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Abstract

BACKGROUND—Endometriosis, defined as the presence of ectopic endometrial stroma and 

epithelium, affects approximately 10% of reproductive-age women and can cause pelvic pain and 

infertility. Endometriotic lesions are considered to be benign inflammatory lesions but have 

cancerlike features such as local invasion and resistance to apoptosis.

METHODS—We analyzed deeply infiltrating endometriotic lesions from 27 patients by means of 

exomewide sequencing (24 patients) or cancer-driver targeted sequencing (3 patients). Mutations 

were validated with the use of digital genomic methods in micro-dissected epithelium and stroma. 

Epithelial and stromal components of lesions from an additional 12 patients were analyzed by 

means of a droplet digital polymerase-chain-reaction (PCR) assay for recurrent activating KRAS 
mutations.

RESULTS—Exome sequencing revealed somatic mutations in 19 of 24 patients (79%). Five 

patients harbored known cancer driver mutations in ARID1A, PIK3CA, KRAS, or PPP2R1A, 

which were validated by Safe-Sequencing System or immunohistochemical analysis. The 

likelihood of driver genes being affected at this rate in the absence of selection was estimated at P 

= 0.001 (binomial test). Targeted sequencing and a droplet digital PCR assay identified KRAS 
mutations in 2 of 3 patients and 3 of 12 patients, respectively, with mutations in the epithelium but 

not the stroma. One patient harbored two different KRAS mutations, c.35G→T and c.35G→C, 

and another carried identical KRAS c.35G→A mutations in three distinct lesions.

CONCLUSIONS—We found that lesions in deep infiltrating endometriosis, which are associated 

with virtually no risk of malignant transformation, harbor somatic cancer driver mutations. Ten of 

39 deep infiltrating lesions (26%) carried driver mutations; all the tested somatic mutations 

appeared to be confined to the epithelial compartment of endometriotic lesions.
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Endometriosis is a relatively common disease, affecting up to 10% of women of 

reproductive age.1 Its incidence is as high as 50% among adolescents with pelvic pain.1,2 

Clinical symptoms include dysmenorrhea, pelvic pain, and infertility.1,3,4 Endometriotic 

lesions are considered to be benign (nonmalignant or non-neoplastic), inflammatory, 

estrogen-dependent lesions that are characterized by the ectopic presence of normal-

appearing, functional endometrial tissue composed of glands and stroma outside of the 

uterus.1,3 The disease is often associated with multiple lesions that can be distributed 

throughout the abdominal–pelvic peritoneum and visceral organs.

There are three anatomical subtypes of endometriosis: superficial peritoneal endometriosis, 

ovarian endometriosis, and deep infiltrating endometriosis. Deep infiltrating endometriosis is 

characterized by nodules that locally invade pelvic structures, producing symptoms such as 

painful intercourse (deep dyspareunia) and painful bowel movements (dyschezia).5 

Progestin-based hormonal therapy and gonadotropin-releasing hormone analogues have 

become the standard treatments; however, many patients have unacceptable systemic adverse 

effects in association with either or both treatments.1,6 Moreover, not all women with 

endometriosis have a response to hormonal therapy, particularly those who have deeply 

infiltrating disease.7 Surgical resection is an option for women who do not have a response 

to hormonal therapy or for those who desire pregnancy, but complete excision of deep 

infiltrating nodules requires surgical expertise and is not without risk.4

Despite its benign clinical behavior and normal-appearing histologic features, endometriosis 

can recapitulate some features of malignant neoplasms, including local invasion and 

resistance to apoptosis. The etiologic factors underlying endometriosis are controversial, and 

the disorder has been proposed to originate from several different processes: the migration of 

endometrial fragments from the uterus through the fallopian tubes during retrograde 

menstruation, the dissemination of these fragments to the peritoneal cavity, and their 

implantation on the serosal surface; the dissemination of endometrial (progenitor) cells 

through the lymphatic or blood circulation; the development of endometrial tissue through 

metaplasia of coelomic epithelium (i.e., mesothelium that lines the surface of the peritoneal 

cavity and organs); or differentiation from bone marrow–derived stem cells or fetal remnants 

of müllerian cells shed into the peritoneal cavity during retrograde menstruation.3,8–12

Genomewide association studies have identified genetic markers that are potentially related 

to an increased risk of endometriosis.13 Endometriosis, particularly ovarian endometriosis, is 

widely accepted as the direct precursor of clear-cell and endometrioid ovarian 

carcinomas,14,15 so-called endometriosis-related ovarian neoplasms. However, the study of 

somatic mutations in endometriosis has been restricted largely to endometriosis with 

concurrent cancer. A small number of candidate-gene studies have examined benign (non–

cancer-associated) ovarian endometriosis lesions; one study identified a KRAS mutation 

(p.G12C) in a single lesion,16 and another identified PTEN mutations in 7 of 34 lesions 

(21%).17 Immunohistochemical studies have also shown rare partial or complete 

immunohistochemical loss of ARID1A (as a proxy for ARID1A loss-of-function mutations) 

in lesions from ovarian and nonovarian endometriosis without concurrent cancer.18–20 All of 

the above studies have been hampered by low-resolution genomic methods, failure to isolate 

specific endometrial stromal or epithelial cells from within a dominantly fibrotic 
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endometriosis nodule (e.g., by laser-capture micro-dissection), and lack of orthogonal 

validation. Thus, these studies have yielded ambiguous answers to the fundamental question: 

do benign endometriosis lesions harbor somatic mutations in cancer driver genes outside of 

the process of transformation to endometriosis-related ovarian neoplasms, and if so, what is 

their role in the pathology of these lesions?

In this study, we performed exomewide sequencing and targeted amplicon sequencing and 

used two digital genomic methods to determine whether benign, but invasive, deep 

infiltrating endometriosis lesions harbor somatic mutations, including those frequently 

detected in human cancers.

METHODS

TISSUE SAMPLES AND PATIENT SELECTION

Tissue samples were obtained from three independent cohorts of patients with deep 

infiltrating endometriosis. All tissues were fixed archival specimens, either formalin-fixed 

and paraffin-embedded or Molecular-fixed (Sakura Finetek) and paraffin-embedded. Tissue 

samples from 17 patients were obtained from the Departments of Obstetrics and Gynecology 

and Pathology at Lenox Hill Hospital–Northwell Health (Hofstra University) in New York. 

Tissue samples from 7 patients were obtained from the Department of Pathology at Seirei 

Mikatahara Hospital in Hamamatsu, Japan. Tissue samples from 15 patients were obtained 

from the BC Women’s Centre for Pelvic Pain and Endometriosis in Vancouver, BC, Canada, 

and collected through the OVCARE Tissue Bank (part of the World Endometriosis Research 

Foundation Endometriosis Phenome and Biobanking Harmonisation Project).21 The 

institutional review boards at the respective hospitals approved all tissue collection. 

Inclusion criteria were pathologist-confirmed deep infiltrating endometriosis (lesions with a 

depth >5 mm, such as in the bowel or peritoneal wall) containing both epithelial and stromal 

components, the absence of cancer or dysplasia, and a lesion size sufficient for tissue coring, 

macrodissection, or laser-capture microdissection.

EXOME SEQUENCING

Endometriotic lesions and corresponding normal tissues from the same blocks were cored (2 

mm for smaller lesions and 3 mm for larger lesions) from formalin-fixed and paraffin-

embedded blocks. Sections that were stained with hematoxylin and eosin were prepared 

before and after coring to confirm the precision of the sampling and to ensure that at least 

60% of the core area contained lesional tissue (or that 100% contained normal tissue). 

Paired-end libraries were generated with the use of standard Illumina procedures that 

involved DNA from core endometriosis and normal (matched control) samples. Coding 

regions were captured with the Agilent SureSelect Enrichment System and sequenced on 

Illumina sequencers. Data were processed as described previously.22

PROBABILISTIC EVALUATION OF OBSERVED DRIVER MUTATION FREQUENCIES

The probability that by pure chance, 5 mutations of the 80 that were found would be among 

the 125 driver genes considered was P = 0.001, calculated by the binomial test (Table S1 in 

Supplementary Appendix 2, available with the full text of this article at NEJM.org). 
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Specifically, 1 – pbinom (4, 80, 276,824/27,000,000) = 0.001, in which the total number of 

positions sequenced is approximately 27 million bp (whole exome), and 276,824 is the 

estimated total number of positions, among all the driver genes considered, that may yield a 

driver mutation. The number of driver positions was derived by combining all positions 

found to be (somatically) mutated, across all cancer types, in the Cancer Genome Atlas 

database that are considered to be located within driver oncogenes. We conservatively 

assumed that only targeted positions in tumor suppressor genes were targets of driver 

mutations.

TARGETED SEQUENCING

The TruSeq Amplicon Cancer Panel (Illumina) and a previously described TruSeq Custom 

Amplicon Panel23 were applied, followed by Illumina MiSeq sequencing (Table S5 in 

Supplementary Appendix 2). Variants were identified with the use of the MiSeq Reporter 

Somatic Variant Caller tool. Only variants absent from germline DNA and present in both 

libraries (technical replicates) from both panels (i.e., quadruplicate libraries) were validated 

orthogonally by a droplet digital polymerase-chain-reaction (PCR) assay (Fig. S1 in 

Supplementary Appendix 1, available at NEJM.org).

DROPLET DIGITAL PCR ASSAYS

Dual-labeled 5′ exonuclease assays were used in droplet digital PCR assays (Table S7 in 

Supplementary Appendix 2). Droplets were generated on RainDrop Source (RainDance 

Technologies) or QX200 Droplet Generator (Bio-Rad Laboratories). After thermal cycling 

(see the Methods section in Supplementary Appendix 1), droplets were quantitated with 

RainDrop Sense (Rain-Dance Technologies) or QX200 Droplet Reader (Bio-Rad 

Laboratories).

SAFE-SEQUENCING SYSTEM

We used the single-molecule barcoding system Safe-Sequencing System (Safe-SeqS) as an 

error-reduction technology for fixed tissues and low-frequency mutations.24 (See the 

Methods section in Supplementary Appendix 1.) Purified products were sequenced on 

Illumina MiSeq and analyzed for mutations.

ARID1A IMMUNOHISTOCHEMISTRY

ARID1A immunoreactivity was used as a surrogate for ARID1A inactivating 

mutations.25–27 Formalin-fixed and paraffin-embedded tissue sections were stained 

manually with the use of a 1:2000 dilution of ARID1A antibody (Sigma-Aldrich 

HPA005456), as described previously.28 Additional details are provided in the Methods 

section in Supplementary Appendix 1.

RESULTS

ANALYSIS DESCRIPTION

We studied nonovarian, deep infiltrating endometriosis lesions from 39 women with a mean 

age of 37 years. Independent molecular genetic analyses were conducted in parallel and 
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included unbiased whole-exome sequencing in one set of lesions, with validation of driver 

mutations by Safe-SeqS and immunohistochemical analysis; quadruplicate targeted panel-

based sequencing confirmed by a droplet digital PCR assay in a second set of lesions; and 

droplet digital PCR analysis alone in a third set of lesions (Table 1, and Fig. S1 in 

Supplementary Appendix 1). The analyses carried out in the first two sets were designed and 

undertaken without knowledge of the results of the concurrent parallel experiments.

EXOMEWIDE ANALYSIS OF ENDOMETRIOTIC LESIONS

Whole-exome sequencing was performed on samples from 24 patients (Patients 1 through 

24) with the use of DNA isolated from endometriosis tissue cores and matched normal tissue 

(Table 1 and Fig. 1). Coverage was on average 104× (range, 30 to 161) in endometriosis 

tissue cores and 53× (range, 26 to 97) in normal tissues (Table S1 in Supplementary 

Appendix 2). We identified 80 nonsynonymous, somatic mutations, including 61 missense 

and 5 nonsense mutations, 5 insertion–deletion mutations (indels) producing frameshifts, 7 

indels that were in-frame, and 2 mutations at canonical splice sites (Table S2 in 

Supplementary Appendix 2). The number of mutations per lesion varied widely (from 0 to 

17), with a mean of 3.3 mutations per lesion (Table 1); five lesions had no detectable 

mutations. The mutant-allele frequencies of somatic mutations were generally low (<20%) 

(Fig. 1E, and Table S2 in Supplementary Appendix 2), suggesting that only a subset of cells 

harbored mutations.

Five lesions harbored somatic mutations in cancer driver genes. Two lesions harbored frame-

shift inactivating mutations in the tumor suppressor ARID1A (p.L2253Cfs*14 in Patient 9 

and p.G276Efs*87 in Patient 20), and hotspot activating mutations in PIK3CA (c.

3127A→G; p.M1043V), KRAS (c.35G→T; p.G12V), and PPP2R1A (c.767C→T;p.S256F) 

were each found in one lesion. The remaining mutations were in genes that are not suspected 

to be driver genes in cancer.

The mutant-allele frequencies of alterations that were identified in cancer driver genes such 

as ARID1A, PIK3CA, KRAS, and PPP2R1A ranged from 6% to 17% and did not differ 

significantly from those of non–cancer driver genes. Exome data were also used to estimate 

DNA copy number; however, small copy-number gains were detected only in Patient 10 

(Table S3 in Supplementary Appendix 2).

Sufficient DNA was available to validate a subset of these mutations from the same samples 

with the use of an orthogonal digital genomic method, Safe-SeqS.24 Safe-SeqS confirmed 

the existence of the somatic mutations and confirmed the allele frequencies from the original 

exome data (Table S4 in Supplementary Appendix 2). The hotspot KRAS mutation (in 

Patient 15) was further characterized by laser-capture micro-dissection of endometriotic 

lesions that separated epithelial and stromal compartments. Herein, the mutation was present 

in the epithelium but not in the endometrial-type stroma, a finding consistent with the low 

allelic fraction when both compartments were analyzed together (Table S4 in Supplementary 

Appendix 2). Loss of ARID1A immunoreactivity served as a surrogate for an inactivating 

mutation in Patient 20: ARID1A immunoreactivity was undetectable in a subset of the 

epithelial cells but was present in stromal cells (Fig. 2). In addition, the PPP2R1A mutation 

in Patient 6 was validated in the epithelial compartment by a droplet digital PCR assay 
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(Table S7 in Supplementary Appendix 2); however, we were unable to recover a pure 

stromal sample from the remaining lesion.

CANCER DRIVER DEEP-SEQUENCING ANALYSIS OF ENDOMETRIOTIC LESIONS

In an independent set of experiments, we analyzed tissue samples from three patients 

(Patients 25, 26, and 27) using two targeted panels with overlapping coverage of the hotspot 

regions of five genes (NRAS, BRAF, FGFFR2, HRAS, and KRAS) and the full coding 

sequence of six genes (PIK3CA, PTEN, TP53 , CDKN2A , CTNNB1, and FBXW7) (Table 

S5 in Supplementary Appendix 2). Biphasic endometriotic lesions were isolated by laser-

capture microdissection, and mutations were considered to be confirmed if they were present 

in four panel libraries for each endometriosis sample and absent from (patient-matched) 

germline DNA (Table S6 in Supplementary Appendix 2 and Fig. S1 in Supplementary 

Appendix 1). Of the three patients, two harbored activating mutations in KRAS; however, no 

other somatic alterations passed our filter (i.e., were present in all four libraries). Patient 25 

harbored the c.35G→T (p.G12V) and c.35G→C (p.G12A) KRAS mutations, which were 

present at mean allele frequencies of 11.2% and 8.6%, respectively. Patient 26 had a single 

c.35G→A (p.G12D) KRAS mutation present at a mean allele frequency of 10.4% (Fig. S2 

in Supplementary Appendix 1).

KRAS variants were validated orthogonally by droplet digital PCR assay. Two adjacent 

blocks from a single lesion in Patient 25 were assayed for both c.35G→T (p.G12V) and c.

35G→C (p.G12A); the assay confirmed the presence of the two distinct mutations in the 

same endometriotic epithelial compartment: the c.35G→T (p.G12V) mutation was present 

in index and adjacent blocks at frequencies of 24% and 37%, respectively, and the c.

35G→C (p.G12A) mutation was present at frequencies of 33% and 16%, respectively (Table 

2 and Fig. 3). We examined two blocks in Patient 26, each from a distinct and anatomically 

separated endometriotic lesion. The KRAS c.35G→A (p.G12D) mutation was confirmed in 

the epithelial compartment of only the index tissue block (originally subjected to panel 

sequencing) at a frequency of 31% (Table 2, and Fig. S2 in Supplementary Appendix 1); it 

was not detected in the other lesion from this patient.

RECURRENT KRAS G12 VARIANTS IN DEEP INFILTRATING ENDOMETRIOSIS

Because KRAS alterations were detected in the above two cohorts (3 of 27 patients), we 

analyzed deep infiltrating endometriosis lesions from an additional 12 patients (Patients 28 

through 39) (Table 1) using droplet digital PCR assays for five KRAS codon 12 variants (c.

35G→A [p.G12D], c.35G→T [p.G12V], c.35G→C [p.G12A], c.34G→C [p.G12R], and C.

34G→T [p.G12C]). Droplet digital PCR assays were initially performed in manually 

macrodissected lesions (Table S7 in Supplementary Appendix 2), and lesions that showed 

positivity were then laser-capture microdissected, with stromal and epithelial compartments 

separated when possible. We detected KRAS mutations in 3 of 12 patients (25%) (Table 2). 

For Patient 28 with a c.35G→A (p.G12D) mutation, three independent deep lesions and 

normal endometrial epithelium were available for laser-capture microdissection and high-

resolution droplet digital PCR analysis (Fig. 4). All three anatomically distinct 

endometriosis lesions harbored the same KRAS c.35G→A alteration in the glandular 
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epithelium; however, we were not able to detect the mutation in endometriosis stroma or 

normal eutopic endometrial epithelium from the same patient.

DISCUSSION

Despite the high prevalence of endometriosis and its effect on women’s health-related 

quality of life,29 very little is known about the biologic processes that underpin it, although 

more than a century has elapsed since this disease was first described.30,31 There is a 

socioeconomic imperative for endometriosis research; in the United States alone, the 

economic burdens are more than $12,000 per hospital stay,32 more than $11,000 per year per 

woman with the disorder,32,33 and more than $54 billion per year in total.34 In this study, we 

used a combination of next-generation sequencing and validation through highly sensitive 

digital genomic assays and found that the majority of benign deep infiltrating endometriosis 

lesions harbored somatic mutations, including mutations in the well-known cancer driver 

genes ARID1A, PIK3CA, KRAS, and PPP2R1A.35–37

Our reporting of these driver gene mutations in the affected patients should be considered 

conservative, because methods for sequencing ultra-low-input and formalin-fixed materials 

are still developing. Should a more complete genomic or epigenomic analysis be applied, 

additional driver mutations may be uncovered. Nonetheless, the driver genes that we 

observed to be altered are frequently mutated in endometriosis-related ovarian neoplasms 

and in (clonally related) adjacent and distant endometriotic lesions from patients with 

endometriosis-related ovarian neoplasms.14,38 Yet, it is critical to note that endometriosis is 

generally regarded to be a nonmalignant inflammatory condition.3 The finding of cancer-

associated mutations in endometriotic lesions without concurrent cancer and, in particular, in 

nonovarian deep infiltrating lesions that rarely (if ever) transform into cancer was surprising. 

These mutations may be an intrinsic characteristic of deep infiltrating endometriosis and 

raise interesting questions about the pathobiology of endometriosis.

In the past, studies that examined endometriosis-related ovarian neoplasms with concurrent 

endometriosis suggested that driver mutations shared by both lesions were the mutations 

responsible for the progression of the endometriosis to cancer.16,17,39,40 However, given an 

estimated rate of malignant transformation for endometriosis close to 1%,41 our results 

suggest that the presence of driver mutations alone is neither sufficient to drive the 

transformation of endometriosis nor indicative of likely progression to cancer. At least one 

study of a mouse model of endometriosis has already provided evidence that (subclonal) 

activating Kras mutations can sustain endometriosis but are not sufficient for malignant 

transformation.42 Our data also agree with studies of other organ systems that have shown 

cancer driver mutations in benign lesions and normal tissues.43–46 Beyond this, because only 

a minority of our patients harbored detectable driver mutations, the current study may 

suggest that driver mutations are not required for the development of (deep infiltrating) 

endometriosis. Perhaps more important, our findings challenge past research, in which 

endometriosis was typically studied in conjunction with endometriosis-related ovarian 

neoplasms and in which candidate single-gene approaches were used; these types of studies 

are unlikely to be sufficient in addressing the risk of transformation.
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The probability that 5 mutations, out of the 80 mutations found, were in a pool of 125 driver 

genes was calculated to be P = 0.001 (binomial test), which suggests that these mutations 

were highly unlikely to have arisen by chance alone. Because cancer driver mutations were 

present only in the epithelium but not the stroma of the same endometriosis lesion, we can 

assume that the observed mutations provide some key selective advantage to endometriotic 

epithelial cells. This apparent selective pressure in the epithelial compartment could result in 

the emergence of distinct clonal populations within the same lesion. For example, Patient 25 

harbored two different KRAS codon 12 mutations. Again, not all lesions harbored detectable 

driver gene mutations; future studies are necessary to more accurately determine the 

prevalence of specific driver events, as well as to address whether cases of endometriosis 

without driver mutations have functionally equivalent genomic or epigenomic events that 

were not assessed in this study and whether mutation-harboring endometriosis represents a 

distinct pathology. Finally, not all lesions in a given patient were found to harbor a 

detectable (driver) mutation (e.g., Patient 26), a trend that has also been observed in the 

context of endometriotic lesions co-occurring with cancer 14; these findings potentially 

support the coexistence of multiple endometriosis lineages within the same patient.

Deep infiltrating endometriosis can invade visceral organs and distort local anatomy, 

whereas in the superficial subtype of endometriosis, lesions are noninvasive and anatomical 

relationships are maintained. The biologic processes underpinning these distinct phenotypes 

is unknown. Our findings challenge the current understanding of this invasive subtype of 

endometriosis and open the discussion on whether deep infiltrating endometriosis can be 

considered as a benign neoplasm. One patient (Patient 28) had the same KRAS mutation in 

three spatially distinct lesions, raising the possibility that some sites of benign deep 

infiltrating endometriosis arise through the neoplastic process of metastasis. However, 

several mechanisms should be considered as explanations for this observation. First, 

mutations may have arisen independently of each other. However, it is unlikely that exactly 

the same mutation occurred independently, by chance, in all three lesions. Second, the 

mutation may have arisen in a single lesion and subsequently disseminated to other sites. 

This possibility supports the “metastasis” of somatically altered endometriosis epithelial 

cells but does not specifically address the contentious issue of endometriosis originating 

through metaplasia or dissemination from the endometrium. Nonetheless, if we choose to 

accept this explanation, there is also the nonmutant stromal component of the endometriosis 

to consider; either this component must be required to maintain fitness of the epithelial cells 

and therefore co-migrates (is recruited) with the epithelium during the pathogenesis of 

endometriosis, or it develops after the establishment of the (mutant) endometrial epithelial 

cell through metaplasia of non-endometrial stromal cells. Lastly, a bipotent (uterine) stem 

cell origin leading to both stromal and epithelial components of endometriosis has been 

proposed.47,48 A stem-cell–related theory may provide a plausible route for single-cell 

metastasis; however, this would require a specific pressure for only the epithelial progeny to 

gain (or retain) the cancer driver mutations that we have observed thus far. Clearly, this 

hypothesis requires additional validation, but it may be more compatible with rare and 

distant sites of endometriosis (e.g., in the lung, spine, and brain).49

A spectrum of molecular analyses are needed to address key questions about the 

pathogenesis of endometriosis and its clinical behavior (Table S8 in Supplementary 
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Appendix 2). The current clinical classification of endometriosis is neither biologically 

based nor strongly predictive of clinical behavior50; herein lies an opportunity to improve or 

redesign a biologically informed classification scheme. There is a broad range of challenges 

faced by women with endometriosis and their caregivers; this study provides a strong 

rationale and the molecular foundations for the extensive characterization of all 

endometriosis subtypes. Given the wide range and often subjective nature (e.g., self-reported 

pain) of clinical characteristics across patients with endometriosis, large and well-annotated 

cohorts will be needed.

In summary, although endometriosis is considered to be a benign disorder from both a 

clinical and a histopathological perspective, well-known cancer-associated somatic 

mutations were found in the glandular epithelium of some deep infiltrating endometriosis 

lesions. These findings create new opportunities for a more detailed examination of all forms 

of endometriosis with the use of research approaches that are common in the study of 

cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. An Example of Deeply Infiltrative Endometriosis in the Colon
In Panel A, a segment of involved colon shows a papillary lesion projecting into the lumen. 

Panel B shows the cross section of the colonic wall that is indicated by the rectangle in Panel 

A; arrows indicate endometriotic lesions. In Panel C, a section stained with hematoxylin and 

eosin shows multiple, discrete endometriotic foci (arrows) infiltrating into the muscle layer 

of the colon. The box indicates the approximate region that is core-targeted for molecular 

analysis. In Panel D, a higher magnification shows the characteristic morphologic features of 

endometriosis, with both glandular and stromal components. Results for all 24 exome-

sequenced patients are shown in Panel E; not all patients’ samples yielded detectable 
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somatic mutations. Both “driver” and “passenger” mutations are indicated (Tables S1 and S2 

in Supplementary Appendix 2). As opposed to driver mutations, passenger mutations are 

defined as somatic mutations that are not known or presumed to directly contribute to cancer 

initiation or progression.
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Figure 2. Immunohistochemistry of ARID1A (BAF250A) in Deep Infiltrating Endometriosis
ARID1A immunoreactivity was detected in all stromal (St) cells and epithelial (Epi) cells 

within an endometriotic lesion containing wild-type ARID1A (Panel A). In Patient 20, 

harboring an ARID1A inactivating mutation, loss of ARID1A immunoreactivity was 

observed in a subset of epithelial cells (arrows indicate examples), but immunoreactivity was 

preserved in a much larger fraction of the adjacent stromal cells within the same lesion 

(Panel B). The mutant-allele fraction of the ARID1A mutation in this patient was 8%.
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Figure 3. Confirmation of Activating, Somatic KRAS Mutations in the Glandular Epithelium but 
not Stromal Compartments of Deep Endometriotic Lesions
Panel A shows a photomicrograph of endometriotic tissue from Patient 25, with standard 

hematoxylin and eosin staining. Panels B and C show manually stained, non–cover-slipped 

sections, also from Patient 25, that were prepared for laser-capture microdissection. Panels D 

and E show droplet digital polymerase-chain- reaction (PCR) plots illustrating the presence 

of both c.35G→T (p.G12V) and c.35G→C (p.G12A) KRAS mutations at different allelic 

frequencies but exclusive to the glandular epithelium in Patient 25. The allelic frequencies 

represent the percentage of droplets that were positive for the mutant allele (mut+) or 

positive for the wild-type allele (wt+). Control cell lines and no-template controls (including 

all reaction components except a DNA template) are also shown. Comp-PMT1 denotes 

spectrally compensated photomultiplier tube 1 (the dye channel used for the mutant assay), 

and Comp-PMT2 spectrally compensated photo-multiplier tube 2 (the dye channel used for 

the wild-type assay).
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Figure 4. Co-Occurring and Anatomically Distinct Deep Infiltrating Endometriosis Lesions That 
Harbor Identical KRAS Mutations
Panel A shows an anatomical diagram outlining the position of three distinct deep 

infiltrating endometriosis lesions (in red) and normal sampling of eutopic endometrial and 

endocervical epithelium (in gray), all from Patient 28. The allelic frequency of the epithelial-

restricted c.35G→A (p.G12D) KRAS mutation from droplet digital PCR experiments is also 

shown below each block identifier. Panel B shows droplet digital PCR plots confirming the 

KRAS mutation in the epithelial, but not stromal, component of the A8 endometriotic lesion, 

with the mutant-droplet-positive fraction (allelic frequency). Controls are also shown. Panel 

C shows hematoxylin-and-eosin photomicrographs of each location shown in Panel A, 

including endometriotic tissue taken from the three distinct lesions: in the anterior serosal 

surface of the uterus (A8) as well as the vaginal (B3) and rectal (C2) surfaces of the 

rectouterine pouch.
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