of w. (B) Energy for lateral bonds engaged in force
production as a function of w (only the last two dimers are shown). Symbols
� and � refer to the tubulin subunits. With increasing w, every bond gets
stretched, but the changes are smaller for less distal dimers. (C) Equilibrium
pushing force exerted by a bending PF for different values of w.

Fig. 4. Role of energy potential for lateral interactions between dimers in
force production. The energy potentials (kcal�mol) as a function of distance r
between lateral interaction points (A–C Left) and the corresponding force (pN,
numbered accordingly) developed by a PF as a function of w (A–C Right). (A)
The potentials with different bond lengths (i.e., the half distance between the
energy maximum and the bottom of the well). A � 4.43 kcal�mol, B � 93.8
kcal�(mol�rad2); ro � 2.1 Å (curve 1), 2.4 Å (curve 2), and 3.6 Å (curve 3). (B)
Potentials with different barrier heights (i.e., difference between the energy
at its maximum and at the bottom of the well); B � 93.8 kcal�(mol�rad2), ro �
2.4 Å; A � 4.43 (curve 1), 3.08 (curve 2) and 2.14 (curve 3) kcal�mol. C. The
potentials with different depths of well. B � 93.8 kcal�(mol�rad2), ro � 2.4 Å,
A � 4.43 kcal�mol. Curve 1 is given by v(r) � (A�ro

2)(r2�exp(�r�ro) �
0.001�exp(�4.7r4�ro)), curve 2 by Eq. 2, curve 3 by v(r) � (A�ro

2)(r2�exp(�r�ro) 
0.001�exp(�4.7r4�ro)).
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Model), the depth of the potential well for lateral tubulin
interactions is unknown. To investigate the role of this bond
feature, we varied the potential minimum while keeping the
energy level at an infinite distance and the barrier’s height
essentially unchanged (Fig. 4C). Unlike other parameters, the
depth of the well is unimportant for small w, and the force
produced in the narrow ring is always small. After the first bond
is broken, however, there is a noticeable difference in the
maximum pushing force because the energy difference between
a dimer within the lattice and a dimer that is free contributes
directly to the work produced. If energy is released during the
breaking of bonds, the maximal force increases (Fig. 4C, curve
3), but if energy is consumed, the force gets smaller (Fig. 4C,
curve 1). Regardless of the size of this contribution, however, it
is independent of GTP hydrolysis: the same energy potential is
used to describe lateral interactions between all tubulins, re-
gardless of their associated nucleotide.

Estimating the Maximal Force That Can Be Produced by Depolymer-
izing MT Pushing on an Appropriately Wide Ring. We have consid-
ered the case of a ring whose diameter is enough greater than
that of the MT to let it experience a strong force from bending
PFs. One can then solve for the equilibrium force acting on a
fulcrum that is constrained to a constant value of w but is allowed
to move in z as the PF bends. Many of the features of the
variation in force with z resemble those presented in Fig. 3, but
the exact solutions at certain values of z depend on assumptions
about the shape of the dimer. For example, if dimers are modeled
as cylinders and z is such that the fulcrum encounters their
longitudinal junction, the curve of force vs. z displays a singu-
larity. To overcome this difficulty and to obtain a reliable value
for the average maximum force predicted by our model, we have
therefore taken an alternative approach.

We have considered a ring that maintains a constant w but
allows variable z to examine the energy of the system at two
states: when the fulcrum is touching an arbitrary point on the Nth
dimer and when it is touching the same point on the (N � 1)th
dimer (Supporting Appendix 1, which is published as supporting
information on the PNAS web site). When the ring has a
sufficient diameter, the developed force is directly proportional
to the stiffness of longitudinal bonds, B, and the equilibrium
bend of the GDP dimer �o

D (Eq. 7 in Supporting Appendix 1).
Using the estimated values of parameters A and B (Mathematical
Model), one can calculate the force produced by a PF pushing on
an optimally sized ring. For an activation energy barrier in the
lateral bond of 4.8 kcal�mol (corresponds to A � 4.43 kcal�mol),
the minimal value of the bending energy that can overcome this
barrier is 6.7 kcal�mol, which corresponds to 5.8 pN per dimer.
Thus, the force that our model predicts for the entire MT during
disassembly of one subunit layer is �75 pN. Note that the
maximal force for this process is necessarily limited by the energy
of GTP hydrolysis at �82 pN (Supporting Appendix 2, which is
published as supporting information on the PNAS web site). For
a comparison, the maximal force that can be produced by a MT
depolymerizing in Hill’s sleeve is �15 or �9 pN as interpreted
by either Joglekar and Hunt (41) or us (Appendix 2). These
values are significantly less than the prediction from the power-
stroke mechanism.

Our estimated maximal force per MT is a significant fraction
of the 700 pN that will stall a grasshopper meiotic chromosome
in anaphase (42), suggesting that only �10 MTs are required for
chromosome movement in this species. The number of MTs at
the kinetochore in a related species is �40 (43), but it is not clear
how many of these polymers extend to the pole and�or develop
force at any one time. The anaphase mechanism may be designed
to depend on only some of the kinetochore MTs at any one time,
or it may not be optimized for force production. Perhaps some
other consideration, like processivity, is more important; a larger

number of MTs may increase the chances that a chromosome
continues to move all of the way to the spindle pole.

Discussion
Although it is well known that the energy of GTP-hydrolysis
during MT polymerization is captured by the MT lattice, a
detailed understanding of the impact of this storage on tubulin
interactions within the MT is still lacking. A priori, this energy
could be used to decrease the strength of lateral bonds, to
increase the bending moment of longitudinal bonds, or some
combination of the two. Previous modeling has demonstrated
that any of these options is compatible with destabilization of the
capless MT because polymer stability is determined by the ratio
of lateral and longitudinal bond stiffness, rather than by their
absolute values (31). However, the similarity of disassembly rates
for the plus and minus MT ends argues strongly against a
weakening of the lateral bonds (31). From the temperature
dependence of the rate of MT disassembly, we have estimated
that the potential energy barrier for the lateral bond is relatively
high (4.8 kcal�mol). The results reported here help to explain
why the breakage of strong lateral bonds during disassembly does
not necessarily lead to a reduction in the useful work that can be
accomplished during this process. Eq. 7 (Supporting Appendix 1)
shows that for a given lateral bond energy, the force that can be
developed during PF bending, which is defined by the change in
the MT’s free energy, depends exclusively on the stiffness of
longitudinal bond and the equilibrium GDP dimer configura-
tion. This conclusion is consistent with the notion that the energy
available from GTP-hydrolysis is stored as an increased bending
moment for the longitudinal interdimer bond. When disassembly
is triggered, some bending energy is first spent to stretch the
lateral bonds between dimers in neighboring PFs. This expen-
diture continues to increase until the length of a lateral bond
reaches 2ro, which corresponds to the position of the maximum
of the potential energy barrier. With a further increase in
distance between lateral contacts, the bonds no longer resist the
dissociation but instead promote it. The energy that was spent to
disrupt the lateral bonds is now released, and if the coupling
device is optimal, all of the energy can be used as mechanical
work. Thus, the amount of work a disassembling MT can do is
independent of the height of the lateral bond’s potential barrier;
it is affected only by the depth of this potential well, which may
either increase or decrease the force produced (Fig. 4).

By satisfying the condition that MTs show a cap-dependent
stability, we have estimated the range of plausible values for the
bending energy, go. Although the unknown length of the lateral
bond prevents our determining the value of go more accurately,
it is noteworthy that for reasonable values of ro, the predicted
range includes 7.3 kcal�mol, the standard free energy of GTP
hydrolysis (39). In other words, if the interdimer bond param-
eters are optimal, virtually all of the energy of GTP hydrolysis
can be captured as stress in the longitudinal bonds. As described
above, the entire bending energy can then be used to produce
useful work. Thus, it is theoretically possible that during disas-
sembly, MTs can work as molecular machines with up to 100%
efficiency. The single most important parameter in determining
the maximum possible work efficiency, regardless of the amount
of energy captured from GTP hydrolysis, is the design of the
coupling device. If it is a cylinder or ring, its inner radius must
be at least 1–2 nm more than the outer radius of the MT.

The above conclusions contrast with the design of the coupling
device in Hill’s model (29) because its mechanism requires that
the sleeve be very narrow. Indeed, in that model the sleeve is
assumed to interact directly with the MT wall, suggesting an
approach distance of only a few angstroms (44). It is easy to see
from Fig. 3 that such narrowness does not allow enough dimer
bending to produce significant force, so force generation by the
power-stroke mechanism in such a sleeve would be �10% of the

Molodtsov et al. PNAS � March 22, 2005 � vol. 102 � no. 12 � 4357

CE
LL

BI
O

LO
G

Y



maximum possible. If, on the other hand, the force is interpreted
with a biased diffusion mechanism (29, 41), maximal force is
again significantly smaller than that predicted by our power-
stroke mechanism working with an optimally sized ring. Fur-
thermore, the principal feature of Hill’s coupling device is that
it requires dimers to dissociate without significant reorientation
by using movements that are highly parallel to the MT and sleeve
axes. On the basis of these considerations and more recently
acquired knowledge about the structural changes in tubulin
dimers that accompany MT depolymerization, this mechanism is
not only relatively inefficient, it seems unlikely.

According to the ‘‘conformational wave model’’ the PFs lean
against the edge of a MT-surrounding sleeve (30); there is no
interaction between the inner surface of the sleeve and the MT
wall. Therefore, the length of the sleeve is unimportant, so it is
essentially the ring discussed here. According to our model,
when the ring’s inside diameter is optimal (35–40 nm), such a
coupling would allow maximal force production. It is noteworthy
that the recently identified ‘‘DAM�DASH’’ protein complex,
which associates with kinetochores of budding yeast (45), can
form rings and helices whose inner diameters as seen by cryo-
electron microscopy are �32 nm (46, 47). This size is close to the
value we predict as optimal for force production. Given the
evidence that this complex is important for spindle stability and
accurate chromosome segregation, such a ring is an excellent
candidate for a force coupler in yeast mitosis. Note, however,

that the DAM rings can assemble around MTs spontaneously,
which implies interaction between the ring’s inner surface and
the MT wall. The presence of such a linkage may have important
and as yet unknown consequences for the force generation
process. These issues should be addressed in future theoretical
work.

An important conclusion of our model is that maximal force
will be achieved by a ring coupler only after complete dissoci-
ation of the lateral bonds between the dimers that push on the
ring (Fig. 3 A and C). For a realistic MT, this extent of PF
bending may be accompanied by some dissociation of longitu-
dinal bonds as well. Under these circumstances, the MT attach-
ment of a ring-like coupling device may become compromised.
Thus, although the ring is plausibly the best coupler for maxi-
mizing the magnitude of the disassembly force generated, its
ability to sustain prolonged movements of a large object, like a
chromosome, is in question. Perhaps neither a narrow sleeve nor
a ring is the optimal force-transduction coupler for chromosome
movement, and the device that really does this job in vivo remains
to be discovered.
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