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Weexamined the association betweenmeteorological (weather) conditions in a given locale and pedestrian trips
frequency and duration, through the use of locative digital data. These associations were determined for season-
ality, urban microclimate, and commuting. We analyzed GPS data from a broadly available activity tracking mo-
bile phone application that automatically recorded 247,814 trips from 5432 unique users in Boston and 257,697
trips from 8256 users in San Francisco over a 50-week period. Generally, we observed increased air temperature
and the presence of light cloud cover had a positive association with hourly trip frequency in both cities, regard-
less of seasonality. Temperature and weather conditions generally showed greater associations with weekend
and discretionary travel, than with weekday and required travel. Weather conditions had minimal association
with the duration of the trip, once the trip was initiated. The observed associations in some cases differed be-
tween the two cities. Our study illustrates the opportunity that emerging technology presents to study active
transportation, and exposes new methods to wider consideration in preventive medicine.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In all, more Americans are walking: the CDC found the number of
adults who walk for transportation, fun, or exercise went up 6% over
5 years (Center for Disease Control and Prevention, 2012). Walking, as
themost common form of adult physical activity (United States Depart-
ment of Health and Human Services, 1996), is an important lifestyle
component for improving long term health (Stephens et al., 1985).
Walkability and pedestrian activity have become major topics of con-
versation in urban planning (Talen and Ellis, 2015) and public health,
with new interest in improving pedestrian facilities, improving safety,
and improving the public's general quality of life (Heath et al., 2006).

These efforts, however, are moderated by the relationship be-
tween human mobility behavior and climate—namely, weather and
environmental conditions when trip initiation decisions are made
(Hoogendoorn and Bovy, 2004). A few earlier studies have largely
concentrated on adverse conditions (Cools et al., 2010), but little is
husetts Institute of Technology,
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known about the everyday experience of pedestrians. Meteorologi-
cal effects could influence travel demand and route choice in various
ways, including diversion to other trip modes or paths, or deferring
and canceling of trips. The severity of different conditions may also
affect the characteristics of a trip—potentially slowing individuals
down during heavy rain or a hot day.

While previous studies were often constrained to small spatial units
of analysis, the increasing ubiquity of mobile devices offers opportuni-
ties to obtain new data to understand human activity. Leveraging
these data offers an unprecedented opportunity to understand human
mobility patterns at a substantial temporal and spatial scale, with a
level of detail heretofore unavailable.

Most studies of the relationship between weather and travel tend to
focus on network performance, such as velocities or disruptions rather
than travel behavior at an individual level—the choices made as part
of peoples' everyday routines (Böcker et al., 2013). Various studies
have observed that higher temperatures (up to a certain threshold)
were positively associated with outdoor activities in various cities in-
cluding San Francisco (Zacharias, 2004) and Chicago (Dwyer, 1988). In
Flanders, Belgium, temperature had significant positive effects on walk-
ing, although to a lesser degree than precipitation effects. The effect of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 We use the terms “count” and “volume” interchangeably as a measure of the number
of trip originations within a specified hour.
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temperature may bemediated or confounded by a trip's purpose (Cools
et al., 2010; Aaheim and Hauge, 2005).

In addition to temperature, precipitation and wind have also been
reported to play a role in travel behavior. Similar to the literature on
temperature, precipitation studies have largely focused on road net-
work performance at a system level rather than micro-level (Böcker
et al., 2013). Precipitation is one of the most important weather factors
influencing the occurrence of physical activity (Burke et al., 2006), and
particularly walking (Cervero and Duncan, 2003). With respect to
wind, some studies among pedestrians have not shown significant ef-
fects on walking (Murakami et al., 2004), while others observed that
wind deterred physical activity (Aaheim and Hauge, 2005). These con-
ditions have an impact on the distance traveled as well; strong winds
were associated with a reduction in average total travel distance as
compared with normal wind (Sabir et al., 2010) and precipitation was
also associated with shorter trip distances (Aaheim and Hauge, 2005).

Methodologically, previous studies of weather conditions and pe-
destrianmobility have usually relied upon self-report surveys or trip di-
aries (Lee and Moudon, 2006), for example). Such approaches tend to
limit a study's spatial and temporal breadth, as recalled information
may lose detail regarding travel modes and locations. Often, there is a
loss of actual paths traveled, and a limited capability to collect precise
data on travel start and end times, trip duration, and destination loca-
tion (Murakami et al., 2004). Respondents may also omit trips because
they do not consider them to be “transportation” or simply forgot to
log them; individuals may consider some activities and short trips to
be below the threshold of reporting (Agrawal and Schimek, 2007).
Nikolopoulou and Lykoudis (2006)), to understand thermal comfort in
key locations in 14 cities, focused their instrument to the felt experi-
ences in specific spaces and a narrow set of questions to survey of
10,000 respondents.

Some studies have attempted to resolve this issue through techno-
logical means of data collection, including automated pedestrian coun-
ters in select points (Altman et al., 2010) or web-connected cameras,
which have allowed for studies across multiple sites (de Montigny
et al., 2012). These studies, while providing a more granular, but highly
localized, alternative to survey methods, cannot readily infer trip pur-
pose. The limited spatial resolution does not account for the
microclimatological diversity that exists across a city outside of the sen-
sors' range of view, and could not continually track the same individual
longitudinally over time. As an understanding of the increasingly varied
patterns of human activity becomes more important, longer periods of
observation are needed (Lee-Gosselin, 2005).

One approach to addressing these challenges is to leverage the in-
creasing pervasiveness of mobile devices (Hazas et al., 2004).
Location-based tracking from these devices has progressed forward
our understanding where persons are in space and the description of
their activities. These spatiotemporal data have created new opportuni-
ties to describe humanmobility.While the use of anonymized call detail
records from mobile phones has permitted improved analyses of indi-
viduals (Ratti et al., 2006), the inclusion of geolocation capabilities
with active mobile-phone tracking permits a more granular level of
analysis (Asakura and Iryo, 2007). GPS technologies, in the automated
collection of activity data, have been found to provide high-resolution
spatial and temporal records, enabling themass participation of subjects
and the collection of enormous amounts of data in the long term
(Shoval, 2008). This has the added benefit of higher accuracy and reli-
ability than when the user is asked to recall their past activities
(Forrest and Pearson, 2005).

The newly-available breadth and depth of the empirical data present
new research opportunities, and we set out to implicitly test the use of
these locative, digital data as a means of describing human behavior in
space. In particular, to our knowledge this study is unique to evaluate
these effects, concurrently, 1) over a one-year period, 2) at the city or re-
gional scale rather than at a limited spatial scale such as an intersection
or block, 3) longitudinally, with a population of specific users over time,
and 4) across two cities. Hence, our study focused on evaluating the as-
sociations between meteorological conditions and pedestrian
activity—count1 and duration at the city-scale.
2. Methods

To understand general mobility patterns, trip data were collected
from a free, commercially-available, proprietary activity-oriented mo-
bile application (AOMA). This application utilized the devices' motion
co-processor to record the time andmovements of the phone. General-
ly, the AOMA assigned geographic information to those activities
through the use of a device's geolocation services including assisted-
GPS (A-GPS) which triangulates proximate Wi-Fi and satellite-based
systems providing the highest precision with minimal battery draw;
traditional satellite based GPS; and carrier-based signals, providing the
coarsest resolution. A-GPS allows locationing even when full line-of-
sight to sky is not available, such as in downtown areas. In the geo-
reference data, we calculated the velocity between two points and
changes in spatial resolution to further filter the data for errant records
resulting in a loss of 8.81% Boston, and 16.06% of San Francisco records.

A new trip record was generated when the user moved outside of a
geo-fenced area of approximately 10-meters radius from their previous
location. Therefore, we defined a trip as departing one geo-fenced area
and the user's journey until s/he remained in another location for a du-
ration of time, thereby creating a new geo-fenced area using the appli-
cation's own proprietary “stay-detection” algorithm and the device's
motion coprocessor. As this process occurred in the background, infor-
mation on the user's movement was passively recorded. The data
were provided by the developer to the researchers as one historic
dataset after censoring of the origins and destinations to preserve
anonymity.

Boston, Massachusetts and San Francisco, California served as study
sites. These cities were chosen for their general regional similarities in
size, population numbers and density, and car-ownership rates. The
Boston data collection area was bounded by 42.2284°N, 71.1895°W
and 42.3979°N, 70.9852°W, which encompassed 317.06 km2 and
included Boston and Cambridge, and portions of Somerville, Brookline,
Newton and Chelsea. The San Francisco area was bounded by
37.8064°N, 122.5444°W and 37.6016°N, 122.3472°W, which
encompassed 394.38 km2 and included San Francisco, Broadmoor, Bris-
bane, Daly City, Colma, South San Francisco and portions of Pacifica and
San Bruno. In total, 246,814 trips from 5432 users were recorded in Bos-
ton and 257,697 from 8256 users in San Francisco. The average trip den-
sity was 778.45 trips per square kilometer in Boston and 653.42 in San
Francisco. The average trip length was 889.11 m in Boston and
1017.7 m in San Francisco, with average durations of 1237.48 s and
1371.74 s, respectively. The data covered a period from May 15, 2014
through May 1, 2015.

To protect the privacy of the AOMA's users, the application developer
assigned a hashed unique identifier to each individual. No biographical
information was collected by the developer, and no personally-
identifiable information was provided to the researchers. Further, a ran-
dom distance of 0–100 m was removed from the start and end of each
trip to mask a user's common locations to further anonymize the data.

Data were filtered to eliminate errant activity traces due to errors in
the mobile phone's geo-locationing functionalities, which resulted in a
loss of 8.81% of Boston, and 16.06% of San Francisco records. (This type
of error creates incorrect trip details in the data due to the inherent er-
rors of each locationing method; see Zandbergen and Barbeau, 2011).
Further, periods from 01:00 am–05:00 am were excluded due to low
or zero trip counts, which resulted in the omission of 2351 trips (0.9%)
in Boston and 4052 (1.6%) trips in San Francisco.
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Hourly weather conditionswere collected from several weather sta-
tions within the study areas via a web-based meteorological service.
Weather attributes were assigned to each trip based on the nearest sta-
tion to the trip origin point based on Euclidian distance—eleven in Bos-
ton and ten in San Francisco—to account for microclimatic differences
within each case study area. Themedian coverage area of aweather sta-
tion in Bostonwas32.64 km2, and in San Franciscowas 39.62 km2.Wind
speed, humidity, precipitation rate, visibility and the dry-bulb air tem-
peraturemeasurements were coded as continuous variables. Sky condi-
tions were documented as dichotomous variables, and snowfall as an
interaction with precipitation rate. More information on the patterns
of weather can be found in the Descriptive Table in SupplementalMate-
rial 1.

To determine how meteorological conditions impacted pedestrian
activity, a log-linear regression model was employed (Washington
et al., 2010). A multilevel, hierarchical model allowed us to account for
varying numbers of trips observed for each voronoi area defined by
the nearest weather station and for dependence of observations
(Purser et al., 2005). This approach accounts for the potential underes-
timation of standard errors of the regression coefficients measured at
the community-level (Bryk and Raudenbush, 2002).
Table 1
Impact of weather factors on hourly trip counts in Greater Boston.

Weekday

Season Variable All trips All weekday

All Temperature (°C) 1.009 * 1.008 *
Humidity (%) 0.995 * 0.996 *
Wind speed (km/h) 1.004 * 1.003 *
Precipitation (mm/h) 1.023 * 1.029 *
Snow 0.845 * 0.730 *
Thunder 2.071 *
Cloud cover 1.120 * 1.129 *
Heavy cloud cover 1.045 * 1.069 *
Fog 1.083 1.121

Winter Temperature (°C) 1.017 * 1.015 *
Humidity (%) 0.996 * 0.997 *
Wind speed (km/h) 0.998 * 0.998
Precipitation (mm/h)
Snow 0.890 * 0.844 *
Thunder
Cloud cover 1.139 * 1.179 *
Heavy cloud cover
Fog

Spring Temperature (°C) 1.025 * 1.021 *
Humidity (%) 0.997 * 0.997 *
Wind speed (km/h) 1.004 * 1.003
Precipitation (mm/h) 0.929
Snow
Thunder 0.311 *
Cloud cover 1.078 *
Heavy cloud cover 1.080 * 1.138 *
Fog 2.291 *

Summer Temperature (°C) 1.012 *
Humidity (%) 0.993 * 0.993 *
Wind speed (km/h) 1.008 * 1.004
Precipitation (mm/h)
Snow
Thunder
Cloud cover 1.070 *
Heavy cloud cover 1.094 * 1.145 *
Fog

Autumn Temperature (°C) 1.019 * 1.015 *
Humidity (%) 0.993 * 0.995 *
Wind speed (km/h) 1.005 * 1.006 *
Precipitation (mm/h) 1.087 * 1.070 *
Snow 0.862 0.340 *
Thunder 1.828
Cloud cover 1.190 * 1.232 *
Heavy cloud cover
Fog 1.674 * 1.465 *

Note: Coefficients indicatedwith no asterisk are significant atα=0.05 and coefficients indicated
coefficients were omitted during the model estimation process.
In considering the hourly count of trips, we defined the first level
(weather station voronoi) model considering within-voronoi magni-
tudes of effect of trip i of within voronoi j at time unit (hour, day,
month) t in each city as:

log Ŷ tij

� �
¼ β0 j þ Σn

k¼1βk Xtij þ μt þ rtij

where Ŷ tij is the trip start count dependent variable, measured in num-
ber of trips; β0j is the intercept for user j; βk is the regression coefficient
associatedwith predictor variable Xtij for user j; and rt(i, j) is the random
error associated with the trip i nested within voronoi j.

We defined the level 2 (trip) analysis as:

β0 j ¼ γ00 þ U0 j
βkj ¼ γk0 þ Ukj

where γ00 is the mean of the intercepts across trips for weather station
voronoi j; γn0 is the mean of the slopes across trips for voronoi j; U0j is
the variance in the intercepts for voronoi j; and Unj is the variance in
the slopes for voronoi j.
Weekend

Commute Transit (commute) Non-commute

1.006 * 1.005 * 1.011 * 1.013 *
0.998 * 0.998 * 0.995 * 0.993 *

1.004 * 1.005 *
1.041 *

0.708 * 0.773 0.728 *
1.527

1.126 * 1.063 *
1.079 * 1.085 * 1.076 *

1.188 1.191
1.004 1.026 * 1.027 *

0.995 * 0.994 *
0.994 * 0.997

0.861 *
0.783 * 0.801 * 1.141

1.117 * 1.078

0.486 * 1.192
1.018 * 1.018 * 1.022 * 1.043 *
0.998 * 0.997 *

1.003 1.007 *
0.869 *

0.261 *
1.112 * 1.198 *

1.143 * 1.214 * 1.106 * 0.869 *

1.014 * 1.021
0.997 0.992 * 0.994 *
1.011 * 1.010 1.017 *

1.089 1.108
1.116 * 1.169 1.114 *

1.010 * 1.008 * 1.018 * 1.025 *
0.997 * 0.997 * 0.994 * 0.986 *
1.003 * 1.007 * 1.005 *

1.079 * 1.151 *
0.012 * 0.448 *

0.624
1.214 *

2.604 *

with an asterisk (*) are significant atα=0.01. Variables corresponding to all insignificant
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We employed a similar approach in considering trip duration as the
outcome, where the first level analysis considers the user, so that the
model considers within-user magnitudes of effect of trip i of user j at
time unit (hour, day, month) t in each city.

As seasonality and trip type interactedwith each variable, trips were
categorized and analyzed separately for eachmeteorological season and
by time category by weekday or weekend, and time of day (such as
commuting hours, from 07:00–09:59 and 16:00–18:59). Trips were de-
fined as transit trips if either the start or end locationwaswithin 50mof
light rail and rapid transit stations.

3. Results

The results of the multivariate, multilevel analysis which identified
themagnitude of weather effects on the hourly volume of trips are pre-
sented in Tables 1 and 2, and on trip duration in Tables 3 and 4. To en-
able interpretation of these effects, the model coefficients were
exponentiated to obtain the linear effects on the unlogged outcome var-
iables. These coefficients reflect the multiplicative effect for a one-unit
change in the independent weather variable on the number of trips
begun in the first analysis, and the duration of trips in minutes in the
Table 2
Impact of weather factors on hourly trip counts in the San Francisco Bay area.

Weekday

Season Variable All trips All weekday

All Temperature (°C) 1.011 * 1.009 *
Humidity (%) 0.993 * 0.994 *
Wind speed (km/h) 1.007 * 1.004 *
Precipitation (mm/h) 0.978 *
Snow – –
Thunder 1.868 *
Cloud cover 1.224 * 1.214 *
Heavy cloud cover 1.023
Fog 1.473 * 1.317 *

Winter Temperature (°C) 1.005 * 1.004 *
Humidity (%) 0.993 * 0.995 *
Wind speed (km/h) 1.007 * 1.005 *
Precipitation (mm/h) 0.975 * 0.979
Snow – –
Thunder 1.842 *
Cloud cover 1.191 * 1.245 *
Heavy cloud cover 1.077 *
Fog 1.505 * 1.357 *

Spring Temperature (°C) 1.062 * 1.043 *
Humidity (%) 0.998 * 0.997 *
Wind speed (km/h) 1.014 * 1.009 *
Precipitation (mm/h) 0.733
Snow – –
Thunder
Cloud cover 1.283 * 1.265 *
Heavy cloud cover 0.958
Fog

Summer Temperature (°C) 1.025 * 1.021
Humidity (%) 0.995
Wind speed (km/h) 1.016 * 1.011 *
Precipitation (mm/h)
Snow – –
Thunder
Cloud cover 1.151 * 1.104
Heavy cloud cover
Fog

Autumn Temperature (°C) 1.033 * 1.032 *
Humidity (%) 0.997 *
Wind speed (km/h) 1.003 *
Precipitation (mm/h)
Snow – –
Thunder
Cloud cover 1.214 * 1.162 *
Heavy cloud cover 1.064 *
Fog 1.303 *

Note: Coefficients indicatedwith no asterisk are significant atα=0.05 and coefficients indicated
coefficients were omitted during the model estimation process.
second (Washington et al., 2010). The results in each table were divided
into the different meteorological seasons, with each further subdivided
into trip classifications.

Trip purpose had a substantive impact on the magnitude or signifi-
cance of weather effects as well. Commuting trips were less flexible
than those assumed to be discretionary such as weekend trips. These
varying effects can also be seen with snow. For commuting hour trips
in the autumn and winter, there was a statistically significant negative
effect, yet there were no significant effects on transit-oriented trips. In
the same period, effects were significant for elective non-commuting
hour, weekday trips.

We also observed differences in effects between the two cities. For
instance, San Francisco generally saw larger positive effects of a degree
change in air temperature for elective travel—an increase of 8.0% in
overall weekend trip counts for a 5 °C increase in San Francisco versus
6.5% in Boston. A degree increase during the winter was associated
with a much larger effect in Boston—a 13.5% versus 2.5% increase (SF)
in weekend trip counts for a 5 °C increase in air temperature. The effect
of precipitation was always negative and stronger in San Francisco. The
effect of a moderate rainfall of 5.0 mm per hour is associated with a
29.0% decrease in weekend trip counts.
Weekend

Commute Transit (commute) Non-commute

1.008 * 1.011 * 1.009 * 1.016 *
0.994 * 0.99 * 0.994 * 0.989 *
1.009 * 1.003 * 1.022 *
0.954 0.942 *
– – – –

1.707 *
1.225 * 1.565 * 1.200 * 1.157 *

1.023
1.611 * 2.651 * 1.165 1.770 *

1.005 * 1.005 *
0.997 * 0.994 * 0.994 * 0.988 *

1.008 * 1.015 *
0.945
– – – –

1.540
1.240 * 1.774 * 1.242 *

1.252 *
1.565 * 2.757 * 1.818 *
1.042 * 1.107 * 1.045 * 1.095 *
0.996 * 0.997 *
1.013 * 1.008 * 1.026 *

– – – –

1.301 * 1.411 * 1.240 * 1.197 *
0.924

1.034 1.051 *

1.018 * 1.031 1.010 * 1.027 *
0.004

– – – –

1.208 * 1.156

1.051 * 1.062 * 1.026 * 1.037 *
0.995 *

1.018 * 1.025 *
0.920 *

– – – –

1.141 * 1.358 1.164 * 1.305 *
1.106 * 1.055 * 0.928 *

1.363

with an asterisk (*) are significant atα=0.01. Variables corresponding to all insignificant



34 A.P. Vanky et al. / Preventive Medicine Reports 8 (2017) 30–37
The AOMA also recorded trip duration automatically, which allowed
us to investigateweather impacts on duration,whichhave been difficult
to enumerate withmany other pedestrian studies due to the challenges
of humanperception or limitationswith the technology used. Generally,
the magnitude of effect on duration was small. Air temperature, for in-
stance, had a very weak effect on trip duration. Snow led to increases
of trip duration when present, where both commuting and transit
trips saw an associated increase in trip times in the winter (8.6% and
6.0%), and transit times in spring (14.6%).

4. Interpretation & conclusion

Our results provide insights in terms of identifying and quantifying
to what extent weather characteristics impact the frequency and dura-
tion of pedestrian trips and how they vary across the population by sea-
son and by time. Several important elements in this regard can be
identified. Temperature, overall, had a positive relationship with trip
frequencies regardless of other weather and seasonality, with it having
a greater effect during weekends versus weekdays. Relative to temper-
ature, wind effects had generally smaller, positive effects on trip
Table 3
Impact of weather factors on trip duration in Greater Boston.

Weekday

Season Variable All trips All weekday

All Temperature (°C) 1.002 * 1.001 *
Humidity (%) 1.000 * 1.000 *
Wind speed (km/h) 0.999 * 1.000 *
Precipitation (mm/h) 0.995
Snow 1.087 * 1.110 *
Thunder 1.123 * 1.120
Cloud cover 1.010 *
Heavy cloud cover 1.014 *
Fog

Winter Temperature (°C) 1.002 *
Humidity (%)
Wind speed (km/h)
Precipitation (mm/h) 0.986 * 0.991
Snow 1.068 * 1.060 *
Thunder
Cloud cover
Heavy cloud cover
Fog

Spring Temperature (°C) 1.002 * 1.002 *
Humidity (%) 0.999 * 0.999 *
Wind speed (km/h) 0.999 * 0.999
Precipitation (mm/h)
Snow 1.088 * 1.146
Thunder 2.312
Cloud cover 0.984
Heavy cloud cover 1.026 * 1.036 *
Fog

Summer Temperature (°C)
Humidity (%) 0.999 * 0.998 *
Wind speed (km/h) 1.003 * 1.003 *
Precipitation (mm/h)
Snow
Thunder
Cloud cover 1.022
Heavy cloud cover 1.026 *
Fog

Autumn Temperature (°C) 1.002 * 1.002 *
Humidity (%) 0.999 * 0.999 *
Wind speed (km/h)
Precipitation (mm/h)
Snow
Thunder 1.107
Cloud cover
Heavy cloud cover 1.034 * 1.022 *
Fog

Note: Coefficients indicatedwith no asterisk are significant atα=0.05 and coefficients indicate
coefficients were omitted during the model estimation process.
frequencies (with the exception of Boston's winters where wind chill
could explain the negative effect observed). Light cloud cover was pos-
itively associated with trip frequency and duration in both cities.

Substantively speaking, weather factors had little impact on the du-
ration of trips once a trip was initiated, although a statistically signifi-
cant relationship was present. Presuming that the AOMA recorded
many required trips as noted, it is likely that adverse weather would af-
fect whether the trip started or not rather than the duration: once a trip
initiated, the weather conditions showed minimal impact. We can un-
derstand this in physiological terms as well. A person can only walk so
quickly or slowly due to human physiological limits, despite the impe-
tus to avoid adverse weather conditions.

We observed different effects of weather conditions between the
two cities on trip volume, which affirms findings of de Montigny et al.
(2012), despite the larger spatial consideration of this study. We hy-
pothesize that the apparent differences are likely due to the overall pro-
file of weather in each case study location, and how inhabitants
acclimatized to the particular patterns. However, additional analysis of
individual data is required to understand the particular reasons for
these differences. Studies of multiple discrete cities at scale, particularly
Weekend

Commute Transit (commute) Non-commute

1.001 * 1.001 * 1.001 * 1.001 *
1.000 * 1.000 *
0.999 1.000 * 0.999 *

0.995 0.987 *
1.156 1.110 * 1.066
1.134 1.120
1.016 * 1.010 * 1.020

1.082 *
1.002

1.001 1.001
0.999

0.991 0.908 * 0.949
1.086 * 1.060 *

1.060
0.955

1.106 *
1.002 * 1.002 *
0.999 * 0.999 * 1.000 0.999 *

0.999 0.999 * 0.998

1.146

1.042 * 1.036 * 1.029 *

0.995 *
0.999 0.998 * 0.998 *
1.004 * 1.003 * 1.003

1.033 1.022

1.004 1.002 * 1.002 *
0.999 0.999 * 0.999 *

1.016 0.989
2.770

1.022 * 1.025 *

dwith an asterisk (*) are significant atα=0.01. Variables corresponding to all insignificant
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longitudinally over multiple trips of the same individual, within the
same period have been difficult to attempt without the technologies
employed in this study.

The results of our study are consistentwith prior studies establishing
the relationship between certain weather conditions and pedestrian
trip frequencies. In comparing previous studies, we observed similar
overall effects although the magnitudes differed. For instance, previous
studies performed in Vermont found positive effects of increasing tem-
perature and precipitation and negative effects of wind on trip frequen-
cies at a single intersection in Montpellier (Flynn et al., 2012) and
positive effects of temperature on trips recorded through the Vermont
travel survey (Altman et al., 2010)—both consistent with the findings
in our Boston analysis. However, the Montpellier study found no rela-
tionship with humidity, which is inconsistent with the negative effect
found in this study. Cervero and Duncan (2003), in using the 2000 Bay
Area Travel Survey, found negative effects of precipitation, consistent
with this study in San Francisco.

While these pedestrian-focused studies faced limitations in their
scale, our findings are also consistentwith larger scale studies consider-
ing weather impacts on public transit utilization where travelers often
Table 4
Impact of weather factors on trip duration in the San Francisco Bay Area.

Weekday

Season Variable All trips All weekday

All Temperature (°C) 1.002 * 1.001 *
Humidity (%) 1.000 *
Wind speed (km/h)
Precipitation (mm/h)
Snow – –
Thunder
Cloud cover 1.015 *
Heavy cloud cover 0.988 * 0.990 *
Fog 1.100 * 1.097 *

Winter Temperature (°C) 1.001 * 1.001
Humidity (%) 0.999 * 0.999 *
Wind Speed (km/h)
Precipitation (mm/h)
Snow – –
Thunder
Cloud cover 1.035 * 1.025 *
Heavy cloud cover 0.986 * 0.987
Fog 1.105 * 1.09 *

Spring Temperature (°C) 1.010 * 1.004 *
Humidity (%) 1.001 * 1.001
Wind speed (km/h)
Precipitation (mm/h)
Snow – –
Thunder
Cloud cover 1.021
Heavy cloud cover 0.980 *
Fog

Summer Temperature (°C) 0.991 *
Humidity (%) 0.997 * 0.998
Wind speed (km/h) 1.003 * 1.003 *
Precipitation (mm/h)
Snow – –
Thunder
Cloud cover 1.054 * 1.035
Heavy cloud cover 0.984
Fog

Autumn Temperature (°C)
Humidity (%) 0.999 * 1.000
Wind speed (km/h) 1.001 * 1.001 *
Precipitation (mm/h) 1.003
Snow – –
Thunder
Cloud cover 0.998
Heavy cloud cover 0.985 * 0.986
Fog 1.089

Note: Coefficients indicatedwith no asterisk are significant atα=0.05 and coefficients indicated
coefficients were omitted during the model estimation process.
are exposed to weather during some portion of their trip. Like pedestri-
an volumes, ridership on transit is higher in good weather (Guo et al.,
2008), while colder temperatures and precipitation have negative ef-
fects on transit ridership (Changon, 1996; Cravo et al., 2009). We ob-
served similarities with studies that reported differing effects based on
when the trip was taken, such as the magnitude effect differing based
day of the week (weekdays and weekends) and by season (Cravo
et al., 2009) In Chicago, rain had stronger effects during traditional
workinghours,when commuting trips tended to occur, than inmorning
and evening periods where more discretionary trips happened
(Changon, 1996).

With regard to study limitations, the flaws of the data are its virtues:
it comes from the use of mobile devices. This has specific implications.
First, behaviors are only able to be captured if the AOMA is downloaded
and thephone carried by an individual, whichmaypreclude or omit cer-
tain populations and activities. Second, the observed population may
not necessarily be representative of the general population. Third, de-
tails that could be desirable were redacted to protect user anonymity.
Generally, thepopulation of smartphone owners andmobile application
users tends to skew younger (Smith and Page, 2015), although without
Weekend

Commute Transit (commute) Non-commute

1.001 * 1.002 * 1.001
1.000 * 1.000 * 0.999 *

– – – –

0.983 * 0.990 * 1.014
1.097 * 1.134 * 1.070

0.999 0.999 * 0.999 * 0.999 *

– – – –

1.029 *
0.972

1.089 1.147 * 1.104 *
1.007
1.001

– – – –

1.004 * 1.003 *
2.239
– – – –

1.064 1.041
0.955 1.048 *

– – – –

1.027 *

with an asterisk (*) are significant atα=0.01. Variables corresponding to all insignificant
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biographical information, we cannot confirm this. Further, due to the
censoring of the start and end of trips, short distance-trips were likely
underrepresented.

Another limitation is the generalizability of this study to other cities.
Boston and San Francisco may have a stronger culture of walking, with
more pedestrian-oriented infrastructure and denser mix of diverse
land-uses than many other cities in the country (Leinberger and
Alfonzo, 2012). As such, the results are not necessarily generalizable to
all localities.

While the study of weather and its impact on pedestrian movement
is not new, the depth of empirical data presents new opportunities to
develop deeper insights into pedestrian behaviors (e.g., across urban
microclimates and between cities of differing climates in relation to
the differing bioclimatic—felt—experiences of pedestrians), and future
work can provide a clearer sense of how these effects may vary spatially
across the city. Despite the previously highlighted limitations, our study
demonstrates the utility and potential for locative data to glean new in-
sights into how pedestrians respond to environmental conditions
through their travel characteristics (e.g., the availability of measured
trip duration data,whichmay be unique to this study). Confirmatory re-
sults support the validity and generalizability of using this new type of
data that also opens up avenues of study that are otherwise beyond
the limits of traditional public health surveillance approaches such as
travel surveys. In addition, the heavy-tailed distribution of trip duration
characteristics is comparable with previous studies (Rhee et al., 2011).

While this study finds clear associations between weather and travel
behavior,we also see these newdatasets as openingnewopportunities to
understand the more challenging aspects of the urban environment and
its impact on individuals' well-being. The outcomes reveal the effects of
weather on individuals over a much longer period of observation—with
individual observations over an entire year, second-by-second (although
the study aggregates to the hour). With the proliferation of mobile de-
vices, these data could be scaled to a national or even international
level if device and application platform-makers are willing to share the
data for public health and city planning purposes. Hence this study ex-
poses new methods to wider consideration in preventive medicine.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.pmedr.2017.07.002.
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