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Abstract

Anatomically accurate and biophysically detailed bidomain models of the human heart have 

proven a powerful tool for gaining quantitative insight into the links between electrical sources in 

the myocardium and the concomitant current flow in the surrounding medium as they represent 

their relationship mechanistically based on first principles. Such models are increasingly 

considered as a clinical research tool with the perspective of being used, ultimately, as a 

complementary diagnostic modality. An important prerequisite in many clinical modeling 

applications is the ability of models to faithfully replicate potential maps and electrograms 

recorded from a given patient. However, while the personalization of electrophysiology models 

based on the gold standard bidomain formulation is in principle feasible, the associated 

computational expenses are significant, rendering their use incompatible with clinical time frames.

In this study we report on the development of a novel computationally efficient reaction-eikonal 

(R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular 

human electrophysiology model, which incorporates a topologically realistic His–Purkinje system 

(HPS), we demonstrate by comparing against a high-resolution reaction–diffusion (R–D) 

bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as 

ECGs at the body surface with high fidelity and offers vast computational savings greater than 

three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward 

simulations in clinical modeling studies which attempt to personalize electrophysiological model 

features.
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1 Introduction

The ability to monitor electrical activation and repolarization sequences in the human heart 

is of fundamental importance for understanding cardiac function under healthy conditions, 

and plays a pivotal role in the clinical diagnosis and treatment of cardiac diseases. These 

sequences – often visualized as isochronal maps on the heart built from recorded instants in 

time which indicate specific local events representative of depolarization or repolarization – 

are determined by the spatio-temporal distribution of the intrinsic bioelectric sources 

throughout the myocardium. These sources are the transmembrane currents which enter or 

leave a cell and thus alter the transmembrane voltages governing the dynamics of myocytes 

and also set up potential fields in the intra- and extracellular spaces.

A direct observation of bioelectric sources in vivo is currently not feasible. The clinical 

assessment of electrophysiological aspects of cardiac diseases relies almost exclusively upon 

the indirect observation of extracellular potentials. The time course of these potentials – 

referred to as electrograms – are recorded within the body, which acts as an extensive 

volume conductor. Thus they provide only a filtered non-unique view on the intrinsic 

sources, which can render their interpretation a challenging task. The degree of filtering 

depends largely on the distance of a recording electrode to the sources within the myocardial 

walls as well as conductivity and heterogeneities within the surrounding medium. Such 

electrogram recordings are ubiquitous in clinical electrophysiological examinations, be it by 

means of electrodes in implantable devices, with catheters during interventions or with 

electrical mapping systems which record electrograms synchronously at multiple sites to 

reconstruct spatio-temporal maps of the extracellular potential field.

A thorough understanding of the mechanisms underlying the genesis of extracellular 

potential fields within the human body and their relation to the electrical sources within the 

myocardium is therefore key for the sound construction of activation and repolarization 

maps, their interpretation and the therapeutic decisions based on it. In-silico computer 

models show high promise as a tool for gaining a better quantitative insight into the 

mechanisms which link cardiac sources to their signature in extracellular potential fields. 

Anatomically accurate and biophysically detailed bidomain models of the human heart and a 

surrounding torso are considered the gold standard for such forward electrophysiological 

modeling studies due to their ability to faithfully replicate organ-scale electrophysiology by 

representing both electrical sources and the concomitant current flow they induce in the 

interstitial and extracellular spaces. While such simulations have become feasible [46], the 

associated computational costs are significant due to the reaction–diffusion (R–D) nature of 

the bidomain model which imposes stability and accuracy constraints on spatio-temporal 

discretization schemes. Theses costs are considered a limiting factor, effectively restricting 

the use of such models to highly specialized research software which is able to efficiently 
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exploit current high performance computing (HPC) infrastructure to keep simulations 

tractable [37,35,48].

Virtually all scenarios considering the clinical application of in-silico models critically 

depend on the ability of personalizing models to provide complementary input for diagnosis 

[38], disease stratification [2], therapy optimization, planning and outcome prediction in a 

patient-specific manner. Such applications require a substantial number of forward 

simulations as these are integrated in an optimization loop where often sizable parameters 

spaces must be explored to iteratively re-parameterize models until a sufficiently close 

match with clinical data is achieved. Typically, in such scenarios the use of R-D models is 

punitively expensive and thus not easily reconcilable with the constraints imposed by 

clinical workflows. Computationally cheaper models which yield electrograms of the same 

or at least of comparable electrophysiological fidelity are therefore sought after as a 

fundamental key technology for leveraging in-silico modeling in the clinic.

Significant computational savings can be achieved if the spatio-temporal evolution of 

cardiac sources within the myocardium can be represented accurately using coarser mesh 

resolutions. The eikonal model [17,31] has become a popular choice in applications where 

maps of cardiac activation and repolarization are to be modeled [41,28,60]. In this study we 

further advance this idea by investigating the appropriateness of a reaction-eikonal (R-E) 

source model for computing electrograms and ECGs which offers the computational 

advantages of the eikonal model while preserving the full biophysical details of a 

computationally costly reaction–diffusion (R–D) model. Coupling is achieved by triggering 

the reaction model through the injection of physiologically motivated stimulus currents in a 

modified monodomain or pseudo-bidomain model at the instants of depolarization 

wavefront arrival times as provided by the eikonal model [17,31] These trigger currents raise 

the transmembrane voltage following the foot of a propagated action potential in the same 

way as in a full-blown bidomain R-D model. Particular emphasis was put on the coupling of 

biophysically detailed reaction terms to eikonal-based activation as to ascertain that upstroke 

and early repolarization phase of the action potential remained unaffected and that 

repolarization gradients were adequately preserved.

Using a biventricular human electrophysiology model, which also incorporates a 

topologically realistic His–Purkinje system (HPS), we demonstrate by comparing against a 

high-resolution R-D bidomain model that the R-E model predicts extracellular potential 

maps and electrograms in the vicinity of myocardial surfaces as well as ECGs at the body 

surface with high fidelity at a vastly reduced computational expense. Computational savings 

greater than three orders of magnitude could be achieved without any appreciable deviations 

or any reduction in biophysical detail as compared to a full-blown R-D bidomain model. The 

achieved computational savings stem mainly from relaxed spatial resolution constraints as 

the R-E models yield converged activation patterns at coarser spatial resolutions. Due to 

their efficiency, R-E models are ideally suitable for forward simulations in clinical modeling 

studies which attempt to replicate electrophysiological recordings in the clinic or to 

efficiently personalize electrophysiological model features.
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2 Methods

2.1 Bidomain model

The bidomain equations state that transmembrane currents, Im, that enter intracellular and 

extracellular spaces by crossing the cell membrane, represent sources for intracellular, Φi, 

and extracellular, Φe, potentials and are given by

(1)

(2)

(3)

(4)

(5)

where Vm = Φi − Φe is the transmembrane voltage and {σi, σe} are the intracellular and 

extracellular conductivity tensors, respectively. The symmetric positive semi-definite 3 × 3 

tensors are defined using scalar conductivities (gl(x), gt(x), gn(x)) associated to (l(x), t(x), 

n(x)), respectively the longitudinal, transversal and normal fiber directions:

(6)

β is the bidomain membrane surface-to-volume ratio, Iei and Ieb are extracellular stimuli 

applied in the interstitial space or the bath, respectively, Is is a transmembrane stimulus 

current, Cm is the membrane capacitance per unit area, and Iion is the membrane ionic 

current density which depends on Vm and a set of state variables, η.

At the tissue-bath interface  that is, the interface between interstitial space of the 

myocardium Ω and the blood pool or the surrounding torso Ωb, continuity of Φe and the 

normal component of the extracellular current

(7)
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(8)

is enforced. The intracellular space Ω is sealed which is approximated by imposing no flux 

boundary conditions on Φi,

(9)

At the boundaries formed by the surrounding medium, i.e. either the body surface or the 

boundary of a bath δΩb, no flux boundary conditions for Φe are imposed.

(10)

Equations (1)–(5) can be recast and solved in the elliptic-parabolic form given by

(11)

(12)

The full bidomain model thus provides the most physiologically-realistic representation of 

cardiac bioelectric activity at the organ scale, yielding Vm and Φe at every point in space and 

time, as well as implicitly accounting for the effects of bath-loading upon wavefront 

dynamics through representation of a surrounding conductive media such as blood pool or 

torso.

2.2 Pseudo-bidomain model

A pseudo-bidomain model approximates a full-blown bidomain model with high accuracy, 

but at a fraction of the computational costs. The derivation of the pseudo-bidomain model 

was reported in detail elsewhere [7,6]. Briefly, assuming that the intra- and extracellular 

domains are both anisotropic, but to the same degree, that is, σe = λσi holds with λ being a 

scalar, the bidomain equations can be reduced to the monodomain equation [39] by inserting 

this relation into Eqs. (1) & (2). This yields

(13)
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where σm is the harmonic mean conductivity tensor or the effective bulk conductivity, which 

leads to an accurate match in conduction velocities between bidomain and monodomain 

model along the tissue’s principal eigenaxes [18].

As shown previously [7], bath-loading effects as observed in bidomain models are closely 

reproduced with monodomain models if the conductivity tensor σm in Eq. (13) is 

represented by  where the * signifies either b in the tissue bulk or s along the surfaces. In 

the tissue bulk the eigenvalues of  are given as

(14)

where ζ = l|t|n are the eigendirections of the tissue along the cardiac fiber direction (ζ = l), 
transverse (ζ = t) to the fibers within a sheet, and along a sheet normal direction (ζ = n). In 

the myocardial tissue close to the tissue-bath interface a thin augmentation layer is defined 

within which it is assumed that extracellular conductivity is rather governed by the bath 

conductivity σb than the interstitial conductivity σe thus the conductivity tensor in the 

augmentation layer is given by

(15)

As shown previously [7], this augmented monodomain approach faithfully accounts for 

bath-loading whilst, as it is computationally just a monodomain model, only representing 

Vm(x, t). Using Vm(x, t) as computed with an augmented monodomain as a right hand side 

of Eq. (11), allows the computation of extracellular potential fields Φe(x, t) within both 

interstitial Ω as well as bath domain Ωb, respectively. This coupling of an augmented 

monodomain model with the elliptic portion of the bidomain model in Eq. (11) is referred to 

as pseudo-bidomain model as it predicts the same activation sequence as a bidomain model, 

albeit at a much cheaper computational cost, and provides realistic extracellular potential 

fields in a bounded medium surrounding the heart. The computational complexity of the 

pseudo-bidomain model is only marginally higher than a monodomain model as the elliptic 

equation (11) is solved infrequently at those instances which correspond to a specified 

temporal output granularity. A detailed account on the limitations of the pseudo-bidomain 

approach has been reported elsewhere [7,6].

2.3 Spatio-temporal discretization

A Galerkin finite element approach using linear tetrahedral elements was used for spatial 

discretization of the domains Ω and Ωb [50]. The HPS was discretized in space using cubic-

hermite line elements [62]. Elliptic (11) and parabolic portions (12) of the bidomain 

equations are decoupled and solved sequentially [63]. Temporal discretization relied upon 

elliptic-parabolic decoupling and operator splitting of diffusion and reaction terms. That is, 

first the elliptic system (11) is solved, then an operator splitting approach is employed to 
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subsequently solve the parabolic system [56,47,57]. This allows us to treat reaction and 

diffusion terms separately. The reaction term represented by the ODE system (4) is solved 

using an accelerated Rush–Larsen technique, see [43], and the diffusion problem is solved 

using a Crank–Nicolson scheme. Using tk = kΔt yields the following linear system of 

equations to obtain  ∈ ℝN × ℝN × ℝN such that

(16)

(17)

(18)

(19)

(20)

where

(21)

(22)

(23)

 with  being fast acting gating variables solved for by evaluating an analytical 

solution, τ and  are functions of the rate coefficients which govern channel gating 

kinetics, and  are slower acting states, integrated with a forward Euler method [43]. From 

this construction and  we conclude that the matrices (21)–(23) are symmetric 
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and positive semi-definite. The CG method is therefore applicable to solve the linear systems 

of equations (16) and (20).

2.4 Linear solvers

All linear solvers used in this study were implemented in the publicly available numerical 

package Parallel Toolbox (pt) [33,23]. The cardiac bidomain equations were solved in 

parallel using the Cardiac Arrhythmia Research Package (CARP) [61] as an outer 

framework which was interfaced with the pt library. Technical aspects have been described 

elsewhere [35]. CARP makes use of the MPI based library PETSc [4] as the basic 

infrastructure for handling parallel matrices and vectors. Parallel partitioning of unstructured 

grids relies upon the graph based domain decomposition ParMetis [29,30].

Details on the methods employed for solving the bidomain equations in parallel have been 

reported previously [42,63,35]. Briefly, the elliptic portion of the bidomain equations is 

solved using the algebraic multigrid preconditioner ptAMG [33] with an iterative CG solver 

method (ptAMG-PCG). The parabolic portion of the bidomain equation is solved using an 

ω-Jacobi preconditioner, also in combination with the iterative CG solver (ωJ-PCG), using 

an ω of 2/3 and two iterations per CG iteration [35]. In bidomain simulations no 

extracellular grounding electrode was used. Our solver enforced the average extracellular 

potential to be zero by employing a rank-one stabilization.

2.5 Eikonal model

In the early nineties, the eikonal model has been proposed as an efficient way of computing 

arrival times of depolarization wavefronts in the myocardium, and its potential limitations 

have been studied extensively [17,31,14]. Wavefront arrival times based on the eikonal 

model have also been used to prescribe the spatio-temporal evolution of the transmembrane 

voltage to predict extracellular potentials and electrograms [13,15,16].

In the eikonal model, wavefront arrival times ta in the myocardium Ω are described based on 

a spatially heterogeneous orthotropic velocity function encoded as V (x) and initial 

activations t0 at locations Γ. The eikonal equation is of the form

(24)

where Ω is the myocardium and ta is a positive function describing the wavefront arrival time 

at location x. The symmetric positive definite 3 × 3 tensor V (x) holds the squared velocities 

(vl(x), vt(x), vn(x)) associated to (l(x), t(x), n(x)), respectively the longitudinal, transversal 

and normal fiber directions:

(25)
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This definition is analogous to that of the conductivity tensor in (6), and since V (x) and 

σi(x) are based on the same fibers (l, t, n) it follows that the velocities (vl, vt, vn) and the 

conductivities (gl, gt, gn) in (6) must be proportionally coupled. Fitting conductivity to a 

desired conduction velocity at a given spatial discretization is a non-trivial task and has been 

discussed in detail in [19].

It is important to note, that in the intended application of using the eikonal model as a fast 

forward approach for model personalization, {V, σi, σe} must be identified. For the sake of 

presenting the methodology, we prescribe constant conduction velocities and rule-based 

heterogeneous fiber and sheet directions in the intracellular domain.

The eikonal equation is solved using a custom implementation of the Fast Iterative 

Algorithm [21] with further additions to facilitate the incorporation of a His–Purkinje 

System (HPS) and its coupling to the myocardium through Purkinje-ventricular junctions 

(PVJ), similar to an implementation reported in [41].

A finite-element-based tetrahedral tessellation was used to spatially discretize the domain Ω 
and line elements were used for discretizing the HPS. A PVJ is therefore represented as a 

vertex where a line element connects to a tetrahedron. Asymmetric delays in impulse 

transduction between PS and myocardium were taken into account with 10 ms and 3 ms in 

anterograde and retrograde direction, respectively [27,10].

2.6 Reaction-eikonal model

Using an eikonal model ta(x) can be computed efficiently with sufficient accuracy at a lower 

spatial resolution and, thus, lower computational cost as compared to R-D models, which 

demand higher spatial resolutions due to numerical accuracy constraints [36]. This motivates 

a reaction-eikonal (R-E) model, where the propagation of depolarization wavefronts is 

mediated by eikonal-based activation maps and not by diffusion. Depolarization at site x is 

initiated at time ta(x) by a prescribed stimulus current, Ifoot, which is designed to depolarize 

the local membrane at x above the activation threshold of the sodium current. The time 

course of Ifoot(t) is chosen to depolarize the membrane following the same foot of an action 

potential, Vm,foot, as otherwise mediated by diffusion in a R-D model. That is, the foot 

current in time is given by

(26)

and in space by

(27)
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A detailed rationale on the design of Ifoot(t) is given in Appendix A. In the R-E model the 

current Ifoot is either added as an additional stimulus current or is used to replace the 

diffusion term, which yields these two scenarios

(28)

or

(29)

In the latter formulation the contributions of the diffusion operator towards changing the 

local transmembrane voltage Vm(x, t) are fully ignored. Note that {Φi|Vm} suggests that 

either Φi or Vm needs to be inserted, respectively if the bidomain or pseudo-bidomain model 

is used. This omission is computationally enormously beneficial as the problem of solving 

the R-E system is reduced to purely local pointwise operations. However, since diffusion 

plays an important role in smoothing out gradients in Vm during repolarization the total 

neglect of diffusion may potentially distort the signature of repolarization in electrograms 

and the ECG to an unacceptable degree. To evaluate the accuracy of these two strategies – 

referred to as R-E+ or R-E− model which considers or ignores diffusion, respectively – 

relative to a bidomain R-D model the following models were investigated:

R-E− Diffusion is neglected, thus we solve

(30)

R-E+ Diffusion is taken into account. In order to avoid excess stimulation and distortions of 

the supra-threshold upstroke phase, an additional threshold condition was applied to Ifoot:

(31)

where Vth is chosen with a given margin of safety above the intrinsic excitation threshold of 

the cellular dynamics model used. Therefore, Ifoot(x, t) guarantees a latest time of activation, 

but activation can happen earlier due to diffusion currents. The equation we solve is then

(32)
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Both R-E+ and R-E− model were compared to R-D model results to quantify deviations 

during depolarization and repolarization and to gauge the suitability of these models for 

predicting potential fields Φe(x, t) and electrograms.

2.7 Evaluation benchmarks

The ability of the R-E model to produce accurate activation and repolarization sequences as 

well as the fidelity of computed electrograms in the near field close to the electrical sources 

in the myocardium and in the far field at the body surface was evaluated. The evaluation was 

based on comparing R-E model predictions against gold standard high resolution bidomain 

R-D models which served as a reference.

2.7.1 Benchmark setups—Two setups of different complexity were considered, a 

geometrically simplified geometry of a transmural wedge preparation (dimensions: 25 × 25 

× 5 mm) and a human biventricular (BiV) geometry equipped with a topologically realistic 

model of the His–Purkinje system (HPS). Both geometries were immersed in a conductive 

bath with a conductivity of σ = 1.0 S/m. Fiber architecture was incorporated assuming a 

linear rotation of fiber angles from −60° at the epicardium to +60° at the endocardium. 

Tetrahedral finite element meshes were used to discretize the geometries at different spatial 

resolutions, dx = 100, 200 and 400 μm for the wedge setup and average discretizations of dx 
= 220, 440 and 880 μm for the BiV setup. Details on the construction of the BiV benchmark 

setup were reported previously [3,20].

The Ten-Tusscher (TNNP) model [59] was used to describe cellular dynamics of ventricular 

myocytes. The TNNP model accounts for differences in the transient outward and slow 

delayed rectifier currents that make up the intrinsic electrophysiological heterogeneity in 

endocardial, midmyocardial, and epicardial regions [1]. In the human BiV setup, the 

ventricular wall consisted of 30% endocardium, 45% midmyocardium and 25% epicardium. 

In addition to transmural heterogeneity, apicobasal heterogeneity is also known to exist in 

the heart [58]. In the BiV setup apicobasal heterogeneity was accounted for via an alteration 

of the slow delayed rectifier potassium current IKs. In humans, action potential duration is 

longer at the base than at the apex [58]. To incorporate these characteristics into the 

benchmark setup, the ventricles were divided into base, mid, and apex regions where IKs was 

rescaled by factors of 1.0, 1.25 and 1.5, respectively [32]. Cellular dynamics in the HPS was 

described by the Stewart et al. model of a human Purkinje cell [55].

Assuming rotational isotropy of conduction velocities, the scalar conductivities used to 

compute the conductivity tensors {σi, σe} were chosen close to experimental measurements 

[49] for the wedge as gil = 0.16069, gel = 0.625, git = 0.04258 and get = 0.236, and for the 

BiV setup as gil = 0.23415, gel = 0.22, git = 0.08603 and get = 0.13, which resulted in 

conduction velocities of 0.6 m/s and 0.3 m/s in longitudinal and transverse direction, 

respectively. Note that subscripts i and e refer to intracellular and extracellular domains, 

respectively, and l and t to a longitudinal and transversal directions, respectively. These 

velocities were prescribed for all spatial resolutions. The conductivity of the surrounding 

bath medium and the blood pool in the BiV, σb, was chosen as 1 S/m. The membrane 

Neic et al. Page 11

J Comput Phys. Author manuscript; available in PMC 2017 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



surface-to-volume ratio was chosen as β = 1/1400 cm−1 and the membrane capacitance as 

Cm = 1 μF/cm2.

2.7.2 Activation and repolarization sequences—Reference solutions were 

computed with the highest resolution meshes (100 μm and 220 μm for wedge and BiV 

setups, respectively) using both bidomain and pseudo-bidomain R-D models to be compared 

then against pseudo-bidomain R-E models. In the wedge benchmark, R-E models were 

solved over the same range of mesh resolutions as the R-D model. If not otherwise noted, in 

the BiV case resolutions of dx = 220 μm and dx = 880 μm were used for R-D and R-E 

models, respectively.

Wavefront propagation in the wedge setup was initiated at the S1 and S3 stimuli at time t = 0 

ms and at the S2 stimulus at time t = 5 ms. In the BiV benchmark, propagation was initiated 

at time t = 0 by stimulating the His bundle (Fig. 1).

Metrics used for assessing the quality of the R-E approximation during the activation phase 

were based on the relative deviations between activation maps ta,R–D and ta,R–E

(33)

as well as temporal features of the upstroke phase of the action potential such as differences 

in shape between Vm,R–D and Vm,R–E and rate of rise, V̇
m,R–D and V̇

m,R–E. Activation maps 

ta,R–D were constructed by using the instant of maximum upstroke velocity, V̇
max, as a 

marker of local activation [54]. For gauging the fidelity of the R-E models in reproducing 

repolarization gradients, the spatial distribution of Vm(x, t) over transmural cross section of 

the wedge experiment and the absolute deviations of Vm(x, tr50) between the R-E models 

and the R-D model

(34)

at tr50 the time instances of 50% repolarization, were compared.

2.7.3 Electrograms and ECGs—Subsequent to the evaluation of the R-E model’s 

ability to faithfully represent activation maps ta(x) and electrical source fields Vm(x, t), its 

potential to provide accurate predictions of extracellular potential fields Φe(x, t), 
endocardial/epicardial electrograms as well as ECGs were analyzed. Electrograms, as 

measured with endocardial contact mapping systems, recorded in the vicinity of the 

endocardium, and non-contact mapping systems, recorded in the blood pool, were simulated 

in both the simplified wedge benchmark and the anatomically accurate BiV benchmark. The 

same activation and repolarization sequence simulations were repeated with the R-D and R-

E models, using a pseudo-bidomain model as an electrical source representation [7], to 

compute extracellular potentials Φe,R–D and Φe,R–E, respectively. The absolute deviations of 
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Φe between the R-E models and the R-D model, at time instances of activation and 

repolarization, were compared.

(35)

Further, electrogram traces were compared at the recording sites PE in the wedge and PLV 

and PRV in the BiV benchmark (Fig. 1).

In addition to comparing electrograms recorded in the near field close to the myocardial 

sources, ECG recordings were simulated in the BiV benchmark to quantify differences 

between high resolution R-D model and lower resolution R-E model with regard to 

extracellular potentials Φe in the far field. A simplified ECG model was used based on the 

assumption of the heart being immersed in an unbounded conductive medium. In this case 

unipolar extracellular potentials can be recovered by using the integral solution to Poisson’s 

equation

(36)

where Φe are the potentials at a given field point, xf, Im is the source density at a given 

source point, xs, and rsf = ||xs − xf|| is the distance between source and field point [6,44].

Nine unipolar electrograms {ΦL, ΦR, ΦF, Φ1, Φ2, Φ3, Φ4, Φ5, Φ6} were recovered from 

leads located at the approximated clinical standard electrode positions {xL, xR, xF, x1, x2, x3, 

x4, x5, x6} at the torso surface (Fig. 1). Following [34], a twelve lead clinical standard ECG 

was derived then including the three Einthoven leads {VI, VII, VIII}, the augmented 

Goldberger leads {VaVL, VaVR, VaVF}, and the Wilson leads {V1, V2, V3, V4, V5, V6}.

2.7.4 Computational costs—Execution times for running R-D, R-E+ and R-E− model 

were recorded and broken down into the costs of solving eikonal equation (24), parabolic 

PDE (12), elliptic PDE (11), the set of ODE’s forming the reaction term (4) and of solving 

Eq. (36) to compute a body surface ECG.

3 Results

3.1 Activation sequence

The ability of the R-E model to approximate activation sequences as computed with a high 

resolution R-D model was gauged by comparing activation maps ta(x). If not noted 

otherwise, a full bidomain formulation is used for the R-D model and a pseudo-bidomain 

formulation for the R-E models. A comparison of the maps ta,R-D(x), ta,R-E+(x) and 

ta,R-E−(x) at dx = 100 μm and dx = 400 μm is shown in Fig. 2A. In contrast to the R-D 

models, the R-E models do not show any variability in conduction velocity at lower spatial 

resolutions. Comparing the activation maps at dx = 400 μm with the 100 μm bidomain R-D 

reference solution reveals that conduction velocity of the R-D models are appreciably slower 
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when reducing spatial resolution from 100 μm to 400 μm [36] whereas this effect was not 

witnessed with the R-E models.

Fig. 2B highlights differences in activation patterns, by displaying the histograms of the 

relative deviation (33) between the gold-standard bidomain R-D model and the pseudo-

bidomain R-D, R-E+ and R-E− models. As previously demonstrated [7], with 85% of the 

activation times showing a deviation below 1%, the pseudo-bidomain R-D based activation 

sequence matches very closely the activation sequence based on the computationally 

substantially more expensive bidomain model. Also for the R-E models differences were 

small, with 95% of the R-E+ activation times having a deviation below 3% and almost 80% 

of the R-E− activations deviating less than 3%.

In the human BiV benchmark, a complex HPS initiated ventricular activation sequence was 

simulated with a R-D bidomain model and a R-E pseudo-bidomain model. The HPS 

initiated propagation at the ventricular endocardium at numerous PVJs, leading to a large 

number of depolarization wavefronts which increasingly amalgamated when traversing the 

myocardial wall in a transmural direction. A close match in shape and locations of the PVJs 

between the 220 μm and 880 μm BiV discretizations proved to be key in order to match 

transmural activation shapes. This was not the case at all PVJ locations, as can be seen in 

Fig. 3A. Still, a good overall agreement of the conduction velocity between the 220 μm R-D 

simulation and the 880 μm R-E simulations was observed, as a close activation match (75% 

of activations deviating less than 7.5%) could be maintained over the relatively large spatial 

distances in the human heart (Fig. 3B).

3.2 Coupling of eikonal model with reaction terms

The effect of coupling the eikonal-triggered current, Ifoot(x, t), upon the foot, upstroke and 

early repolarization of propagated action potentials is illustrated in Fig. 4. Action potential 

propagation was simulated with R-D, R-E+ and R-E− at grids of varying resolutions dx = 

100 μm, 200 μm and 400 μm. The time course of the upstroke of the action potential was 

recorded at location PE (Fig. 1A). Time traces obtained with the R-D model feature the 

known artifacts of reduced conduction velocity with coarser spatial discretization [36] (Fig. 

4A). Moreover, at the coarsest resolution of dx = 400 μm additional bumps appeared during 

the upstroke phase of the action potential due to the inaccurate representation of gradients at 

coarser spatial resolutions. Minor delays were also witnessed with the R-E+ model, albeit to 

a much lesser degree, however diffusion-mediated bumps during the upstroke phase 

appeared as well the same way as in the R-D model. At the finer resolutions of 100 and 200 

μm the time course of foot and upstroke of the action potential coincided very closely (Fig. 

4B). The effect of ignoring diffusion in the R-E− model is highlighted in Fig. 4B. In this case 

the upstroke is slightly precipitated and the overshoot is overestimated.

3.3 Repolarization sequence

Gradients in transmembrane voltage during repolarization are the sources of extracellularly 

recorded repolarization signals such as the T-wave in the ECG. The fidelity of the R-E 

models in replicating these gradients were analyzed at tr50 = 305 ms the instant of ≈ 50% 

repolarization at the center of the wedge preparation (Fig. 5A).
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As displayed in Fig. 5B, no significant differences were detected between R-D and R-E+ 

models in the potential map across the center line of the cross section Vm(xmid, tr50) as well 

as in the absolute deviation metric (34), as the consideration of the diffusion term in the R-

E+ model smoothed out intrinsic repolarization gradients exactly the same way as in the R-D 

model. This was not the case with the R-E− model which neglects diffusion and thus 

preserves intrinsic gradients. This led to a significant overestimation of spatial gradients 

across adjacent zones of differing intrinsic action potential duration relative to the R-D 

model and also altered temporal dynamics of repolarization noticeably (Fig. 5C).

Similar observations were made in the BiV benchmark where repolarization patterns were 

compared between the high resolution R-D and the lower resolution R-E models. Fig. 6 

illustrates differences in repolarization of R-E+ and R-E− relative to the R-D model. The 

most significant differences appeared in the vicinity of PVJs. Due to the discrete coupling 

method used, the lower resolution R-E experiments featured larger tissue volumes at lower 

potential levels around PVJs as compared to the high resolution R-D experiment. As in the 

wedge experiment, the R-E− model significantly overestimated repolarization gradients 

around the transitional zones between regions of different intrinsic action potential 

durations. Quantitatively, the absolute deviation of the R-E models was small, with around 

70% of potential values deviating less than 2 mV in the case of R-E+ and 4 mV in the case 

of R-E−.

3.4 Electrograms and ECG

Extracellular potential fields Φe(x, t) were computed with R-D, R-E+ and R-E− pseudo-

bidomain models in both wedge and BiV setup. Φe(x, t) in the wedge benchmark was 

visualized during wavefront propagation at td = 40 ms, the time instance where the activation 

fronts of S2 and S3 are almost colliding (Fig. 7A), as well as during repolarization at td = 

320 ms (Fig. 7B). Unipolar electrograms recorded at electrode location PE are shown in Fig. 

7C. All models approximated the depolarization phase of the electrogram with sufficient 

accuracy which resulted in very similar potential fields Φe(x, t). 90% of R-E+ potential 

values deviated less than 0.25 mV and 95% of R-E− values deviated less than 0.75 mV. 

During repolarization, a quantitatively similar accuracy of the R-E models could be 

observed. Still, the overestimation of spatial gradients of Vm in the R-E− source model due 

to the absence of diffusion translated into an overestimation of gradients in Φe. This is 

particularly apparent in the late repolarization phase in the electrogram shown in the R-E− 

panel of Fig. 7C). In contrast, the R-E+ model yielded electrograms which were virtually 

indiscernible from those provided by the reference R-D model (compare R-D and R-E+ 

panel in Fig. 7C). This was also the case when using coarser resolutions (compare R-E+ and 

R-E+ 400 μm panels in Fig. 7C).

Analogously, the distribution of Φe(x) for the human BiV benchmark was compared during 

activation at td = 60 ms and repolarization at tr = 390 ms between R-D and R-E models. 

Minor deviations in potential maps Φe(x, td) during depolarization were apparent between 

R-D and the R-E models (Fig. 8A). In regions of more pronounced mismatch in the 

activation map 3A an analogous mismatch was witnessed in Φe(x, td). Quantitatively, most 

potential deviations were in the range of 1 to 3 mV. The repolarization potentials maps Φe(x, 
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tr) showed excellent agreement between R-D and R-E+ model and noticeable deviations for 

the R-E− model (Fig. 8B). Similarly, this was apparent with electrograms computed at the 

recording sites PLV and PRV (Fig. 8C).

A standard clinical ECG was simulated with R-D, R-E+ and R-E− model using the lead 

system illustrated in Fig. 1. ECG traces of all three models are shown in Fig. 9. For the 

depolarization phase, the high resolution R-D model and the low resolution R-E models 

matched well, with the biggest deviation being at the V4 lead. However, during 

repolarization the R-E− model showed significant deviations at multiple leads.

3.5 Computational costs

Table 1 summarizes the timings recorded for the human BiV benchmark. Execution times 

incurred for solving the eikonal equation (24) and forward ECG model (36) were 

insignificant, amounting only to a fraction of the overall setup time and as such there were 

not explicitly listed. For instance, computing the activation map ta(x) for the R-E simulations 

with the 880 μm human BiV model took only ≈7 seconds. The gold standard R-D simulation 

with a resolution of dx = 220 μm required over three orders of magnitude more CPU time as 

compared to the R-E+ simulation at a resolution of dx = 880 μm.

4 Discussion

In this study we describe novel methodology for modeling intracardiac electrograms and 

ECGs in human organ scale models in a computationally efficient manner. A key 

requirement for modeling electrograms with a high degree of physiological fidelity is a 

biophysically accurate representation of bioelectric sources in the heart. The cardiac 

bidomain model or equivalent computationally cheaper variants [7,45] are considered to 

provide the most accurate source representation at mesoscopic (ensembles of cells large 

enough for homogenization) up to the macroscopic size scales (larger tissue patches up to 

the organ scale). However, the reaction–diffusion nature of these models imposes accuracy 

and stability constraints on numerical solution schemes which demand high spatio-temporal 

resolutions to resolve the fast transients and steep gradients driving the propagation of 

depolarization wavefronts, rendering bidomain simulations of human hearts computationally 

vastly expensive [37,45].

Eikonal equation have been shown to be an accurate approach for computing activation and 

repolarization sequences in the heart [17,31,14] The plain eikonal equation neglects 

curvature effects, but can be solved very efficiently [53,21]. To compute electrograms in the 

interstitial space, within the cavities, at endocardial or epicardial surfaces or at the body 

surface eikonal-based arrival times of depolarization wavefronts must be coupled to a source 

model to represent the biophysical quantities such as Vm, Im or Φi [13,15,16]. To achieve 

this coupling between instants of activation ta as provided by an eikonal model with reaction 

terms describing the electrical sources in a R-E model in a physiologically accurate way, a 

set of conditions must be fulfilled for a R-E model to be as universally applicable as possible 

as an efficient surrogate for a computationally expensive R-D bidomain model. First and 

most importantly, the difference in electrical activation sequence between R-D and R-E 

model must be sufficiently small, as activation governs the spatio-temporal behavior of 
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depolarization wavefronts which in turn governs the depolarization complex in electrograms 

and the ECG. Secondly, the coupling of instants of activations with the reaction term should 

not distort the upstroke phase, particularly the late positively polarized phase, as any 

distortions there may interfere with the early repolarization phase of the action potential and, 

thus, alter the spike and dome morphology and influence important cellular signaling 

processes governing Ca2+ handling and excitation–contraction coupling [52,24]. Thirdly, 

during repolarization electrotonic currents act to smooth out the intrinsic heterogeneity of 

cellular dynamics between different regions in the heart. These interactions are not captured 

by local computation of reaction terms with eikonal-based activation times. However, the 

accurate representation of repolarization gradients is delicate as these directly influence the 

morphology of the repolarization signal in electrograms and the T-wave in the ECG. The 

developed R-E modeling methodology satisfies all of these requirements.

We demonstrate by comparing against a high resolution R-D bidomain simulation in both a 

simplified wedge benchmark as well as in a human BiV benchmark that i) activation 

sequences between R-D and R-E model are matched very closely; ii) the upstroke and 

overall morphology of the action potential remain unaffected by the R-E approach; and, iii) 

the repolarization patterns between R-D and R-E models agreed sufficiently well. These 

features combined yield electrograms and ECG of high physiological fidelity which can be 

computed with significantly reduced computational expenses as compared to a R-D model. 

These savings are largely attributable to the ability of the R-E model to accurately represent 

activation sequences with coarser computational meshes. Overall, these features render the 

R-E model a highly suitable approach for various modeling applications such as 

investigating the physics of pacing and sensing or for being used as a forward model in the 

patient-specific personalization of clinical electrophysiology models. In addition, as all 

biophysical details of the reaction model are fully preserved, the R-E model is highly 

suitable as an efficient driver for coupled electro-mechanical simulations which use 

biophysically detailed coupling between electrophysiology and myofilament model [3].

4.1 Coupling of eikonal model with reaction terms

Eikonal-based activation times must be coupled to a source model to represent the 

bioelectric sources which generate extracellular potential fields. In general this requires a 

trigger at time ta at location x to initiate an action potential. The method is based on the 

mathematical description of the foot of a propagated action potential for which we provide 

the theoretical underpinnings in Appendix A. Our method provides a generic mechanism for 

coupling any model of cellular dynamics with an eikonal-based triggering instant ta while 

avoiding any alterations of cellular dynamics due to the coupling terms. This is achieved by 

using a physiology-based current, Ifoot, which drives the local membrane up to the threshold 

of sodium channel opening. Characteristic artifacts as they are typically seen in action 

potential waveforms stimulated with non-physiological currents, are avoided. Specifically, 

we demonstrate that i) the foot of the action potentials remains essentially unaffected (Fig. 

4); ii) upstroke velocity and the action potential morphology of the positively polarized 

phase of the upstroke were virtually identical between R-D and R-E+ model. Preserving the 

morphology of the positively polarized phase of the upstroke and the early repolarization 

phase as in the R-D model is of pivotal importance as the action potential morphology 
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during these phases may not only strongly influence the internal state variables of a myocyte 

model [24], but also alter the J-wave in electrogram recordings [65,22]. Most importantly, 

the early repolarization phase sets the plateau voltage level of the action potential, affects 

action potential duration and intracellular Ca2+ concentration and therefore impacts Ca2+ 

handling and excitation–contraction coupling. While the overall action potential morphology 

may still be comparable, intracellular signaling may be significantly impaired. Similar 

considerations apply to numerical discretization artifacts which affect the late upstroke 

phases. For instance, numerical schemes were reported geared towards facilitating the use of 

coarser spatio-temporal discretizations [64]. Depending on a chosen discretization, action 

potential morphologies converged towards reference solutions computed with fine spatio-

temporal resolutions, but featured striking oscillations during early repolarization. Such 

significant deviations for the intrinsic morphology during early repolarization are 

unacceptable in biophysically detailed modeling studies due to the marked impact upon 

cellular signaling. In the case of the R-E− model alterations in upstroke waveform were 

noticed. Due to the absence of diffusion the waveform of the late phase of the upstroke 

resembles the upstroke observed in an isolated myocyte and thus upstroke velocity is faster 

and the overshoot is more pronounced. Depending on the specific applications such minor 

deviations may be acceptable or not.

4.2 Activation sequence

The electrical activation sequence ta(x) tracks the spatio-temporal patterns of depolarization 

wavefronts over the myocardium. These patterns represent the bioelectric sources which 

drive the extracellular potential fields and shape the depolarization complexes in 

extracellular potential recordings. An accurate description of bioelectric sources relies 

therefore upon an accurate representation of the activation sequence and the computation of 

extracellular potential fields in turn relies upon an accurate source model. The location of 

wavefronts and their spatial profile is directly reflected in the depolarization complexes of 

electrograms. An accurate source model is therefore key for modeling electrograms with the 

best possible fidelity, particularly if finer details of electrograms recorded in closer vicinity 

to the sources at endocardial or epicardial surfaces are under investigation.

As illustrated in Figs. 2, the R-E model is able to replicate the activation sequence computed 

with a R-D model at high spatial resolution with high fidelity at lower resolutions at a 

fraction of the computational costs. However, as shown in Fig. 3, differences in the 

representation of PVJs at different spatial resolutions may induce some degree of mismatch 

between high resolution R-D and low-resolution R-E activation patterns. This is to be 

blamed largely on the discrete coupling approach and uncertainties in the impulse 

transduction between the HPS and the ventricular myocardium [62].

As evidenced in Fig. 2A, conduction velocity v in the R-D model decreases with decreasing 

spatial resolution [36,18]. At very coarse resolution, where the spatial extent of the 

depolarization wavefront Δζ along a given direction of propagation ζ is at the same order of 

magnitude as the chosen spatial discretization dx, severe distortions of wavefront profiles or 

even artificial conduction blocks may occur [12]. This is particularly critical under 

conditions of slow or decremental conduction where Δζ may drop well below the length 
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scale of a myocyte. The R-E model is not prone to any resolution-related artefacts such as 

slowing of wavefront velocities or artificial conduction blocks, as can be witnessed in Fig. 2. 

This is at last the case withing certain bounds of spatial resolution and cannot be extended to 

arbitrary coarse meshes as an overly aggressive reduction in spatial resolution will inevitably 

reduce geometric fidelity and also fail to capture curvature and rotation of fiber and sheet 

arrangements. The coupling of eikonal-based activation times with reaction terms as 

implemented in our R-E model ensures that tissue at location x is activated in the latest at 

time t ≤ ta(x). A marginally earlier activation is possible in the R-E+ case since the combined 

effect of diffusion and the eikonal-triggered current Ifoot may precipitate the foot of the 

action potential such that the threshold of excitation is surpassed earlier than prescribed by 

the eikonal-based activation time ta.

4.2.1 Wavefront curvature and bath loading effects—Subtle differences in 

activation sequence between R-E and R-D model are expected since the eikonal model used 

for driving wavefront spread in the coupled R-E model does not capture all physical effects 

of the R-D model. In particular, there are three major phenomena impacting the activation 

sequence that are not accounted for by the R-E model: i) The eikonal model does not 

account for boundary effects. Wave front propagation accelerates when approaching a sealed 

end since more charge is available for depolarizing the local membrane as no charge is 

needed for charging downstream tissue [54]. Further, in the R-E− case, where diffusion is not 

considered, no normal current flux boundary conditions are imposed and as a consequence, 

activation isochrones do not meet the boundary at a right angle. Further, minor differences 

are also expected at sites where propagation is initiated. Relative to uniform conduction 

observed in tissue areas further away than 5 space constants from any tissue boundary, 

conduction velocity is slower [54]. ii) Unlike the eikonal-curvature model [31] the plain 

eikonal model [17] used in this study does not account for conduction slowing and 

acceleration due to changes in source-sink ratio of wavefronts of concave or convex 

curvature [11]. Thus wavefronts travel at the prescribed velocity along the eigenaxes of the 

tissue as if the wavefront was planar. iii) Finally, the R-E model does not capture wavefront 

acceleration effects due to bath loading [26,5,7,6]. Due to the higher conductivity of the 

surrounding medium relative to the interstitial conductivity, the conductivity of the 

extracellular current path at the tissue-bath interface is higher, which translates into a higher 

conduction velocity in superficial tissue layers [7]. Depending on factors such as the 

direction of wavefront propagation, the spatial variation in orthotropy due to fiber and sheet 

arrangement [25] and the ratio of conductivities between bath and interstitial space [7] 

wavefront profiles may be significantly altered by bath loading effects with a noticeable 

impact on electrogram signals. Accounting for bath loading with R-E models can be 

implemented by assigning faster conduction velocity within a thin tissue layer adjacent to 

the tissue-bath interface, but the accuracy of such an approach was not evaluated in this 

study.

Activation sequences as shown in Fig. 2 suggest that the impact of bath loading upon 

wavefront profiles was very minor, despite the use of those conductivity values which were 

shown to provoke the largest bath loading effect among all the measured interstitial 

conductivity values reported in the literature [49,51]. Due to the numerous confounding 
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factors the results presented in this study are not sufficiently complete to support a more 

general claim that bath loading effects do not impact wavefront profiles under all 

circumstances of physiological relevance. As we have shown previously [8], striking bath 

loading effects on transmural wavefront profiles are observed for planar wavefronts 

propagating in an apicobasal direction in absence of fiber rotation. However, in mammalian 

hearts where fiber rotation is always present and wavefronts move predominantly in a 

transmural direction, bath loading effects are largely attenuated with the impact of fiber 

rotation on wavefront profiles dominating over bath loading effects.

4.2.2 Purkinje-ventricular junctions—The endocardial terminals of the HPS – the 

Purkinje-ventricular junction (PVJ) – play a key role in the initiation of the ventricular 

activation sequence. There are two major differences in the representation of PVJ between 

the R-D and R-E simulations: i) While the topology of the HPS and the locations of the 

PVJs were exactly identical between the R-D and the R-E models, the transduction of the 

electrical activation from the HPS into the ventricles is mediated by different mechanisms. 

In the R-E models, each PVJ was connected to a single location at the endocardial surface 

and anterograde and retrograde transduction delays were precisely prescribed. This is not the 

case with the R-D model where transduction delays are influenced by the electrotonic load 

on either side of the junctions and by differences in electrophysiological properties [10]. ii) 

The mechanism used to transfer diffusion currents between HPS and cardiac tissue is the 

same between the R-D and R-E+ models. This mechanism does not enforce the volumetric 

shape of the PVJs to be consistent across different spatial discretizations. As a consequence, 

the PVJs are represented by different volumetric shapes at different spatial resolutions. This 

induces differences between the R-D and the R-E models at both activation and 

repolarization phases, which were not witnessed in the wedge experiments as the HPS was 

not represented there.

4.3 Repolarization sequence

The repolarization sequence, tr(x), is determined by the activation sequence ta(x) and the 

intrinsic action potential duration APD(x). APD(x) is modulated by electrotonic currents 

which act to precipitate or delay repolarization (see Fig. 5). Compared to the duration of the 

action potential upstroke which lasts only ≈ 1 ms, repolarization is a much slower process 

lasting for several tens of ms. This translates into a much larger spatial extent of the 

waveback compared to the spatial extent of the wavefront. The constraints on spatial 

discretization during repolarization are therefore much more relaxed, facilitating the 

accurate representation of the spatio-temporal dynamics of wavebacks with much coarser 

resolutions. Numerical approximation errors are of lesser concern during this phase and as 

such the exact same discretization schemes can be used in both the R-D and the R-E+ 

models. Consequently, aside from minor discrepancies introduced by deviations in 

activation, the repolarization phase is virtually identical between the R-E+ and R-D models 

(compare R-D and R-E+ panels in Fig. 5). This is not the case for the R-E− model though. 

As the R-E− does not take into account diffusion intrinsic cellular differences in APD(x) are 

fully preserved, leading to sharp transitions between regions of different cellular dynamics. 

These sharp transitions act as artificial sources which noticeably influence the repolarization 

complex in electrograms (Fig. 7 and Fig. 8). However, it is worth noting that the scenario 
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considered in here with sharp transitions in intrinsic properties of cellular dynamics can be 

considered an extreme case. Gradients in ion channel properties exist in healthy hearts and 

are exacerbated in disease, but properties vary spatially in a smoother less abrupt fashion [9]. 

Thus this distinct disadvantage of the R-E− model is likely to play a less prominent role in 

cases with physiologically more realistic gradients in ion channels. Further, minor 

differences in repolarization behavior were also observed over the endocardia. These can be 

attributed to differences in modeling the physics of coupling the HPS with the myocardium 

via PVJs which is not identical between R-D and R-E models, as elucidated above in Sec. 

4.2.2.

4.4 Electrograms and ECG

In general, extracellular potential maps Φe(x) of the R-D model were accurately replicated 

with both R-E models which was also reflected in a close agreement of the depolarization 

complexes in the electrograms. This was also the case during repolarization, but only for the 

R-E+ model. The R-E− ignores diffusion and thus intrinsic heterogeneities in action potential 

waveforms were preserved. This introduced artificial sources which led to more severe 

differences in Φe(x) and noticeable distortions of the repolarization complexes in the 

electrograms.

Similar conclusions can be drawn with regard to modeling a clinical 12-lead ECG. 

Differences in depolarization complexes were marginal between the R-E+ and R-E− models. 

With respect to the R-D model, smaller QRS amplitudes were observed in several leads, but 

QRS duration was accurately reproduced. T-waves were virtually indiscernible between R-D 

and R-E+ model in 10 of 12 leads, but significant differences appeared in the R-E− based 

ECG traces in 6 leads.

While many salient features of the clinical standard ECGs were replicated by our model 

such as the progression of R magnitude and the reduction in S magnitude in the unipolar 

Wilson leads, other features such as concordant T-waves in the Einthoven leads or a Q-wave 

in lead I were not. Replicating all known ECG features for a regular sinus activation driven 

activation and repolarization sequence would require modifications of the generic Purkinje 

system as well as a more detailed modeling of repolarization gradients [32]. However, as the 

focus of this study was to demonstrate the suitability of the R-E model for replicating 

extracellular potential fields as produced with the gold standard bidomain model, a detailed 

reproduction of all known ECG features was beyond the scope.

4.5 Computational costs

The computational savings of the R-E models stem mainly from the reduced spatial 

resolution. Further significant reductions in execution times are possible by reducing 

temporal resolution as well, but this has not been fully explored in this study. R-E models 

impose significantly weaker constraints upon spatial discretization, h, compared to the R-D 

model [36,12]. Artificial h-dependent alterations in conduction velocity and depolarization 

wave forms are remedied as the coupling of eikonal-based activation maps ta(x) with 

reaction terms ensures accurately timed onsets of depolarization, even when using a coarser 

h. Since accuracy and stability constraints play a much less critical role during the 
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repolarization phases as spatial distribution of potentials are smooth and the rates of change 

with time are more than two orders of magnitude slower than during depolarization, 

temporal resolution dt can be reduced with R-E models. In the case of the R-E− model, the 

choice of dt is only governed by the stability constraints imposed by the ODE integrator and 

the desired accuracy. With R-E− models in absence of diffusion (see Sec. 2.6) even 

precomputed time-shifted action potentials can be used as reaction terms. In this scenario the 

entire system of equations is free of time derivatives thus allowing to solve the system only 

at the desired temporal output granularity and to reduce the solving of the system of ODEs 

to a simple table look-up. In the R-E− model all computations are entirely local without any 

need for communication which furnishes this approach with extremely parallel scalability. 

The R-E+ model is computationally more costly than the R-E− models, but in return allows 

to represent repolarization as accurately as the R-D bidomain model. This renders the R-E+ 

model an ideal driver for electro-mechanical simulations in which the coupling between 

electrophysiology and deformation model shall be represented with full biophysical detail.

Further reductions in h and thus in computational costs may be possible depending on a 

particular application. With anatomically accurate models such as the human BiV model 

used in this study the choice of h in the R-E models is dictated by the demands of resolving 

anatomical features, parameter heterogeneities as well as solution fields with sufficient 

accuracy. With coarser h the quality of representing potential fields Φe(x) is noticeably 

diminished leading to jagged and noisy electrograms which cannot be used for further 

analysis without appropriate filtering (not shown). In our view a choice of h ≤ 1 mm is most 

suitable for R-E models and can be considered a balanced trade-off between compute cost 

and accuracy.

4.6 Limitations

Due to its efficiency, the presented R-E model can be used as a fast forward model for a 

wide range of applications. Application scenarios are the modeling of action potential 

propagation and the electric fields linked with it. Due to the design based on using the 

current Ifoot, this also includes models with electrophysiological heterogeneities in terms of 

resting potential. As discussed in section 4.2.1, a minor limitation of the R-E model in our 

implementation, is the use of a plain eikonal model to drive activation as opposed to a more 

advanced eikonal-curvature model. A major limitation of the R-E model in its current form, 

is its unsuitability for studying conduction block mechanisms or reentrant activation 

patterns. Any application to problems that involve the formation or maintenance of reentrant 

activation patterns are therefore precluded.

5 Conclusions

This study presents novel methodology for the efficient computation of electrograms and 

ECGs in human whole heart simulations. Using the coupled R-E model activation and 

repolarization sequences and the extracellular potential fields they are generating can be 

computed with reduced spatio-temporal resolution and, thus, significantly reduced 

computational costs without compromising on accuracy and electrophysiological fidelity. 

Extracellular potential maps and electrograms predicted by the R-E model matched very 
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closely – within the margins of uncertainty of such models – with those predicted by the 

gold standard bidomain R-D model. Computational savings of three orders of magnitude 

could be achieved. Due to their efficiency R-E models are ideally suitable for forward 

simulations in clinical modeling studies which attempt to replicate electrophysiological 

recordings in the clinic or to efficiently personalize electrophysiological model features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A) The wedge geometry with the stimuli S1, S2, S3 and the sensing electrode with PE. B) 
The human BiV geometry with the His stimulus SHis, the right-ventricular and left-

ventricular sensing electrodes PRV and PLV and the ECG electrodes ΦL, ΦR, ΦF, Φ1, Φ2, Φ3, 

Φ4, Φ5, Φ6.
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Fig. 2. 
A) Activation maps of R-D bidomain (R-D (bdm)), R-E+ and R-E− models for the 100 μm 

and 400 μm wedge benchmarks. B) Histograms of the relative difference in activation time 

from the R-D model for the pseudo-bidomain (R-D (p-bdm)), R-E+ and R-E− models.
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Fig. 3. 
Comparison of activation patterns in the human BiV benchmark with HPS computed with R-

D and R-E models at mesh resolutions of 220 μm and 880 μm, respectively. A) Isochronal 

maps computed from the activation maps obtained with the high resolution R-D model and 

the lower resolution R-E+ model. B) Upper panels show activation maps ta,R-D, ta,R-E+ and 

ta,R-E− at the posterior endocardium and anterior epicardium as well as over the transmural 

cross sections. Lower panels show relative deviation histograms of ta,R-E+ and ta,R-E− w.r.t. 

ta,R-D.
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Fig. 4. 
Time traces Vm(t) taken from location PE at the endocardium of the wedge model. A) 
Comparison between R-D and R-E+ model for spatial resolutions of dx = 100 μm, 200 μm 

and 400 μm. B) Comparison between gold standard R-D model with R-E+ and R-E− model. 

Ignoring diffusion tends to accelerate upstroke velocity and to enhance the overshoot of the 

action potential.
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Fig. 5. 
A) Differences in transmembrane voltage distribution Vm(xmid, tr50) along a transmural line 

(dashed line) at tr50 = 305 ms, the instant of 50% repolarization, at the center of the cross 

section between R-D (100 μm) and the R-E models (400 μm). Vm and its normalized spatial 

derivative across the center line of the cross section are displayed as graphs. B) Histograms 

of the absolute deviation of Vm from the R-D model for the R-E+ and R-E− models at 400 

μm spatial resolution. C) Time traces of action potentials taken along a central transmural 

line at positions located at the center of endocardial and myocardial layer (the black circles 

on the dashed center lines in panel A) for R-E+ and R-E− models. R-D traces are not shown 

as they are not discernible from the R-E+ case.
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Fig. 6. 
A) Distribution of Vm of the R-D (dx = 220 μm) and R-E (dx = 880 μm) BiV models during 

repolarization at t = 330 ms. B) Histograms of the absolute difference between R-D and R-E 

models of the potential distributions presented in A.
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Fig. 7. 
Distribution map and absolute deviation histograms of Φe(x) during A) depolarization at td = 

40 ms and during B) repolarization at tr = 320 ms in the wedge benchmark. C) Comparison 

of electrograms Φe(PE, t).
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Fig. 8. 
Potential distribution and absolute deviation histograms of Φe(x, t) during A) depolarization 

t = 60 ms and B) repolarization t = 390 ms for the R-D (220 μm) and R-E (880 μm) models. 

C) Electrograms recorded at locations PLV and PRV.
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Fig. 9. 
Clinical standard ECG leads computed with R-D, R-E+ and R-E− models.
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Table 1

Execution time, Texec, in seconds for R-D and R-E human BiV simulation runs, broken down into compute 

time dedicated to solving elliptic PDE (Ell.), parabolic PDE (Par.) and set of ODEs. The degrees of freedom 

(d.o.f.) comprising the linear systems to be solved for the 220 μm and 880 μm models, the number of cores, 

Nc, as well as the used CPU time, TCPU, are given.

# d.o.f. # Nc Ell. Par. ODEs Texec TCPU

R-D 220 μm 46,920,304 1,024 72,227 2,593 735 75,555 7.8 · 107

R-E+ 880 μm   1,909,531      24      854    476 252   1,582 3.8 · 104

R-E− 880 μm   1,909,531      24      867       1 270   1,138 2.7 · 104
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