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Abstract

Training skillful and competent surgeons is critical to ensure high quality of care and to minimize 

disparities in access to effective care. Traditional models to train surgeons are being challenged by 

rapid advances in technology, an intensified patient-safety culture, and a need for value-driven 

health systems. Simultaneously, technological developments are enabling capture and analysis of 

large amounts of complex surgical data. These developments are motivating a “surgical data 

science” approach to objective computer-aided technical skill evaluation (OCASE-T) for scalable, 

accurate assessment; individualized feedback; and automated coaching. We define the problem 

space for OCASE-T and summarize 45 publications representing recent research in this domain. 

We find that most studies on OCASE-T are simulation based; very few are in the operating room. 

The algorithms and validation methodologies used for OCASE-T are highly varied; there is no 

uniform consensus. Future research should emphasize competency assessment in the operating 

room, validation against patient outcomes, and effectiveness for surgical training.
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1. SURGICAL TECHNICAL SKILL AND COMPETENCY

In 2012, 312.9 million major surgical procedures were performed annually worldwide (36 

million in the United States alone), which is a 38% increase since 2004 (1, 2). It has been 

well established that poor-quality surgical care is not only ineffective but also increases the 

risk of death and other severe complications, resulting in wasteful health care (3–8). In short, 

access to high-quality surgical care is integral to preserving global public health and is a 

major determinant of health care costs (1).
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Efficiently training and credentialing competent surgeons is critical to ensure global access 

to high-quality surgical care. Although there is no consensus definition for surgical 

competency, most existing definitions refer to the level of skill required to safely and 

independently perform a procedure (9–11). This includes both technical and nontechnical 

skills as well as the knowledge and judgment required to complete new or familiar 

procedures (9–13). As a result, assessment of surgical skill and competence is an essential 

aspect of training and certifying surgeons (14–16).

Technical skill, which is the focus of this review, is a key aspect of training that affects the 

safety and effectiveness of surgical care. A considerable body of research suggests that poor 

technical skill is associated with severe adverse outcomes in patients, including death, 

reoperation, and readmission (3–8). In a study of medical malpractice claims in the United 

States, technical errors, most of which were manual in origin, were implicated in permanent 

disability or death of patients two-thirds of the time (17). Technical skills are also correlated 

with nontechnical skills (18), which, in turn, are associated with fewer technical errors per 

operation (19).

Assessment of technical skill is thus critical to train competent surgeons. However, in an era 

in which technology for surgical care has made rapid advances, surgical education and 

assessment have not kept pace (Figure 1). Traditionally, subjective assessment of technical 

skill was embedded within the Halstedian apprenticeship model for surgical training. More 

recently, global rating scales (GRS), such as the Objective Structured Assessment of 

Technical Skills [OSATS-GRS (20)], have been developed for objective and standardized 

assessment (21–24). Although GRS accurately distinguish surgeons with different levels of 

experience (22), integrating them into surgical training curricula has been limited, in part 

due to resource constraints because they require an expert observer (21, 25). Recent 

innovations using crowdsourcing may be an efficient alternative to observation by experts, 

but their role in surgical training curricula is still uncertain (26–30). Other, less resource 

intensive approaches, such as in-training evaluations and examinations, or surrogates, such 

as surgical volume (31–33), do not correlate with objective assessments of surgical technical 

skill (34).

With increasing attention to the efficiency and effectiveness of health care, multiple factors 

are converging to make traditional methods of training combined with structured manual 

assessment untenable. First, health care is being driven by a goal to maximize value, namely 

outcomes achieved per dollar spent (35). The cost and safety implications of teaching in the 

operating room severely limit opportunities to systematically impart and assess 

intraoperative technical skill (36, 37). Second, there is increasing awareness of the harmful 

consequences to patients from preventable technical errors and an emphasis on minimizing 

them, placing great pressure on efficient and accurate quantification of surgical competence. 

Third, surgical trainees must acquire skill and competency with an increasingly wide 

spectrum of procedures and techniques such as laparoscopic, open, robotic, and endoscopic 

surgery, within limited work hours and access to educators.

The confluence of these pressures, together with the growing availability of quantitative data 

documenting surgical performance and recent developments in machine learning methods, 
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has led to a rapidly growing literature on objective computer-aided skill evaluation (OCASE) 

of surgical technical skill (OCASE-T). OCASE-T offers a “surgical data science” approach 

that can provide low-cost, high-value feedback to surgeons in training and practicing 

surgeons to improve their acquisition and maintenance of skills (38). Developing data 

science methods for surgery is challenging, and depends on creating platforms to capture 

data, algorithms to provide assessments from data, and mechanisms to leverage these tools 

within surgical training curricula. Despite these challenges, research progress on OCASE-T 

has been rapid over the past decade. However, the literature describing this progress is 

scattered through a variety of publication venues and research fields. In this review, we bring 

together the disparate literature and provide a synopsis of the state of the art in OCASE-T 

research and applications.

This review is intended to elucidate the conceptual problem space around the emerging area 

of OCASE-T, and to provide a comprehensive synthesis of research in this area. Research on 

OCASE-T is highly multidisciplinary, ranging from fundamental technical work in computer 

science and electrical engineering to applications of methods addressing the needs of 

surgeons and surgical educators. In the interest of addressing a broad audience, we note that 

tutorial material on different analytical techniques and algorithms used for OCASE-T is 

beyond the scope of this review. Such details can be found in other resources (e.g., (39–41)). 

Instead, we present a conceptual discussion of different aspects of OCASE-T with reference 

to the validity and utility of the algorithms.

We have chosen to focus on data analytics algorithms that use any combination of tool 

motion, video images, surgeons’ eye gaze, and other data available in the surgical context for 

objective skill assessment. To identify the specific papers reported herein, we searched 

Inspec, Pubmed, Google Scholar, the Proquest® database of dissertations and theses, and 

references listed in articles and prior reviews describing algorithms for OCASE-T (42). 

Studies on summary metrics of time and motion efficiency for technical skill assessment 

were excluded; these metrics are discussed elsewhere (43–48). Technical skills required for 

interventions such as central vein catheterization, biopsies, and airway management are also 

not considered here (49). Finally, we note that this review focuses on skill assessment, but 

does not consider the complementary problem of automatic detection of surgical activities or 

phases/workflow. These methods are discussed elsewhere (50–53).

We identified 45 publications from our literature search that encompassed OCASE-T for 

various surgical techniques and platforms such as traditional open surgery and minimally 

invasive techniques such as laparoscopy, robotic surgery, endoscopy, natural orifice 

transluminal endoscopic surgery, and endovascular interventions. Only two studies described 

OCASE-T for procedures in the operating room; the rest focused on benchtop or virtual 

reality simulations (Table 1).

The remainder of this article reviews the available literature as follows. Research questions 

for OCASE-T are described in Section 2, sources of data for OCASE-T in Section 3, 

different representations of the data in Section 4, algorithms for OCASE-T in Section 5, and 

feedback based on OCASE-T in Section 6. We present our conclusions in Section 7.
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2. RESEARCH QUESTIONS FOR OCASE-T

Defining the problem space for OCASE-T is complicated by the fact that surgical skill is a 

multidimensional construct with cognitive and motor components, and there is little 

consensus on dimensions constituting technical skill (22). Furthermore, technical skill and 

its assessment are affected by several factors, including surgeons’ stress and fatigue (98), 

ergonomics (99), environment in the operating room (e.g., lighting), surgeons’ nontechnical 

skills, and case complexity. Thus, algorithms for OCASE-T must be developed and 

evaluated in the context of the factors affecting them.

It is also essential to recognize that the ultimate goal of assessment is to improve the process 

of acquiring technical skill, which relies on deliberate practice and appropriate feedback. 

Deliberate practice refers to directed repetition of specifically chosen activities tailored to 

improve an individual’s performance (100–102). Such repeated practice can be assisted by 

immediate feedback, typically from a teacher or a coach. Coaching by an expert surgeon 

effectively improves technical skill acquisition (102).

Taken together, these data suggest that the end goal for OCASE-T should not be simply 

assessment but also automated coaching for efficient acquisition and maintenance of 

technical skill through deliberate practice. This goal can be attained when technology for 

OCASE-T not only measures skill but also enables feedback through targeted assessments 

(i.e., how to do components of a surgical task) and diagnosis of skill deficits or errors in 

performance (i.e., how not to do a surgical task). Figure 2 illustrates the resulting “closed-

loop” system enabled by OCASE-T. Data captured in the skills training laboratory and in the 

operating room are at the core of OCASE-T. These data transform into an intermediate 

representation to extract pertinent information, which is then modeled using various data 

analytics algorithms for OCASE-T. The endpoint for OCASE-T is then feedback to surgeons 

through data products that rely on the algorithms, and the process repeats.

More concretely, raw data for OCASE-T are usually a time series (Figure 2). The raw data, 

T, may be complicated by many factors unrelated to technical skill, often necessitating a 

transformation of the data into a more refined or succinct representation, X, by suppressing 

unwanted variation. We refer to both T and X as observations or observed data. The 

analytical goal of OCASE-T is to learn a mapping, Φ, from X to a ground-truth assessment, 

Y, that may be discrete (e.g., beginner versus expert) or continuous. Y is typically acquired 

from an expert panel. Numerous algorithms may be chosen for Φ; the choice of method and 

its performance are heavily influenced by how input data are represented (X) and the form of 

Y. The relative importance of choosing a data representation versus an algorithm for 

OCASE-T is still an open question. Finally, feedback based on OCASE-T relies on 

providing some diagnostic or illustrative feedback as to what the learner may do to improve 

their performance.

The rest of this review is organized around the four key steps in this process model:

1. How may data relevant for OCASE-T be routinely captured during surgical 

training and in the operating room?
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2. How may data be represented or transformed to maximize performance and 

robustness of algorithms for OCASE-T and to optimize feedback based on 

OCASE-T?

3. How may data be mapped to valid assessments of surgical technical skill and 

competence using data analytical algorithms?

4. How may algorithms for OCASE-T be used to enable effective feedback for 

technical skill acquisition through diagnosis of skill deficits, targeted 

assessments, and detection of errors in performance?

Before proceeding with specifics on the key steps in the process model, we note that 

reporting valid measures of technical skill is an explicit end goal of most algorithms for 

OCASE-T. The validity of the algorithms for OCASE-T may be assessed through several 

sources (103), including relation to pertinent external variables, generalizability of 

assessment, structural and content aspects, and consequences of assessment. Existing 

research on OCASE-T has focused exclusively on validation through relation to external 

variables, namely validity against criteria considered ground-truth skill assessments. Such 

validation was limited to surgeons’ appointment status, years in training or practice, 

experience, or OSATS-GRS as the ground truth. In addition, all of the studies we identified 

uniformly recruited convenience samples of participants, which raises the potential for 

selection bias and limits the generalizability of the findings. None of the studies evaluated 

consequences of assessment for training or patient care.

Although nearly all of the 45 publications discussed in this review reported some type of 

assessment of algorithm performance (e.g., classification accuracy), the diversity of 

approaches, surgical tasks studied, data sets, and validation methodologies precluded a 

comprehensive comparative assessment or compilation of the validity of algorithms used for 

OCASE-T. Consequently, the below discussion is limited to those instances in which the 

surgical tasks and metrics for validation are directly comparable.

3. SOURCES OF DATA FOR OCASE-T

Surgery is characterized by several rich sources of fine-grained data throughout the patient 

care process, including preoperative patient data, video of the surgical field, tool use and 

movement data, video and other data of the operating room environment and personnel, 

physiological status of the patient, and postoperative outcomes. However, to date most of 

these data have not been systematically captured, presenting a major challenge to OCASE-T. 

Table 2 summarizes data collected for OCASE-T in existing research.

The ideal data collection system for OCASE-T is transparent, pervasive, complete, 

integrated into workflows, scalable, and automated. Transparency of the system, meaning 

that it is invisible to the user, is essential to secure buy-in from clinical teams, patients, and 

ethics review boards. Pervasiveness means that the data are always collected, whether in the 

surgical skills training laboratory or in the operating room. Complete data collection systems 

capture all relevant manifestations of technical skill and the multitude of factors that affect 

surgical performance and its assessment (Figure 3). Data collection systems must also have a 

small footprint and be automated (require minimal space and participant input) for effective 
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integration into surgical training and patient care workflows. Finally, automation is also 

essential for scalable data collection to efficiently build large data corpora for OCASE-T. 

Full automation of integrated data collection systems for OCASE-T may also require 

additional technology for context awareness using activity recognition (50–53).

Existing integrated data collection systems for OCASE-T are far from ideal and are diverse 

in terms of both the environments in which they may be deployed and the data they capture. 

Integrated systems developed for laparoscopic training platforms are able to capture tool 

motion, arm and head pose, eye gaze, electrocardiogram data, and audio recordings (104–

106). These systems have used either infrared or color markers that are visually tracked and 

thus require an uninterrupted line of sight. Another integrated system, which may be 

applicable across different surgical platforms (107), used electromagnetic sensors and 

potentiometers attached to instruments to capture tool motion and pose in addition to video 

and other environmental signals. Ostler et al. (108) developed a centralized framework for 

acquisition of data on laparoscopic procedure workflow in the operating room. Finally, Zhao 

(109) developed a general-purpose system, called the surgical data collection, integration, 

storage, and retrieval system, to capture intraoperative data for laparoscopic surgery 

including endoscopic video, speech, system events such as usage of the foot pedal, and 

patients’ physiological data.

The surgical technique or platform affects the ease and feasibility of capturing data for 

OCASE-T. Surgeons’ hands must be tracked during open surgery, in contrast to surgical 

tools in various minimally invasive surgical techniques (e.g., laparoscopic, robotic, 

endoscopic, and microscopic surgery). In addition, video images of the surgical field can be 

recorded more easily from endoscopic cameras that are an integral part of minimally 

invasive techniques than with open surgery. Many different systems for tracking 

laparoscopic tools have been developed, which are reviewed elsewhere (110). More recently, 

such systems for tracking laparoscopic tools have been developed for use over the 

worldwide web (75). However, data collection from robotic surgery continues to be the 

closest to ideal, as complete, transparent, scalable, and automated data capture is relatively 

easy to achieve (111).

The surgical environment also influences the types of data available for OCASE-T and the 

difficulty with which they can be captured. Data in the training laboratory are easier to 

capture than in the operating room, and may also be more extensive. At one extreme, virtual 

reality or computer simulation readily provides data on all aspects of tool and tissue 

manipulation. Benchtop simulation is amenable to instrumentation, which provides data on 

both surgical tools and manipulated tissue (46, 83). Data for OCASE-T in the operating 

room has so far been limited to surgeons’ eye gaze and movement of surgical tools (54, 55).

Surgical tools are a major source of data for OCASE-T. In the case of robotic surgery, rich 

stereo video and tool movement data can be captured completely transparently in both the 

training laboratory and the operating room (76, 78–80, 85, 86, 111). In nonrobotic cases, 

tool motion data in the training laboratory can be captured by affixing a variety of sensors to 

the instruments, for example, accelerometers, strain gauges, and electromagnetic or optical 

trackers (46, 66, 67, 72, 73, 86, 87, 112, 113).

Vedula et al. Page 6

Annu Rev Biomed Eng. Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The need to preserve a sterile surgical field is a major factor affecting the scope and 

feasibility of data that may be captured in the operating room. Tool motion in the operating 

room may be captured by attaching sterilizable sensors to the instruments (54). Wireless 

sensors to track tools would be ideal for use in the operating room because they would avoid 

clutter in the surgical field, but such sterilizable sensors have yet to be developed (114–116).

Tool tracking using approaches that require a direct line of sight, such as optical markers or 

tracking based on video images, is also harder to implement in the operating room than in 

the training laboratory (68, 117). More generally, although alterations of surgical tools and 

surgical workflow for OCASE-T are feasible (54), whether such methods are scalable across 

procedures is unknown.

The extent of tissue manipulation is more easily captured in the training laboratory than in 

the operating room. Tissue manipulation not only is a measure of technical skill but also 

quantifies the magnitude of surgical intervention, enables assessment of errors in 

performance (75), and serves to explain variation in outcomes of intervention across patients 

(118). In the training laboratory, forces applied on the tissue may be captured using 

sensorized models such as a “smart skin” with an array of sensing elements or a skin dummy 

with a photo interrupter–based mechanism to measure tissue deformation during suturing 

(46, 119). Force sensors may also be built into platforms holding the inanimate model in 

benchtop simulation (71, 83, 87). In the operating room, video images of the surgical field 

are the primary source of data on tissue manipulation. Consequently, the granularity at 

which deformation of tissues during surgery can be measured is limited.

Some data can be captured in the training laboratory and in the operating room with equal 

ease. For example, surgeons’ eye gaze may be captured using trackers placed on wearable 

head mounts or eyeglasses, or remotely on high-resolution monitors (55, 56, 120–122). 

Similarly, data on surgeons’ posture or physiological function may be obtained in both 

environments (99, 113). Such data include surgeons’ posture, muscle activation, 

electrodermal activity, temperature, heart rate, respiratory rate, blood pressure, and 

functional magnetic resonance images (113, 123). Although advances in wearable 

technologies allow easy capture of variety of data from the surgeon, their utility for OCASE-

T has yet to be demonstrated.

Some sources of data for OCASE-T are pertinent only in the operating room context, for 

example, the environment (e.g., lighting), interaction with other personnel, patients’ 

physiological status, medications administered, and outcomes of surgical intervention. Data 

on patients’ physiological status may include heart rate, blood pressure, breathing 

(ventilation settings), temperature, and fluid inflows and outflows. Although data on the 

patient’s physiological state may not inform technical skill assessment, they may 

independently affect outcomes of care. These data are therefore relevant to understand 

heterogeneity in how technical skill affects patient outcomes. For example, technical skill is 

associated with postoperative adverse outcomes (3), but technical skill may have a negative 

correlation with patient-centered or functional outcomes (124).
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There are significant systemic and logistical barriers that must be addressed in order to 

develop universal data collection systems for OCASE-T. First, surgical workflow is 

extremely diverse across different procedures and surgical teams. Data collection systems 

must be flexible to enable integration into customized patient care workflows. Second, 

privacy and confidentiality of data on surgical performance and patient outcomes must be 

rigorously protected, particularly in contexts in which such information has substantial 

medicolegal implications. Third, generating structured data sets from raw data captured in 

the surgical context is challenging. In addition to common standards for data formats and 

ontologies, structuring raw surgical data requires extensive curation such as annotations for 

surgical phase, activity, skill, or other descriptors of performance or ground-truth 

assessments and outcomes for validation of algorithms. Finally, the surgical community 

itself must demand that such data collection become pervasive and lead its incorporation into 

training and patient care in order to establish a culture of data-driven continuous 

improvement.

4. DATA REPRESENTATIONS FOR OCASE-T

Data for OCASE-T that emanate from different sensors (T; see Figure 2) are complex, noisy, 

sampled at high frequencies; include numerous highly correlated dimensions; and 

incorporate several sources of variation. As such, preprocessing and transforming the raw 

sensor data into more compact representations (X; see Figure 2) achieve the following goals 

to varying extents (125):

1. Remove noise and irrelevant sources of variation in the data.

2. Reduce data dimensionality.

3. Enhance or extract information relevant for skill and/or feedback.

The type of raw data captured from sensors and the target algorithms for OCASE-T 

determine the relevance and utility of different transformations (Ψ; see Figure 2). The data 

transformations used for OCASE-T in the existing literature may be grouped into 

computation of fixed-dimensional summary features, conversion into time-series models, 

and transformation into dictionaries or histogram-based representations. Table 3 lists the 

representations used for different types of data for OCASE-T in the literature.

4.1. Preprocessing Data for OCASE-T

Raw data for OCASE-T are usually preprocessed to achieve objectives such as smoothing, 

normalizing dimensions, removing coordinate dependence, and extracting information from 

the data. Techniques such as a moving average or a median filter are used for data smoothing 

(73). Standardization or normalization of dimensions (centering by the mean and scaling by 

the variance) is useful for subsequent analytics that rely on computation of distances or 

maximizing variances (70, 71). The Fourier transform (FT) is a standard preprocessing 

technique for time-series signals and is used to identify the frequency components that make 

up a continuous signal (126). FT within short discrete time windows [short-time FT (STFT)] 

simultaneously yields time and frequency information in the signal (76, 95).
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Some types of data, such as tool position, velocity, acceleration, and forces, are embedded 

within a coordinate system. Preprocessing techniques may be used to transform time-series 

data into consistent coordinates, using an origin either defined by the time series or external 

to it. Leong et al. (94) and Zhang & Lu (127) computed the centroid distance to induce 

rotational and translational invariance in surgical tool positions. Descriptive curve coding 

(DCC) is another technique that relies on an origin within the time series, which is specified 

as a Frenet frame along different points on the motion trajectory (57). DCC results in a time 

series of discrete symbols corresponding to the accumulated change in direction of the 

trajectory within a window specified over time or space. In an example of inducing 

coordinate invariance using an origin external to the time series, Jog et al. (97) transformed 

data with respect to trajectory space of an expert performance.

Preprocessing video image data for OCASE-T may involve any number of computer vision 

techniques, most of which are beyond the scope of this review. Existing studies on OCASE-

T using video images have employed spatiotemporal interest points (STIPs) (128) to identify 

repeatable locations. A small volume of pixels around each STIP is used to compute features 

such as histograms of orientation gradients (HoG) and optical flow (HoF) as input into 

algorithms for OCASE-T (64, 65, 67).

4.2. Summary Features to Represent Data

Computing summary features for OCASE-T involves collapsing time-series data into a 

fixed-dimensional vector. Summary features have distinct advantages in spite of information 

loss during transformation. First, summary features enable the application of a variety of 

algorithms that take fixed-dimensional vectors as the input. Second, they can be informative 

about specific aspects of the surgical task or its performance, and can therefore form the 

basis for feedback. Third, summary features may improve the performance of algorithms for 

OCASE-T because they extract specific and pertinent information from the time-series data.

Summary features for OCASE-T may be nonspecific derivatives from data preprocessing 

techniques, generic descriptors of motion efficiency, or hand-engineered features. Summary 

features are more easily computed for tool motion and eye-gaze data, whereas video images 

must be extensively preprocessed to extract features. Principal components that explained 

the majority of variation in the data were used as nonspecific summary features for OCASE-

T in some studies (69, 70, 73, 79). Generic descriptors of tool motion efficiency, such as 

time, path length, or movements, which may be easily computed on any surgical platform, 

were used for OCASE-T in several other studies (78, 79, 81, 82, 84, 85, 93, 97). Descriptors 

of other measures of tool motion, such as force, were used as features for OCASE-T in a few 

studies (54, 70, 71, 83, 88). Finally, generic features may also refer to frequency 

characteristics of the signal, such as the power density spectrum of speed measured at joint 

angles (73), and frequency-spectrum profile specified as magnitudes of coefficients from a 

fast FT (46, 54, 76).

Hand-engineered summary features are designed on the basis of prior knowledge of the 

structure of surgical activity as well as an expert understanding of how to skillfully perform 

the task and specific technical skill deficits. Such features are typically defined with respect 

to anatomical structures in the surgical field. For example, Sewell (89) specified velocities 
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and forces near the facial nerve during mastoidectomy. Similarly, Ahmidi et al. (54) defined 

features to describe strokes made with the surgical tool to elevate the mucosal flap overlying 

the nasal septal cartilage in septoplasty.

More recently, Ershad et al. (129) developed a novel crowdsourcing approach to generate 

summary features using semantic labels that describe quality of tool or hand movement. The 

semantic labels were specified in contrasting pairs, which were then mapped to 

corresponding data-driven metrics. For example, high/low values for mean jerk (derivative of 

acceleration) correspond to a label pair of crisp/jittery, respectively. Whereas metrics such as 

jerk may be computed with data on tool motion, metrics such as relaxed/tense and calm/

anxious require other measurements, such as electromyography and galvanic skin response, 

respectively. Semantic representation of surgical performance based on quality of movement 

is an innovative frontier that harnesses human insights, but their validity for OCASE-T and 

utility for automated feedback have yet to be determined.

4.3. Time-Series Data Representations

Time-series representations of raw data from sensors for OCASE-T capture inherent 

sequential information, but algorithms that capture sequential information in the time-series 

data are often sensitive to the underlying coordinate system. Thus, preprocessing the data to 

induce coordinate invariance is routinely performed before time-series data are used for 

OCASE-T.

A common transformation of time-series data for OCASE-T is conversion to a time series of 

discrete symbols. Discretization reduces the complexity and dimensionality of the data by 

grouping together similar points in the time-series signal in terms of a small set of 

prototypes. Several different clustering techniques have been used for OCASE-T, including 

vector quantization (VQ) with algorithms such as K-means, piecewise linear approximation 

(PLA) (66), and DCC (57). K-means was used to discretize raw time-series data from 

sensors (56, 58, 60, 62, 72, 87, 90, 91, 95) and to cluster coefficients from STFT (76). Other 

techniques, such as symbolic aggregation approximation (SAX), aligned cluster analysis 

(ACA), Persist (130), and methods based on affine velocities and the two-thirds power law 

(131), have been explored to transform time-series data for surgical activity detection but not 

for OCASE-T.

4.4. Dictionaries or Histogram-Based Representations

Dictionaries or histograms of data for OCASE-T are computed either as class-specific 

summaries or as features from time-series data. In one approach using data on tool position, 

following a discrete transformation with DCC, Ahmidi et al. (77) applied a common 

substring model (CSM). Class-specific CSMs were computed by applying a longest 

common substring algorithm to the time series of DCC symbols, presumably capturing 

motifs within surgical tool motion. Similarity metrics to each class-specific CSM were used 

for OCASE-T. In a similar approach, class-specific histograms of motion increments were 

used to represent tool motion data and similarity metrics were used for subsequent skill 

classification (59). In a different approach, Khan et al. (66) computed features to describe 
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transition matrices obtained from PLA-derived discrete representations of surgical tool 

accelerations.

Bag-of-words (BoW) dictionaries are a common way to represent data from video images 

for OCASE-T (64, 65, 67, 69, 74). In this approach, visual features (STIPs in this case) are 

clustered using K-means applied to HoG and HoF features. Thus, each image is described as 

a histogram of cluster labels for the STIPs (BoW). Traditional BoW dictionaries ignore the 

order of cluster labels. Sequential information in video images may be captured by 

augmenting BoW dictionaries with n-grams or randomly sampled regular expressions (132). 

In addition, features corresponding to the texture of motion may be extracted from the 

histogram representation of images (64, 65, 67).

Research on the best way to structure data for OCASE-T continues, and may evolve as 

OCASE-T methods mature. The data representation techniques discussed above, including 

DCC, K-means, BoW, and augmented BoW (A-BoW) differ in the extent to which they 

preserve the geometry or inherent structure of surgical motion. DCC encodes changes in the 

direction of tool motion trajectories and thus preserves the geometry of tool motion in a 

coordinate-invariant manner. By contrast, BoW and K-means encode only the occurrence of 

local patches of features, not their relative geometry.

5. ALGORITHMS FOR OCASE-T

The optimal algorithm for OCASE-T is determined by the type of data available, how the 

data are represented, and the type of task (classification or regression) to be performed 

(Table 3). Existing algorithms for OCASE-T may be categorized by how input data are 

represented:

1. methods in which Xi is a fixed-dimensional vector of summary features, 

including support vector machines (SVMs), linear discriminant analysis (LDA), 

discriminant function analysis (DFA), nearest-neighbor classifiers (NNC), 

logistic regression (LogReg), fuzzy models (FMs), linear regression (LinReg), 

and neural networks (NNets) such as learning vector quantization (LVQ);

2. methods in which Xi is a time series, including Markov models (MMs), hidden 

Markov models (HMMs), and NNets; and

3. methods in which Xi is a dictionary or histogram-based representation and 

related metrics.

Well-designed algorithms for OCASE-T should be valid, generalizable across use cases, and 

robust to factors affecting technical skill, and should enable effective targeted feedback. In 

addition, the algorithms should be efficient to implement at scale and intuitive to use. 

Scalability of algorithms is heavily affected by the level of manual annotations required for 

data curation and other manual input needed to provide a result. Curation of the data may 

involve segmentation into constituents, such as activities or instances of performances, 

coordinate transformations, or other preprocessing, before the algorithms can be trained or 

implemented. Algorithms for OCASE-T must also be easily retargetable to be scalable 
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across procedures, application domains (e.g., training laboratory to the operating room), 

surgical techniques, and surgical sites.

5.1. Methods That Use Summary Features

Algorithms for classification or regression are typically classed as discriminative or 

generative. Discriminative models involve learning a function to directly map X to Y; Φ: X 
→ Y. Generative models involve first learning the class-specific joint distribution of 

observations (X) and ground truth (Y), P(X, Y), which is then used to predict class labels 

P(Y|X) with the Bayes rule. These models are referred to as generative because synthetic 

data can be produced by sampling from the joint distribution (39).

Methods that use summary features as data representation for OCASE-T are uniformly 

discriminative. Some algorithms for OCASE-T that use summary features identify linear 

decision boundaries (LinReg, LogReg, LDA, DFA), whereas others identify nonlinear 

decision boundaries (NNC, SVM). The methods also differ in how the decision boundaries 

are modeled and derived. In one approach, which includes LogReg, LDA, and DFA, a 

discriminant function is modeled for each class label in the ground truth (46, 73, 89). Each 

observation is assigned to the class with the largest value for its discriminant function. In 

another approach, boundaries to optimally separate classes in the ground truth are directly 

modeled (e.g., SVM) (54, 57, 78, 79, 81, 82, 84, 97). In a third approach, including what 

may be considered prototype-based methods (NNC and LVQ NNets), each observation is 

assigned a class label corresponding to its nearest prototype (55, 88).

Summary features derived from simple data preprocessing such as components from 

principal components analysis that explain majority of variance in the data are also useful 

for OCASE-T. For example, Horeman et al. (70, 71) reported 100% accuracy in classifying 

performances as either expert or novice. More complex signal processing, such as 

multivariate autoregression (MVAR) (96), yielded higher sensitivity and specificity than 

HMMs trained using time-series data to classify task performances into expert or novice 

(86–96% versus 64–87%). Generic features of tool motion efficiency yield moderately 

accurate algorithms to assign one of two class labels for skill (expert versus novice). 

Reported measures of accuracy in classification were similar across two studies for a 

suturing task (64–79%), with minimal differences among linear, nonlinear, and prototype-

based classifiers (78, 84, 85). However, one study using LVQ NNets reported a low accuracy 

of 50%; performance in this study was lower for distinguishing intermediates versus experts 

than for novices versus experts (88). A few studies reported very high measures of accuracy 

with simple methods such as LogReg (83) and LDA (70, 71) by using features from tool 

forces and vibrations, suggesting that these features capture information discriminative of 

skill. Finally, two studies describing hand-engineered summary features for OCASE-T 

reported high classification accuracies of at least 87.5% (54, 89). In addition, hand-

engineered features appeared to yield greater accuracy for a two-class classification (90.9%) 

compared with simple signal-based features such as the frequency-spectrum profile (71.2%) 

(54).
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5.2. Methods That Use Time-Series Data

Methods described in the existing literature that use time-series data for OCASE-T may be 

discriminative (NNets) or generative (MMs and HMMs). Nearly half of the studies for 

OCASE-T we identified in the literature evaluated MMs or HMMs (Table 3). Technical 

details about MMs and HMMs can be found elsewhere (133). For OCASE-T using MMs or 

HMMs, separate class-specific models are trained using data from experts and novices. A 

test performance is then compared with each class-specific model by using a distance metric. 

The test performance is assigned the class label corresponding to the model to which it is 

closer on the basis of a similarity metric, or the distance to all class-specific models is input 

to an additional classifier (e.g., SVM). Several metrics of similarity of a performance to a 

class-specific model have been described (60, 62, 63, 76, 95). By contrast, the existing 

literature on NNets for OCASE-T using time-series data is limited to a single study (55). In 

this study, a high classification accuracy (expert versus novice) using eye-gaze data was 

reported in a virtual reality simulation (93%) and in the operating room (91%).

Two methods that use time-series data for OCASE-T, namely MMs and HMMs, have been 

studied across all surgical techniques and environments (simulations, animal and cadaver 

models, and the operating room), and to assess a variety of surgical tasks. In addition, 

different types of data have been modeled using MMs and HMMs, including tool motion, 

eye gaze, and video images (Table 3). HMMs for OCASE-T are specified in several different 

ways in accordance with the data representation that was used. For example, Gaussian 

mixture models or Dirichlet processes, multinomial probability distributions, or sparse 

dictionaries of motion words may be specified to model emissions from the HMMs (54, 60, 

61, 69, 80).

The performance of HMMs for OCASE-T is sensitive to the surgical environment and type 

of data. HMMs yielded only low to moderate accuracy (29% to 71%) for skill classification 

for nasal septoplasty in the operating room (expert versus novice), using tool position, 

orientation, and velocities (54). In a cadaver model, higher sensitivity in classifying skill was 

reported when surgeons’ eye-gaze positions were used in addition to position and orientation 

of surgical tools (83% versus 73%) (56, 58). Although several studies used discrete 

representations of tool motion and other data such as manual annotations of tool–tissue 

interactions, whether such discretization translates into improved performance of time-series 

methods such as MMs or HMMs is unknown (Table 3).

The performance of MMs and HMMs for OCASE-T is also sensitive to the coordinate 

system in which the time series are embedded. For example, the position of the tool relative 

to that of the endoscopic camera in sinus surgery appeared to yield higher sensitivity than 

absolute tool position (77% versus 73%). Similar findings were reported in other studies (89, 

92), in which slightly higher skill classification accuracy was observed when features with 

relative information, such as distance between instruments, were used to train HMMs (77% 

versus 81%). Although transformations such as DCC (77) and the centroid distance function 

(94, 127) have been found to induce coordinate invariance in tool motion data, direct 

comparisons to ascertain the impact of such transformations on performance of HMMs for 

OCASE-T are lacking.
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Finally, the performance of HMMs for OCASE-T is sensitive to new surgeons (i.e., surgeons 

whose data are not used to train the HMM) (54, 63, 80). The performance of other 

algorithms based on dictionary representations of data after transformation for coordinate 

invariance may be robust to data from new surgeons (54).

5.3. Methods That Use Dictionaries or Histogram-Based Representations

Dictionaries or histogram-based representations of data for OCASE-T are used to compute 

metrics of similarity to class-specific models, or to further extract time-series representations 

or a vector of summary features. These derivative data representations are subsequently used 

as input for appropriate algorithms, for example, HMMs for time-series data and SVMs for 

vectors of similarity metrics or summary features. In a specific example, Ahmidi et al. (59) 

computed the Hellinger distance between the test-performance and class-specific histograms 

and assigned the label corresponding to the class to which the distance was lower. In another 

example, a customized metric was specified (77) to include not only similarity to a class-

specific dictionary (CSMs) of longest common substrings but also the location and length of 

the substrings. As noted above, this algorithm yielded high accuracy in classifying expert 

versus novice performances both in the operating room (54) and in the training laboratory 

(77).

Dictionary representations of video images for OCASE-T have been used to extract a time 

series of histograms (67, 69, 74) and a vector of summary features (64, 65, 67), which then 

served as input to appropriate algorithms for classification of a skill class or regression on a 

skill score. Algorithms based on a dictionary representation of video images have been used 

to predict assessments for components within OSATS-GRS with accuracies ranging from 

84% to 100% (64, 65, 67, 69, 74, 75).

6. FEEDBACK BASED ON OCASE-T

Feedback is essential for learning. In one study, verbal feedback and instruction by an expert 

surgeon led to improved retention after 1 month (134), although the effect did not persist 

after 6 months of learning (135). Feedback based on OCASE-T has been described in terms 

of summary features for OCASE-T, assessment of errors in performance, or skill assessment 

within low-level activity segments. However, the effectiveness of feedback based on targeted 

assessment of activity segments of interest has yet to be determined.

Several studies have suggested that summary features used for OCASE-T can also serve as 

feedback for learning. Rosen et al. (61) reported descriptive analyses showing differences 

between summary features of forces/torques applied on the surgical tool by expert and 

novice surgeons. On the basis of the observed differences, Rosen et al. proposed that 

features used as input to MMs evaluated in the study may serve as feedback for skill 

acquisition (61). In a second study, Rhienmora et al. (91) developed automated feedback 

based on the magnitude and direction of forces applied on instruments in different segments 

of the task. The automated feedback generated in this study was optimized using data from 

expert surgeons performing the task. In addition, Rhienmora et al. asked expert surgeons to 

rate the acceptability of feedback generated from observations regarding forces applied on 

tools during tooth preparation for crown replacement (91). The resulting acceptability 
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scores, with an average of 4.15 on a Likert scale of 1 to 5, suggest high face and content 

validity of the feedback generated through OCASE-T. Finally, hand-engineered features that 

were differently distributed for expert and novice surgeons were proposed as feedback for 

skill acquisition (54). Evaluation of the effectiveness of feedback based on summary features 

for skill acquisition is limited and remains inadequate.

A single study proposed feedback based on detection of errors in performance (i.e., 

diagnosis of skill deficits) using OCASE-T. Islam et al. (75) used simple computer vision 

techniques such as object detection to identify errors in different tasks within the 

Fundamentals of Laparoscopy (FLS) curriculum. They used object detection algorithms to 

determine the number of missed attempts for the peg transfer task, assess deviation of a 

Penrose drain from its original position for an intracorporeal suturing task, and perform 

image processing such as smoothing and Hough transformation to assess imperfection in 

cutting a circle for a shape-cutting task (75). However, the effectiveness of feedback based 

on errors in performance detected using OCASE-T has not been ascertained.

The final approach for providing feedback based on OCASE-T involves targeted 

assessments for activity segments of interest. This approach provides feedback by localizing 

skill deficits to specific areas of a task. Ahmidi et al. (77) used DCC, which preserves 

geometry of motion, to discretize tool motion data, demonstrating an accuracy of 70–98% in 

classifying skill for individual gestures as expert, intermediate, or novice. Reiley et al. (76), 

by contrast, discretized tool motion data using K-means and attempted a similar three-class 

skill classification. They reported sensitivities of 75%, 59%, and 76% to classify gestures 

performed by expert, intermediate, and novice surgeons, respectively. Finally, Vedula et al. 

(85) used summary features computed using tool motion data to illustrate their utility to 

classify skill for tasks, maneuvers, and gestures. They reported similar area under the 

receiver operating characteristic curves (AUROCs) to classify skills into expert or novice 

using maneuver-level (0.78) and task-level (0.79) features, and a lower AUROC (0.7) using 

gesture-level features. The differences were not statistically significant. Furthermore, 

OCASE-T for segments within a task may be extrapolated to task-level skill assessment. 

Malpani et al. (81, 82) used summary features computed from tool motion data to train a 

SVM to determine which among a pair of maneuvers was better performed. The pairwise 

preferences were used to rank maneuvers, compute a percentile score for each maneuver, 

and use linear regression to map maneuver-level percentile scores to task-level OSATS-

GRS; the authors reported a moderate (0.47) correlation between the two scores.

7. CONCLUSIONS

Assessment and feedback play a central role in training skillful and competent surgeons. Our 

survey of the literature indicates that technology is now available to enable methods for 

OCASE-T that can supplant traditional, subjective, resource-intensive training and 

assessment methods. However, the field is by no means mature. Although several promising 

methods for OCASE-T have been developed, their comparability, generalizability, 

application in real-world settings, validity against patient outcomes, and effectiveness for 

surgical skills training remain largely unexplored.
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Additional research in this area can have a major impact on surgical training and 

maintenance of surgical skill. Successful development of OCASE-T technologies can 

potentially transform technical skill training through uniform objective assessment and 

individualized, targeted feedback for automated coaching. Furthermore, such automation 

would ensure efficient access to individualized and lifelong coaching to support surgeons’ 

continuous improvement during both training and practice. Widespread availability of 

technology for OCASE-T could also minimize disparities in technical skill and, 

consequently, access to high-quality surgical care.

There are challenges that must be addressed for OCASE-T to achieve this vision. First, a 

large number of stakeholders with diverse interests are involved in surgical training and care. 

Research on OCASE-T should be carefully designed to align with the interests of these 

stakeholders and to demonstrate the value of OCASE-T. Second, funding and regulatory 

agencies must allocate resources to enable the development of integrated data capture 

systems and valid analytics, which are sufficiently mature to incorporate into training and 

certification. Third, OCASE-T should be adopted as an integral component of assessment 

during training and a resource to support continuous improvement throughout the duration 

of surgeons’ professional practice.

Looking ahead, technology development for OCASE-T should be targeted toward high-

value contexts, identified by surgical educators, where there are few barriers on the path 

from data collection to deployment within training curricula. For example, developing 

technology for OCASE-T for the FLS curriculum or robotics surgery, where data collection 

is easily accomplished; creating a robust competency assessment; and validating it in multi-

institutional studies could have a considerable impact on graduate surgical education. 

However, such progress will be possible only if surgeons and engineers join forces to 

develop valid, relevant technology that will be readily adopted, and if funding agencies 

actively support such cross-disciplinary, translational research.
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SUMMARY POINTS

1. The availability of data and the need for efficient surgical training provide a 

unique opportunity for OCASE-T to augment surgical education.

2. Major research goals for OCASE-T include developing technology for data 

capture in the surgical environment; techniques for transforming the data; and 

algorithms to assess skill and enable automated coaching/feedback through 

diagnosis of skill deficits, targeted assessments, or both.

3. Algorithms for OCASE-T have been developed mostly for benchtop and 

virtual reality simulation settings; research in the operating room has been 

limited to only two studies.

4. Existing methods for OCASE-T have produced promising results, but the 

approaches are highly varied. Establishing a consensus on the best approaches 

to OCASE-T will require additional replication and validation in large 

multicenter studies.

5. Algorithms for OCASE-T have focused only on technical skill and not on 

competency. The effectiveness of feedback based on OCASE-T for skill 

acquisition remains to be ascertained.
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FUTURE ISSUES

1. Algorithms for OCASE-T should focus on high-stakes assessment, such as 

technical competency.

2. OCASE-T should emphasize assessment of learning curves in the training 

laboratory and in the operating room for integration into graduate surgical 

education.

3. Large, curated, open access data sets must be compiled for rapid development 

and comparative evaluation of algorithms for OCASE-T.

4. Systematic assessment of validity should be built into the development of 

algorithms for OCASE-T, potentially using consistent evaluation measures.
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Figure 1. 
Timelines showing major advances in surgical technique, education, and technical skill 

assessment. Major innovations in surgical technique are illustrated on the inside of the arc on 

the left. Landmarks in graduate surgical education in the United States are shown on the 

outside of the arc. Abbreviations: ACGME, Accreditation Council for Graduate Medical 

Education; NOTES, natural orifice transluminal endoscopic surgery; OSATS, objective 

structured assessment of technical skills.
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Figure 2. 
Research questions for objective computer-aided skill evaluation (OCASE-T).
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Figure 3. 
Data for objective computer-aided skill evaluation (OCASE-T) to support continuous 

improvement in surgical skill and patient care.
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Table 2

Types of raw data captured in different surgical environments for objective computer-aided technical skill 

evaluation (OCASE-T)

Type of raw data Benchtop simulation Virtual reality simulation
Cadaver and 
animal models Operating room

Surgical tools or surgeons’ hands using 
sensors

(66, 68, 70–72, 76–85, 88) (89–97) (56–62) (54)

Surgical tools or surgeons’ hands in 
video images

(63) No data No data No data

Surgeons: eye gaze, stress, fatigue, 
posture, movement

(73) (55) (56, 58) (55)

Surgical field: extent of tissue 
manipulation

(46, 87) No data No data No data

Surgical field: video images (64, 65, 67, 69, 74, 75) No data No data No data

Patients: disease severity, co-
morbidities, anatomical complexities, 
physiological status, medications, 
outcomes of surgical intervention

Not applicable Not applicable Not applicable No data

Operating room: environmental 
factors, other personnel

Not applicable Not applicable No data No data
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