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Abstract

Reusing ontologies and their terms is a principle and best practice that most ontology development 

methodologies strongly encourage. Reuse comes with the promise to support the semantic 

interoperability and to reduce engineering costs. In this paper, we present a descriptive study of the 

current extent of term reuse and overlap among biomedical ontologies. We use the corpus of 

biomedical ontologies stored in the BioPortal repository, and analyze different types of reuse and 

overlap constructs. While we find an approximate term overlap between 25–31%, the term reuse is 

only <9%, with most ontologies reusing fewer than 5% of their terms from a small set of popular 

ontologies. Clustering analysis shows that the terms reused by a common set of ontologies have 

>90% semantic similarity, hinting that ontology developers tend to reuse terms that are sibling or 

parent–child nodes. We validate this finding by analysing the logs generated from a Protégé plugin 

that enables developers to reuse terms from BioPortal. We find most reuse constructs were 2-level 

subtrees on the higher levels of the class hierarchy. We developed a Web application that visualizes 

reuse dependencies and overlap among ontologies, and that proposes similar terms from BioPortal 

for a term of interest. We also identified a set of error patterns that indicate that ontology 

developers did intend to reuse terms from other ontologies, but that they were using different and 

sometimes incorrect representations. Our results stipulate the need for semi-automated tools that 

augment term reuse in the ontology engineering process through personalized recommendations.
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1. Reuse in biomedical ontologies

The biomedical research community has been one of the earliest adopters of ontologies to 

tackle the challenges of efficient knowledge organization, optimized information retrieval 

and effective annotation of datasets. Researchers have used ontologies for various purposes 

such as knowledge management, semantic search, data annotation, data integration, 
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exchange, decision support and reasoning [1,2]. For example, i) the National Cancer 

Institute Thesaurus (NCIT) has been used as a reference terminology for cancer data [3], ii) 
the Gene Ontology (GO) has been ubiquitously used for enrichment analysis on gene sets 

obtained from microarray experiments [4], and iii) the Systematized Nomenclature of 

Medicine-Clinical Terms (SNOMED CT) has been used for the electronic exchange of 

clinical health information [5].

Over the years, ontology development has become a reuse-centric process [6,7]. All 

methodologies strongly encourage reuse while building new ontologies, be it at the level of 

an ontology, or at the level of individual terms [8,9]. In the literature, we may find two areas 

that benefit from reuse: i) ontology engineering, in which experts can reuse already existing 

ontology structures, and thus reduce the engineering costs; and ii) ontology application, in 

which reuse supports the semantic interoperability among different datasets and 

applications. For example, the 11th revision of the International Classification of Diseases 

(ICD-11) reuses terms from SNOMED CT to support its use in electronic health records 

[10,11]; while federated search engines benefit from reuse by being able to query multiple, 

heterogeneous knowledge sources without the need for extensive ontology alignment [12].

Several large, collaborative efforts are trying to streamline the development of interoperable, 

logically well-formed and accurate biomedical ontologies. They deal with ontological term 

overlap and reuse in different ways. For example, one of the key aims of the Open 

Biological and Biomedical Ontologies (OBO) Foundry [13] is to create a set of orthogonal 
ontologies by: i) defining each term in exactly one ontology, and referring it in other 

ontologies using its Internationalised Resource Identifier (IRI), or ii) using the xref 
mechanism to create references between similar terms in different ontologies [14]. Another 

prominent example is the Unified Medical Language System–UMLS [15], which uses the 

notion of a Concept Unique Identifier (CUI) to map terms with similar meaning in different 

terminologies a posteriori. Figure 1 shows examples for the different types of reuse (IRI, 

CUI and xref) employed by various ontology development projects.

For the purpose of this work, we define a term to be a class in an ontology. A term usually 

has a preferred label, other labels, synonyms, and other properties. We define as term reuse 
the situation in which the same term is present in two or more ontologies either by the direct 

use of the same IRI, or via explicit references (xref) and mappings (CUI). We further 

classify the reuse: (1) reuse of an ontology, through the means of the import mechanism 

available in OWL [16], meaning that the entire source ontology is imported into the target 

ontology; and (2) reuse of terms from one source ontology into another. In many cases, 

experts reuse not only one term from one ontology, but rather subsets of terms from multiple 

ontologies (e.g., subtrees). We define as term overlap the situation in which two terms are 

similar, when compared using their labels or synonyms. If we subtract from the set of all 

overlap terms the reused ones (term overlap–term reuse), we will get a set of terms that 

could have been reused potentially, but have not been in practice. We call this set the 

overlap–reuse gap. Ideally, we should try to minimize this gap.
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For this research, we use the entire set of biomedical ontologies stored in BioPortal [17], an 

open content repository of biomedical ontologies and terminologies. The key contributions 

of this research can be described as follows:

1. We provide a systematic study of the current state of reuse and overlap across 

biomedical ontologies.

2. We propose and implement a new approach to determine term overlap across 

ontologies using composite mappings.

3. We develop a clustering method to help identify patterns of reuse using semantic 

similarity among ontology terms, and validate the results using the BioPortal 

Import Plugin logs.

4. We implement a Web application that can search for similar and reused terms in 

Bioportal ontologies, and that can visualize reuse dependencies and overlap 

among ontologies.

5. We discuss the state and challenges of reuse in biomedical ontologies.

All results of this paper, as well as all developed visualization tools, are available online at: 

http://onto-apps.stanford.edu.

The paper is structured as follows: Section 2 describes the related work to this research. 

Section 3 presents the methods that we used for our descriptive study. Section 4 details the 

results of applying the research methods, and then we discuss our findings in Section 5.

2. Related Work

2.1. Benefits and challenges of reuse

Ontology reuse is recommended in the methodologies and guidelines outlined by several 

engineering groups as a means to develop modular, interoperable, accurate and cost-effective 

ontologies [6,18,19]. Bontas et al. [20] provide several realworld use cases for the benefits of 

ontology reuse in biomedicine and eRecruitment. By empirically analyzing methodologies, 

methods and tools currently used, Simperl et al. [7] identify the research and development 

challenges for ontological knowledge reuse to become a feasible alternative to other 

ontology-development strategies. In essence, reuse can be increased through the 

development of pragmatic methods and semi-automated tools that optimally exploit human 

and computational intelligence for reusing ontologies through a context- and task-sensitive 

approach [7]. Ontology modularisation techniques (i.e., extracting parts of an ontology using 

some structural or logical properties) are also an important factor in supporting reuse. 

Researchers have undertaken comprehensive studies of existing modularization techniques 

[21,22].

2.2. Tools to support reuse

There are only a few tools that support term reuse in biomedical ontologies. OntoFox [23] is 

a Web-based application that allows users to retrieve terms, selected properties, and 

annotations from the source ontologies, using MIREOT principles [24]. The BioPortal 

Import Plugin [25,26] is an extension of the Protégé ontology editor [27] that allows the 
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importation of terms, their properties and class subtrees from BioPortal ontologies. The 

MIREOT Protégé Plugin [28] and DOG4DAG [29] are also Protégé plugins that provide 

term importations from external ontologies. ProtégéLov [30] allows reuse of terms from the 

Linked Open Vocabularies repository [31] using owl:equivalentClass and 

rdf:subClassOf axioms. All these tools require the users to have prior knowledge of the 

ontologies where their desired term of interest exists.

2.3. Previous analyses of reuse and overlap

Matentzoglu et al. [32] provide a method to analyze the overlap between automatically-

downloaded OWL ontologies from the Web. Ontologies with 90% overlap or containment 

relations were considered similar. Poveda et al. [33] analyzed the landscape of reuse in the 

ontologies referenced in Linked Open Data (LOD). The results indicate that over 40% of the 

terms are reused from other vocabularies, 67% of which are reused by imports, and the rest 

by referencing the term IRI.

In 2010, a systematic analysis of the member and candidate ontologies in the OBO Foundry 

indicated that the OBO Foundry had made significant progress over a period of two years 

towards the goal of orthogonality [34]. However, term overlap — percentage of similar 

terms between the OBO Foundry ontologies, also increased [34].

Five years later, we conducted a study [35] to investigate the level of reuse across all the 

biomedical ontologies stored in BioPortal [17]. Both these studies carried out simple lexical 

comparisons of the term labels to determine term overlap. Even though effective, this naive 

method tends to leave out terms that represent the same concept but have lexically–different 

term labels (e.g., “Cardiac Muscle” and “Myocardium”). For the three types of reuse 

observed in the biomedical domain (IRI, xref and CUI, Figure 1), we estimated term reuse 

using a simple metric (Equation 1).

(1)

We found term reuse to be 3.1%, 3.9% and 4.1% for the three reuse types respectively, 

whereas, we found a term overlap of 14.4%. We also found that most ontologies reuse less 

than 5% of their terms. These terms are reused from a small set of popular ontologies only. 

We presented some use cases, in which the developers reused terms with different, and 

often, incorrect representations.

In this paper, we will extend this research by providing a new approach to determine term 

overlap, a better metric to estimate term overlap and reuse, and a deeper understanding of 

how ontology developers reuse terms.

3. Methods

For our descriptive study, we employed several methods that aim to: (i) estimate the level of 

term reuse and term overlap across biomedical ontologies, (ii) extract reuse patterns from 
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BioPortal ontologies, and (iii) extract reuse patterns from time-stamped BioPortal Import 

Plugin logs. These methods are inspired from text mining, graph theory and unsupervised 

learning. We make the results available through interactive visualizations and a search 

application (http://onto-apps.stanford.edu). Figure 2 describes the workflow of our 

methodology and the methods used stepwise. The structure of this section follows the 

numbered steps of the workflow.

3.1. Datasets

We used two datasets for our study: (i) a dump of BioPortal ontologies to analyse term reuse 

(Step 2) and overlap (Step 3), as well as to perform the clustering (Step 4); and (ii) the logs 

of the BioPortal Import Plugin to analyze the patterns of reuse in user ontologies (Step 5).

3.1.1. BioPortal ontologies—We obtained a triplestore dump of the BioPortal ontologies 

in N-triples format that contained 509 distinct ontologies as of January 1, 2015. This dump 

did not contain some ontologies that were deprecated or merged with existing ontologies, or 

added to BioPortal after January 1, 2015. After removing ontological views (i.e. ), 

we were left with 377 distinct biomedical ontologies (Figure 2, Step 1). These ontologies 

include 8 OBO Foundry member ontologies (GO, CHEBI, PATO, OBI, ZFA, XAO, PR and 

PO), 105 OBO Foundry candidate ontologies (e.g., OGMS, HP) and 31 UMLS 

Terminologies (e.g., SNOMED CT, ICD-9).

3.1.2. BioPortal Import Plugin logs—The BioPortal Import Plugin, an extension to the 

Protege ontology editor, allows users to import terms and sub-trees from BioPortal 

ontologies into their own ontology [25,26]. The plugin invokes the BioPortal REST API to 

search the BioPortal ontologies, and also to import terms.

We obtained the logs of REST calls that the plugin made to BioPortal. The logs are time and 

IP-stamped, and span the period from 26th September, 2011 – 14th May, 2013 (~20 months). 

Listing 1 shows an excerpt of these logs.

Even though we did not have access to the user ontologies into which these imports were 

performed, these logs were an important source of information of terms that were reused 

together in user ontologies. We used these logs to identify patterns of reuse (Figure 2, Step 

5).

3.2. Identifying Term Reuse

For the purpose of this work, we define as term reuse the situation in which the same term 

is present in two or more ontologies, either by the direct use of the same IRI, via explicit 

xref references, or via CUI mappings.

To identify term reuse (Figure 2, Step 2), we used the BioPortal corpus (Section 3.1.1), and 

defined three reuse constructs:

1. IRI – two terms share the same IRI,

2. xref – two terms are linked through the xref annotation [14], and
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3. CUI – two terms are mapped to the same UMLS CUI.

We iterated over all the axioms in each of the 377 BioPortal ontologies to extract class term 

IRIs, their labels, synonyms, xref links and UMLS CUI mappings, when available. From the 

5,718,275 class terms, we used the three constructs (same IRI, xref annotation, and CUI 

mapping) to extract the set of terms that satisfy any of the three reuse criteria (Figure 1). For 

the first two reuse types (IRI and xref),1 we identified the source ontology for each term 

using a heuristic approach described previously [35]. For each ontology, we calculated:

1. The percentage of terms reused using the first two constructs from other 

ontologies (IRI and xref),

2. The total number of ontologies reused from,

3. The percentage of terms reused by other ontologies,

4. The total number of other ontologies reusing terms,

5. CUI-mapped terms among other ontologies,

6. Reuse among all distinct pairs of ontologies.

Using these metrics, we determined those ontologies that reused the maximum number 

terms from other ontologies, and also those ontologies whose terms were reused the most.

We generated a graph , where the terms identified through IRIs represent nodes (Figure 

3a). The number of ontologies in which the term is reused is represented as an attribute of 

each node. An xref annotation is shown as a unidirectional arrow, whereas all terms mapped 

to the same CUI are interlinked with each other using bidirectional arrows. A component of 

a graph is a subgraph in which any two nodes (terms) are connected to each other by paths, 

and the subgraph is connected to no additional node in the main graph. Due to the nature of 

these ontological terms (generally distinct for a given ontology), we produced a graph 

composed of different, disjoint components (e.g., ,  and  are different components in 

Figure 3a). This graph can be divided based on the type of the edges, and thus yields three 

modules corresponding to our three reuse constructs:

IRI reuse module – the graph module containing only IRI edges (an undirected edge 

links two terms with same IRI),

xref reuse module – the graph module containing only xref edges (a directed edge 

links the source term and the referenced term via xref), and

CUI reuse module – the graph module containing only CUI edges (an edge links two 

terms that are mapped to the same CUI).

For each reuse module, we calculated the term reuse across all biomedical ontologies using 

the equation given below, where N represents the total number of terms extracted (5, 718, 

275), ℳr is a reuse module, composed of k components . Each component 

 is formed from nj terms, i.e. . The number of terms in a component 

Tj must follow 1 < nj < N (i.e., components with a single term are not allowed). All terms in 

1UMLS CUI reuse was excluded, as we could not identify the source ontology for a CUI.

Kamdar et al. Page 6

Semant Web. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one component are reused forms for the same term. We calculate term reuse for each of the 

three different reuse modules:

(2)

The above equation serves as a better metric to estimate term reuse as compared to the 

previous metric (Equation 1). The equation calculates the percentage of terms in BioPortal 

that are not unique, but are reused, unlike the previous metric, which did not include the 

count of reused versions of a term.

3.3. Detecting Term Overlap through composite mappings

For the purpose of this work, we define term overlap as the situation in which two terms are 

similar, when compared using their labels or synonyms. To detect term overlap (Figure 2, 

Step 3), we use the BioPortal corpus (described in Section 3.1.1).

In our initial approach [35], we normalized the term labels by converting them to lowercase 

and then removing all non-alphanumeric characters. We performed naïve string matching to 

determine the potential term overlap. However, we realized that the terms with labels such as 

“Cardiac Muscle”, “Heart Muscle”, “Muscle of Heart” and “Myocardium” 

would be treated as separate terms in this approach, when these terms are the same and 

should be treated as term overlap.

To overcome this limitation, we considered using composite mappings in the current 

approach. Given a mapping from A → B and from B → C, where terms , 

and  and , ,  are different ontologies, a mapping from A → C is called a 

composite mapping [36]. This approach, which leverages transitivity of terms, has been used 

in the past to match unstructured vocabularies using a background ontology, where  is a 

background ontology [37]. An example of such a composite mapping is shown in the table 

below.

We extended this notion to generate graphs of such composite mappings (ℳ) between 

different terms across all BioPortal ontologies, without predefining any particular ontology 

as a background ontology. We extracted preferred labels (ℒ), exact synonyms , related 

synonyms , and other synonyms  from the sources listed in Table 2.

We normalized the labels and synonyms, by first removing a set of 126 common English 

stop words (e.g. “of”), and then converting them to count vectors. We calculated cosine 

similarities between each pair of these string vectors and established a mapping, if the 

similarity was > 95%. Due to the size and relative reduced importance of , we also 

considered bi-gram phrases of words in similarity calculations.

We generated 5 different overlap modules from different combinations of composite 

mappings:
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1.

2.

3.

4.

5.

The  overlap module contains only the mappings performed using the properties from 

the ℒ set defined in Table 2 (that is, skos:prefLabel, rdfs:label, dc:title). The 

 overlap module includes besides the label–label mappings, also the label–exact 
synonym and exact synonym–exact synonym mappings.

The final  overlap module contains all the composite mappings in ℳ. We removed the 

edges that were present in the three reuse modules from  (i.e., overlapping terms that 

were already reused), to find the overlap–reuse gap. This new module is called 

, where {Reuse} = {IRI} ∪ {xref} ∪ {CUI}. The  overlap 

module and  module are shown in Figure 3b and c.

In the next step, we identified those terms that had the same source ontology and identifier, 

but a different IRI representation, and no explicit mappings (e.g., OBO:owlapi/

fma#FMA_31396 was used instead of OBO:FMA_31396). Such situations show that ontology 

developers intended to reuse a term, but they used different, and sometimes incorrect term 

representations. These situations do not represent actual reuse, and we marked such cases as 

intent for reuse (Section 5). We removed any interconnecting edges between terms that show 

an intent for reuse in  to generate the final module 

.

We calculated term overlap for each overlap module using the metric described in Equation 

2, where all nodes (terms tij) in  (connected component of composite mappings) of the 

overlap module ℳo can be considered singular (Figure 3).

For each the five overlap modules, we conducted an empirical analysis on the composition 

of the term labels of 100 randomly selected components to determine the threshold of the 

maximum distance (mapping hops) between two leaf nodes, for which any component 

can be considered to be ‘pure’ (i.e., contains terms that can still be considered similar). We 

identified the maximum distance (i.e., mapping hops) for which the components are still 

‘pure’ to lie between [8,10], depending on the overlap module.

We called the components that have mappings exceeding the maximum distance Hybrid 
Components. These components are “hybrid” because they contain terms that are likely not 

similar to each other, usually because of a faulty mapping. In essence, the hybrid 

components can also be broken down into smaller components that are joined by one 

incorrect edge caused by a faulty mapping. Term nodes in these smaller components may be 

similar to each other. In the example from Table 3, term t3 has a faulty synonym 
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Intercalated disk that links two smaller, relevant components  and  creating a 

hybrid component .

We calculated another term overlap estimate, which we called Non-hybrid Term Overlap, by 

excluding hybrid components from consideration in our metric. By excluding hybrid 

components altogether from this estimate, we set a lower bound on our estimated term 

overlap.

3.4. Clustering to detect patterns of reuse

One goal of this work is to investigate whether the reuse within biomedical ontologies occur 

in certain patterns that can be identified algorithmically. To this end, in Step 4 of our 

workflow (Figure 2), we used a two-phase clustering approach on the IRI module that we 

defined in Section 3.1.1. As a reminder, the IRI reuse module contains only IRI edges that 

link terms that share the same IRI.

We excluded the CUI and xref reuse modules from this analysis, as CUI mappings and xref 
annotations are generally established a posteriori in the engineering process.

Using the terms in the IRI reuse module, we generated a term–ontology matrix. The rows 

contain the terms that have been reused at least once (i.e., the term appears in at least 2 

ontologies with the same IRI), and the columns contain the ontology in which the term 

appears. Whether a term exists in an ontology or not was indicated as 1 or 0 respectively, 

resulting in a very large, sparse, binary matrix.

As our term–ontology matrix X is categorical (n terms, m ontologies), we used a k–modes 
algorithm [38] over 100 simulations with different k to partition the terms into large, disjoint 

clusters (k). The initial step is similar to the the k–means algorithm, where k unique terms 

are selected as cluster centroids Z = {Z1, Z2,…, Zk}. k–modes algorithm assigns a term Xi to 

a cluster whose centroid Zl has the minimum distance d(Xi, Zl) to it. δ(xj, zj) checks if the 

term and the cluster centroid are present/absent together for one ontology . 

After each term is assigned to a cluster, new centroids are generated for each cluster based 

on the modes of values for each ontology  (i.e. if more terms in a cluster Zl are present in 

 then zl,j = 1). Until the cluster centroids are stable, we iterated over these steps. Over 100 

simulations, the value of k is chosen with a desirable measure of cluster compactness 

(minimum spread of each cluster) and separation (maximum distance between cluster 

centroids).

(3)

(4)
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For each pair of terms in each cluster, we computed a similarity score as follows:

(5)

In the equation above,  indicates the set of common ontologies between terms A 

and B. , and  indicates the set of common super terms of 

A and B.

As can be seen, the similarity measure is a weighted distribution of common ontologies and 

Jaccard semantic similarity. ω1 > ω2, as we want to discern how ontology developers reused 

terms based on the set of ontologies in which these terms co-occur. We consider the 

proportion of shared terms, to reduce the impact of owl:Thing and other upper-level 

ontology terms which would be reused in many ontologies.

We generated a term–term affinity matrix A, where Aij ≥ 0 represents the similarity between 

the terms i and j. We used Spectral Clustering [39] over this matrix to further partition each 

large cluster. This method uses the largest eigenvectors of the similarity matrix to perform 

dimensionality reduction before using k–means clustering in the fewer dimensions. We 

performed 100 simulations with different values of ω1 and ω2 to isolate sub-clusters that are 

composed of terms from one source ontology only. Based on the current state of tools that 

support reuse, as well as the mental processing of the ontology developers, terms or groups 

of terms reused together in one session originate from the same source ontology.

3.5. Analyzing BioPortal Import Plugin Logs

In step 5 of our workflow (Figure 2), we analyzed the logs generated by the BioPortal 

Import plugin (see Section 3.1.2). We used this analysis for two purposes: (1) to gain 

knowledge on other reuse patterns that occur in user ontologies, and (2) to validate whether 

the insights generated from our clustering analysis are accurate.

The entries in the BioPortal logs are generated as the user does certain operations in the user 

interface of the plugin. For example, if the user searches for a term in a BioPortal ontology 

using the plugin, the log will record a line corresponding to the search REST call made to 

BioPortal (see Listing 1). An import operation in the plugin would trigger other REST calls.

As we do not have access to the user ontologies into which the BioPortal terms have been 

imported, the only sources we have are the time- and IP-stamped BioPortal call logs. 

Therefore, we had to reverse-engineer these logs to find out the actions that the users have 

taken in the user interface, and to identify which BioPortal terms are being reused (i.e., 

imported) together.

We documented the algorithm we used to reverse-engineer the logs in the additional online 

materials (http://onto-apps.stanford.edu).
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As a result of running the reverse-engineering algorithm on BioPortal logs, we obtained term 

sets that have been reused (i.e., imported) together in user ontologies. Then, we mapped the 

extracted terms to existing terms in the current version of the source BioPortal ontology to 

find the overall depth of tree imports and the location of these terms and subtrees. We used 

this information as an additional source of reuse patterns, and also to validate the hypotheses 

made from clustering analysis (Section 3.4).

4. Results

We now present the results of each of the methods that compose our workflow (Figure 2), 

described previously in Section 3.

4.1. Reuse

Previously, we found that most ontologies reuse less than 5% of the total terms in their 

current versions, using either the same IRI or through xref annotations [35]. Out of 377 

BioPortal ontologies, 156 did not reuse any term using the IRI construct, and 315 did not 

reuse through xref. Moreover, ontologies reused terms from a small set of popular ontologies 

only. More than 250 ontologies have no terms reused. Figure 4 shows histograms of the 

percentage of terms that are reused by other ontologies. We also observed that there are 20 

ontologies that exhibit reuse between 95% to 100% of their total terms. These ontologies are 

developed by reusing combinations of multiple ontologies (e.g., CCONT reuses terms from 

EFO, NCBITAXON, ORDO, and 19 other ontologies).

Using our CUI construct, we found: i) popular UMLS terminologies such as ICD10CM 

(ICD10 -Clinical Modification), LOINC (Logical Observation Identifiers Names and 

Codes), HL7 (Health Level Seven Reference Implementation Model, Version 3) and MESH 

(Medical Subject Headings) to be composed primarily of unshared, unique terms, ii) 
procedural terminologies such as HCPCS (Healthcare Common Procedure Coding System), 

CPT (Current Procedural Terminology) and ICD10PCS (ICD10 – Procedure Coding 

System) have very few terms mapped to the same CUI, and iii) Several new terms were 

introduced in ICD10CM during the migration from ICD9CM, potentially impacting reuse 

[35].

The 16 ontologies whose terms are reused the most from the first 2 constructs (IRI and xref) 
are shown in Figure 5. The plot indicates the number of ontologies (#) that reuse terms from 

a given ontology as dots, and the percentage of terms (%) that are reused with respect to the 

number of terms in their current version as bars. For example, 95.2% of the total terms in the 

current version of GO are reused using the same IRI by 74 ontologies. Also, 3.7% of the 

total GO terms are xref-linked in 37 ontologies.

It is easily noticeable that most of these are popular or upper-level ontologies, some of 

which have more than 100% of their terms reused (e.g., we found 101 different versions of 

Basic Formal Ontology – BFO IRIs, whereas the current version only has 39 terms). As we 

have discussed [35], this anomaly is due to the fact that ontology developers tend to reuse 

terms with different versions, notations, or namespaces, that are sometimes incorrect and 
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have no explicit mappings to the original term. We do not consider this case as reuse, but 

rather an intent for reuse, and we discuss it in Section 5.

Using the updated metric described in Section 3.2, we found term reuse to be 6.63% for the 

IRI reuse module, 5.98% for the xref reuse module, and 8.39% for the CUI reuse module.

4.2. Overlap

4.2.1. Term Overlap—In our previous work [35], we determined term overlap using a 

naive approach. We found a total of 2, 023, 854 terms sharing 752, 177 unique labels across 

the BioPortal ontologies. Using the new metrics described in Section 3.3, we can calculate 

this naive term overlap to be 22.23%. In addition, the new metrics allowed us to compute 

more precise overlap statistics that we show in Table 4.

The  module is the most similar to our previous naive term overlap method, as this 

module contains only mappings ∀m ∈ ℒℒ (label–label mappings). However, there is a 

substantial increase in the level of the term overlap from 22.23% to 25.37% (non-hybrid 

term overlap).

Once we include also the other types of mappings using synonyms (rows 2–6 in Table 4), the 

term overlap gradually increases all the way up to 32.75%, although the number of hybrid 

components also increases. It is noteworthy to see that the non-hybrid term overlap is almost 

similar to the term overlap of  module (≈25%).

Rows 6 and 7 in Table 4 show that after removing all the three reuse modules (cf. Section 

3.3), the term overlap decreases—the range is (18.21%, 21.62%). On evaluating the 

, we find that the term overlap drops down to (13.21%, 16.57%). 

Obviously, this term overlap statistic captures only the intent for reuse rather than actual 

reuse.

4.2.2. Ontology Overlap—As a next step, we investigate how the term overlap reflects on 

ontology overlap. Therefore, we mapped the nodes in the  module to their 

respective ontologies, and created an edge between all the pairs of ontologies, if there 

existed an edge between the nodes (i.e., ∀e = (n1, n2), s.t. , 

, ). After removing all the terms and 

aggregating all edges between two ontology nodes to a single edge with a weight w = Σe, we 

have an undirected ontological overlap graph with edges depicting the term overlap between 

two ontologies.

We generated a directed sub-graph (Figure 6) between those ontologies that have more than 

30% term overlap with respect to any one of the connected ontologies. Note that, for 

simplicity, Figure 6 only includes the OBO Foundry member and candidate ontologies (blue 

squares), UMLS terminologies (red circles), and a few popular ontologies in BioPortal 

(green octagons). If we were to include all the ontologies in this graph, it would have created 

an indecipherable visualization. The interactive visualization is available in the online 

materials (http://onto-apps.stanford.edu).
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Figure 6 shows that there is substantial overlap among ontologies generated independently 

through the OBO Foundry and UMLS methodologies. The overlap between BFO and the 

OBO Foundry candidate ontologies is caused by the fact that the candidate ontologies 

import BFO as their upper-level ontology, but they use different (incorrect) IRI 

representations. It is also noteworthy to see that the UMLS terminologies for adverse events, 

namely World Health Organization Adverse Reaction Terminology (WHO-ART), Coding 

Symbols for a Thesaurus of Adverse Reaction Terms (COSTART), and the Medical 

Dictionary for Regulatory Activities (MEDDRA), have substantial term overlap. The lower 

region of the graph shows several anatomical ontologies (CARO, UBERON, XAO, TAO, 

FMA, MA, TGMA, etc.), in which term overlap is obvious (similar anatomical features), but 

is debatable—most terms represent anatomical parts that may not be necessarily equivalent, 

as they belong in different organisms. Finally, the top-right corner shows the overlap 

between the RxNorm Vocabulary and the Drug Ontology (DRON). These results and the 

intent for reuse are described in detail in Section 5.

4.3. Clustering

The first step of our two-phase clustering approach was to use a k-modes algorithm over 

simulations for k = 2 → 100. We computed cluster compactness and separation by 

computing the cosine distance between the set of ontologies in one cluster against another. 

The desired cluster compactness and separation value was found to be at k = 6, after which 

we would have overlapping clusters, or clusters with single terms.

The primary ontological composition of the clusters was determined from the ontologies 

common among terms in a cluster, and is shown in Table 5. It should be noted that IRI reuse 

was rarely found in UMLS terminologies with the exception of NCBITAXON, NCIT, and 

SNOMED CT. The primary ontological composition of the terms in the large clusters either 

consists of: i) ontologies that frequently reuse terms from one major source ontology (e.g. 

CHEBI, GO, NCIT, DOID) in that cluster, or ii) one main ontology that reuses terms from 

multiple other ontologies and exhibits >90% reuse, e.g. CCONT.

We computed an affinity matrix among all pairs of terms in a given cluster using weights ω1 

= 0.85, ω2= 0.15. These values were again generated after a set of 100 simulations, so that 

most of these sub-clusters are generally composed of individual source ontologies.

After executing spectral clustering using the affinity matrix, we divided all the term pairs in 

each sub-cluster in 2 bins, based on their Jaccard semantic similarity measure (<0.9 in Bin 1, 

and >0.9 in Bin 2). We plotted the proportion of term pairs in each bin for each cluster. 

Cluster 4 is shown in Figure 7. In Cluster 4, a larger proportion of term pairs in any given 

sub-cluster have a semantic similarity in the range of (0.9–1.0) (> 70%), indicating that these 

are either sibling terms or one term is the direct superclass of another. Generally, we found 

this to be the case for all the large clusters of the first kind. This finding likely indicates that 

ontology developers reusing terms from one main source ontology tend to reuse hierarchical 

subtrees mainly composed of terms with parent–child or sibling relations. This was less 

evident in the second kind of the large clusters where the proportion ranged between 30–

60% of term pairs.
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We mapped these sub-clusters to their location in the source ontology. We found that most of 

these 2-level substructures are located in the higher or upper-middle levels of the ontology. 

Hence, developers reuse terms from the higher levels in the ontological hierarchy of a small 

set of popular ontologies, and seldom reuse leaf nodes.

4.4. BioPortal Import Plugin Log Analysis

We found a total of 3,538 distinct IP addresses originating from 90 different countries, from 

which ontology developers used the BioPortal Import Plugin to search and reuse terms from 

BioPortal ontologies. We were able to isolate 5,755 individual terms and 2,139 ontological 

subtrees imported from 40 different ontologies in 516 distinct sessions. For an IP address, a 

session indicates the time period that has no intermittent breaks of > 1 hour between two 

REST API calls. We found a total of 195,894 terms that users imported using the plugin. Out 

of these, we were able to map 193,601 terms to terms in the current versions of the Bio-

Portal ontologies. The remaining terms were either deprecated, or terms such as, 

owl:Thing and time#datetimedescription that do not have a designated source 

ontology.

The top 10 ontologies with the maximum number of sessions were SNOMEDCT, NCIT, 

BFO, ABA-AMB, FMA, GO, RCD, AMINO-ACID, HP and IAO, whereas with the 

maximum number of terms were in ICD10PCS, SNOMEDCT, NCIT, ICD9CM, LOINC, 

BIRNLEX, ABA-AMB, FMA, RCD and SHR.

The ontologies that were reused the most through the plugin, both by the maximum number 

of sessions or by the maximum number of terms, are shown in Figure 8. The total number of 

sessions observed, total number of single term imports, total number of structures imported, 

and total number of terms imported are shown as a bar plot. The structure of the content 

imported from each source ontology is shown across the depth of an ontology — the 

imported structures are shown as translucent blue polygon and the terms imported (either 

single or as a group) are shown as circular constructs, grouped according to the level. The 

depth of the ontology was retrieved from BioPortal repository. The width of the structure on 

each level is indicative of the number of terms imported on that level in log scale. The radius 

of the circular construct represents the total number of terms on that level. For clarity 

purposes, we have only shown 4 ontologies — FMA, ICD10PCS, NCIT and SNOMEDCT. 

The website (http://onto-apps.stanford.edu) contains interactive versions of these plots with 

16 different ontologies.

In general, we found that, on an average more people tend to reuse terms from OBO 

Foundry ontologies (higher number of sessions detected) than UMLS terminologies using 

the Bioportal Import Plugin, with the exception of NCIT and SNOMED CT. However, the 

users, who import UMLS terminologies, tend to reuse more number of terms, in the form of 

complete hierarchical structures, during a single import session.

In the cases of ICD10PCS and ICD9CM, we found that the users reuse the entire hierarchy 

of these ontologies starting from the root node, into their target ontology. We observed the 

same pattern also in the case of the BFO, but it is expected as it is an upper level ontology. In 

almost all the other cases, we found that the ontology developers simply reuse terms from 
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the higher or upper–middle levels in an ontological hierarchy, and the lower leaf nodes and 

structures are seldom reused. This reuse pattern can be seen in the FMA ontology in Figure 

8. We found the same reuse pattern in GO, CHEBI, NCBITAXON and LOINC (http://onto-

apps.stanford.edu). As is clearly evident from the SNOMED CT and NCIT, most ontology 

developers generally import 2–level sub-trees composed of parent–child and sibling terms. 

These structures are represented as triangular polygons of similar dimensions along the 

midline of the respective visualizations in Figure 8 with a higher opacity than other 

structures.

4.5. Reuse and Overlap Visualization on the Web

One of the contributions of our work is a general-purpose visualization of reuse and overlap 

among biomedical ontologies that employs the reuse and overlap modules, which we 

generated as part of this work. The Web application also allows users to search for similar 

terms by providing any string or an IRI as an input. In case of a string, the application 

matches the name to the set of the most similar terms that have it as a label or a synonym. 

We believe such an application is of general interest, and we make it available to the 

community through our website (http://onto-apps.stanford.edu/).

The application does a depth-first search against the  module, and returns all composite 

mappings, in which each term is a node of. The results are displayed in a tabular, or a force-

directed network layout. The interactive force-directed network visualization allows users to 

explore reuse dependencies and overlap among BioPortal ontologies. Our website also 

provides access to the module graphs, and the analysis results of the BioPortal Import Plugin 

logs.

5. Discussion

5.1. Term Reuse

As seen in Figure 4, we are seeing the full spectrum of reuse from 0 – 100%, but in general, 

reuse is fairly low. Not only do most ontologies in BioPortal never reuse terms, their terms 

are also never reused by other ontologies, which is contrary to the reference-application 

paradigm considered in the ontology engineering process. However, we did find some 

ontologies that are approaching complete reuse. For example, the Mental Functioning 

Ontology (MF) [40], reuses 91.33% of its terms from 6 different ontologies. Our clustering 

analysis shows that not only single terms are reused, but also entire hierarchical structures of 

the source ontologies are reused. Ontology engineers need semi-automated tools to support 

both cases.

Generally, well-established ontologies and controlled terminologies do not reuse terms from 

other ontologies. Usually, these ontology are built by large organizations (e.g., NCI, WHO, 

IHTSDO). Some of these organizations are making concerted efforts to take advantage of 

reuse. For example, ICD-11 and SNOMED CT are trying to define a common core ontology 

to be reused by both [11]. Such collaborations may generate a set of best practices for 

ontology reuse in the future.
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Through the empirical analysis of the BioPortal Import Plugin logs, as well as, the generated 

clusters and overlap modules, we found some reuse patterns that show that ontology 

developers have the intention to reuse terms. Essentially, these are IRI patterns that generally 

have the same identifier and source ontology, but that are reused from different versions of 

the source ontology, or represented using different notations or namespaces. These patterns 

cannot be considered as term reuse, as the IRIs use different, and often incorrect, 

representations for the same terms, and no explicit CUI or xref mappings were found. 

Hence, the advantages of term reuse can not be experienced. By using the correct IRI 

representation, the term overlap could be reduced substantially. We summarize these IRI 

patterns in Table 6, and provide a few examples for each. We also indicate the recommended 

representation, where possible.

We found several cases, in which an ontology reuses the same terms from different 

ontologies, and these terms are not linked by a reuse construct. For example, the BioModels 

Ontology (BIOMODELS) reuses the same terms from two different ontologies: i) Hepatic 
Oval Stem Cell from Cell Ontology (CL) and Foundational Model of Anatomy (FMA), 

and ii) Xanthopore from CL and Gene Ontology (GO). Even if these terms are likely 

equivalent, there is no reuse construct that links them.

Based on the observations from this study that show only modest reuse among biomedical 

ontologies, we believe that ontology engineers would benefit from better guidelines, along 

with improved tools, to increase term reuse.

5.2. Term Overlap

In 2010, a systematic analysis of all the OBO Foundry ontologies outlined consistent term 

overlap, yet minimum term reuse, and commented on the limitations and challenges to 

achieve orthogonality [34]. Five years later, we extended this analysis and estimated term 

reuse and overlap over the entire continuum of biomedical ontologies (including UMLS 

terminologies) in the BioPortal repository. We found that we are still very far from achieving 

desirable term reuse [35]. Most ontologies exhibit considerably less than 5% reuse or no 

reuse through any constructs, and generally reuse terms from only a small set of ontologies.

The OBO Foundry mandates reuse by candidate ontologies from the member ontologies 

under its orthogonality aim. However, there is still substantial term overlap present among 

biomedical ontologies, including OBO Foundry ontologies.

In our previous analysis, we used a conservative approach to determine term overlap. As a 

result, lexically–different terms that may be similar, and can be categorized under term 

overlap, were considered different. Using our approach of tokenization and removal stop 

words, we were able to map terms with labels such as “Muscle of Heart” and “Heart 

Muscle”, whereas, through different overlap modules of composite mappings from 

preferred labels and synonyms, we were able to link “Heart Muscle”, “Cardiac 

Muscle”, “Myocardium”, and also terms in other languages such as “Myocarde”@FR and 

“Herzmuskel”@DE. The estimated term overlap through these overlap modules ranges from 

25%–31.5%.
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Our approach for detecting overlap has certain limitations.

1. Terms with labels such as “Second phalange of the third finger” and 

“Third phalange of the second finger”, and also “WAS Gene” 

(Wiskott-Aldrich syndrome) and “Gene” will be grouped together — due to 

count vectors and the exclusion of the stop word “was” respectively.

2. Lexically-similar terms in different ontologies may represent different concepts 

(e.g., anatomical concepts like spleen between Zebrafish Anatomy (ZFA) and 

Xenopus Anatomy (XAO)).

3. Some biomedical ontologies use different classes for the same concept to show 

evolutionary or developmental stages (e.g. Myocardium in Human Development 

Anatomy, Timed (EHDA) and Abstract (EHDAA) ontologies). We group these 

classes under term overlap, but they may be different.

4. Some ontologies may instantiate a synonym relation between terms that can 

actually have an “is part of” relation. This choice can lead to false composite 

mappings (e.g. Cranium has the synonyms Skull in the Teleost Anatomy 

Ontology (TAO)).

5. Some ontologies use chemical formulas as synonyms. Terms with the same 

chemical formula may be stereoisomeric molecules or completely different 

compounds (e.g., (+)-Menthofuran and Safranal (C10H14O)). This 

challenge has also been seen during alignment of different biomedical 

vocabularies for federated search, where Aspirin and Acetylsalicylic 

acid are the same but L-Glucose and D-Glucose are not the same [41].

Hence, the term overlap estimates should be seen cautiously, and can serve as an upper 

bound to the actual term overlap. Overlapping nodes that are at a path distance of more than 

2 edges are generally different, especially if the edges . To bring these 

estimates closer to actual overlap, we introduced the concept of bigram similarity for 

 and hybrid components, and the resultant term overlap is closer to the one 

derived from the  module.

5.3. Clustering

One of the key challenges that we encountered while clustering was the fact that we were 

dealing with a large number of terms (compared to the features), resulting in a large n × m 
matrix where n ⋙ m. Also, as the initial matrix consisted only of the IRI-reused term–

ontology pairs that are reused on an average between 2–3 ontologies, we had a very sparse 

binary matrix. There are various methods to deal with this such large, multi-dimensional 

matrices, ranging from MapReduce [42] to simple candidate generation [43]. Our two-phase 

approach allowed us to divide the term–ontology pairs into large distinct clusters of terms 

shared between some common group of ontologies. We could then also include the semantic 

hierarchy of these terms in the different shared ontologies for a subsequent spectral 

clustering. We believe that our similarity equation can be extended to incorporate other 

features such as co-occurrence of these terms in PubMed annotations, and our generated 

Kamdar et al. Page 17

Semant Web. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



term–term affinity matrix can be used in a item-based collaborative filtering method to 

generate recommendations for reuse.

From clustering, we claim the following hypotheses: i) ontology developers reuse 

hierarchical subtrees along with single terms, ii) the proportion of term pairs that have 

parent–child or sibling relations can be very high, especially if the reuse occurs from one 

main source ontology and iii) these terms are located on higher levels or upper-middle levels 

of ontological depth.

5.4. BioPortal Import Plugin Log Analysis

As was observed from our term reuse analysis across BioPortal ontologies, ontology 

developers only import terms from a small set of popular ontologies in BioPortal using the 

BioPortal Import Plugin. From our analysis of the logs, it is apparent that: i) ontology 

engineers have imported hierarchical subtrees of varying depths along with single terms, ii) 
the most common reuse structures are 2-level structures – parent–child structures (triangles 

with a higher opacity in Figure 8), and iii) these structures and terms are located in the 

higher and upper-middle levels of the ontological hierarchy.

Hence, we can say that the claims made from our clustering analysis (Section 5.3) are 

validated through our BioPortal Import Plugin log analysis. As future work, we plan to do a 

more formal validation of this finding. Moreover, for some ontologies that were common 

between both our analysis (e.g. NCIT, GO and FMA), we found a substantial similarity 

between some sub-clusters and the reuse structures extracted from the logs (results online). 

The similarity ranged between 70–100% for NCIT structures. This similarity can suggest 

either the ontologies developed using the BioPortal Import Plugin were saved back to 

BioPortal repository, or there are recurrence patterns in some ontologies that are reused 

frequently in different ontologies.

From this validation, we can postulate that our approach used for the two-phase clustering 

process, using the similarity equation and the term–term affinity matrices, accurately 

captures the thought process of the ontology engineer, when she reuses terms, and it can be 

coupled with the Bio-Portal Import Plugin to provide reuse recommendations in the future. 

The clustering only used the terms in the IRI reuse module, and might be biased towards 

OBO Foundry ontologies, and not generate enough UMLS recommendations (as they are 

seldom reused using the same IRI). Hence, our initial term–ontology matrix and the 

similarity equation will need to be extended to deal with this bias.

5.5. Future Work

All ontology development methodologies encourage reuse with several advantages, such as 

cost reduction, quality control, semantic interoperability, EHR mining and query federation, 

cited in favor of reuse [10,11,12,20]. However, our extensive analysis suggests that ontology 

developers do intend to reuse terms, but often, they are not able to do so correctly. 

Converting the intent for reuse into actual reuse can help increase term reuse, and reduce 

term overlap (Section 4.2).
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We plan to provide personalized reuse recommendations for ontology developers through a 

WebProtégé plugin (http://webprotege.stanford.edu) [44]. The plugin will use our term–term 

affinity matrix (Section 3.4) and an item–based collaborative filtering method [45] to 

generate personalized recommendations for ontology developers, based on their target 

ontology and the engineering task at hand. These recommendations will be provided through 

a visual recommendation plugin built inside WebProtégé, where ontology developers can 

drag and select their terms of interest for reuse. This plugin may also keep developers 

informed, when the representation of the term in the source ontology changes.

We believe that our Web application will allow ontology developers to search for similar 

terms in other ontologies, while our visualization of overlap and reuse dependencies may 

guide developers to reuse terms in their own ontology based on the structure of ontologies in 

related domains. Our composite mappings approach may serve as a complement to the 

existing BioPortal mappings, which are currently generated through naive string matching 

algorithms [46]. We also plan to develop a term–centric visualization that summarizes 

everything known about a particular term in Bio-Portal, and presents it to developers and 

domain experts through an interactive interface. Our hope is that this visualization will 

enable ontology developers to serendipitously discover and reuse existing knowledge.

6. Conclusion

We estimated the level of reuse and overlap in a corpus of 337 ontologies from the BioPortal 

repository. We developed novel methods for detecting reuse and overlap in biomedical 

ontologies. Our findings show a term overlap of approximately 25.31–30.18%, and term 

reuse of less than 9%. Most ontologies reuse less than 5% of their terms from a small set of 

popular ontologies, with terms from several ontologies never being reused. We found strong 

indications that users actually intended to reuse terms, but in many cases they used incorrect 

representations. We also identified common error patterns in term reuse. Our hope is that the 

results of this work may be used to develop better guidelines and tool support with the aim 

to enhance reuse, and minimize overlap among biomedical ontologies.
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Fig. 1. 
Types of Reuse: a) CUI reuse: Diabetes Mellitus terms in SNOMED CT and ICD-9CM are 

mapped to the same CUI, b) IRI reuse: RNA Binding defined in the GO ontology is reused 

in GEXO ontology using the same IRI; xref reuse: the latter term is reused in the GRO 

Ontology via a xref annotation
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Fig. 2. 
Worflow of all the steps required to estimate the average term reuse and overlap statistics 

across the BioPortal Ontologies, as well as clustering and BioPortal Import Plugin Log 

analysis to detect any reuse patterns. The steps of the workflow are: (1) Ontology Pre-

processing, (2) Term Reuse, (3) Term Overlap, (4) Clustering, and (5) Log Analysis.
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Fig. 3. 
Cartoon representations of the a) Reuse, b) Overlap :  and c) Overlap – Reuse : 

 modules. In a) Terms A and E are defined in two ontologies using same 

IRI. The green, dotted arrow in Reuse module is a xref mapping from E → A, whereas the 

green, bidirectional arrow means the terms G and H are mapped to same CUI. In b) and c) 

the two disjoint components  and  are composed of {A,B,C,D,E} and {F,G,H} terms 

respectively. The darkened path C → A → D represents a sample composite mapping, 

formed by different edge types.
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Fig. 4. 
Histogram depicting the number of ontologies that reuse a given percentage (%) of terms 

from other ontologies in their current versions by the same IRI or xref annotation. Most 

ontologies reuse fewer than 5% of their terms.
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Fig. 5. 
Top 16 ontologies whose terms are reused the most through IRI and xref constructs. Number 

of ontologies reusing (#) and percentage (%) of terms reused with respect to the terms in 

their current version.
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Fig. 6. 
30% term overlap among different BioPortal ontologies. For simplicity, only the OBO 

Foundry member and candidate ontologies (blue squares), UMLS terminologies (red 

circles), and a few popular ontologies in BioPortal (green octagons) are shown here.
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Fig. 7. 
Proportion of term pairs with semantic similarity in a given range for each sub-cluster.
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Fig. 8. BioPortal Import Plugin Log Analysis
Few ontologies that are reused the most through the BioPortal Import Plugin are shown — 

FMA, ICD10PCS, NCIT and SNOMED CT. The lower plot indicates the total number of 

sessions observed, the total number of single terms imported, the total number of structures 

imported, and the total number of terms imported in log scale. The upper plot indicates the 

content imported from each ontology spanning across its depth. Each structure imported is 

represented as a translucent polygon, whereas the single terms are grouped as circular 

shapes for each level.
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Table 1

An example of a composite mapping. A column represents the term shown in the header. The content of a 

column contains different labels (preferred labels, synonyms, etc.) associated to the term. An arrow indicates 

that a label of a term is mapped to the label of another term. This example shows how we can map Term A 

defined in  to Term C defined in  using a composite mapping.

Term A ( ) Term B ( ) Term C ( )

Heart Muscle → Muscle of Heart Myocardium

Cardiac Muscle → Cardiac Muscle
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Table 2

Sources for labels and synonyms to generate composite mappings

Set Source

ℒ skos:prefLabel, rdfs:label, dc:title

OBO:hasExactSynonym, skos:altLabel

OBO:hasRelatedSynonym, OBO:IAO_0000118

OBO:hasNarrowSynonym, OBO:hasBroadSynonym, under IAO:000015, rdfs:comment, 
skos:definition
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Table 3

An example of a hybrid component , composed of terms {ti|i = 1, 2,…, 7}.  can be broken into two 

smaller, relevant components  and  that are connected by an incorrect mapping caused due to a 

synonym of term t3.

Component ( ) Component ( )

t1 Myocardium t4 Intercalated Disk

t2 Cardiac Muscle t5 Intercalated-Disc

t3 Heart Muscle t6 Discus Intercalatus

t3 (Intercalated disc) → t7 Intercalated Disc
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Table 5

Primary ontological composition of the clusters

Cluster Ontologies

Cluster 1 HINO, BIOMODELS, CHEBI, CCO, DRON, BDO

Cluster 2 GO, NIFSTD, GO-EXT, FYPO, CCO, NIGO, CL

Cluster 3 GWAS_EFO_SKOS, EFO, EFOGWAS, CCONT, CLO

Cluster 4 SYN, CSEO, SOPHARM, SNPO, IFAR, NCIT

Cluster 5 PHENOSCAPE-EXT, UBERON, NIFSTD, CL, CLO

Cluster 6 NIFSTD, ERO, DOID, CLO, NIFCELL, NIFDYS
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Table 6

Different kinds of IRI representations observed in BioPortal ontologies and BioPortal Import Plugin logs.

Type Source Representation Few Observed Examples

Versions BFO www.ifomis.org/bfo/1.1* (AERO) Adverse Event Reporting 
Ontology

www.ifomis.org/bfo/1.0 (SAO) Subcellular Anatomy Ontology

NCIT NCIT:C53037* (NCIT) National Cancer Institute 
Thesaurus

NCIT:Cerebral_Vein (CSEO) Cigarette Smoke Exposure 
Ontology

Notations FMA OBO:FMA_31396* (VO) Vaccine Ontology

OBO:owlapi/fma#FMA_31396 (BIOMODELS) BioModels Ontology

OBO:owl/FMA#FMA_31396 (EP) Cardiac Electrophysiology 
Ontology

OBO:fma#Cartilage_of_inferior… BioPortal Import Plugin Logs

Namespaces BFO www.ifomis.org/bfo/ (ADO) Alzheimer’s Disease Ontology

purl.obolibrary.org/obo/BFO_ (IDO) Infectious Disease Ontology

SNOMED CT ihtsdo.org/snomedct (SNOMED CF) SNOMED Clinical 
Findings

purl.bioontology.org/ontology/SNOMEDCT (IFAR) Fanconi Anemia Ontology

FMA sig.uw.edu/fma# (BDO) Bone Dysplasia Ontology

purl.obolibrary.org/obo/FMA_ (SDO) Sleep Domain Ontology

*
marks the recommended representation(s).
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Listing 1

An anonymized excerpt of the BioPortal Import Plugin Logs

10. XX.XXX.XX - - [16/Dec/2011:14:26:12 -0800] “GET /bioportal/search/
Subthalamus/?ontologyids=1053& objecttypes = class & maxnumhits=20 HTTP/1.1”

10. XX.XXX.XX - - [16/Dec/2011:14:26:14 -0800] “GET /bioportal/path/44507/?
source=fma:Subthalamus&target=rootHTTP/1.1”

10. XX.XXX.XX - - [16/Dec/2011:14:26:14 -0800] “GET /bioportal/concepts/44507?
conceptid=http%3A%2F%2Fsig.uw.edu%2Ffma%23Anatomical_entityHTTP/1.1”
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