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ABSTRACT Relationships among traits were investigated on the genomic and residual levels using novel
methodology. This included inference on these relationships via Bayesian networks and an assessment of
the networks with structural equation models. The methodology employed three steps. First, a Bayesian
multiple-trait Gaussian model was fitted to the data to decompose phenotypic values into their genomic
and residual components. Second, genomic and residual network structures among traits were learned from
estimates of these two components. Network learning was performed using six different algorithmic
settings for comparison, of which two were score-based and four were constraint-based approaches. Third,
structural equation model analyses ranked the networks in terms of goodness of fit and predictive ability,
and compared them with the standard multiple-trait fully recursive network. The methodology was applied
to experimental data representing the European heterotic maize pools Dent and Flint (Zea mays L.).
Inferences on genomic and residual trait connections were depicted separately as directed acyclic graphs.
These graphs provide information beyond mere pairwise genetic or residual associations between traits,
illustrating for example conditional independencies and hinting at potential causal links among traits.
Network analysis suggested some genetic correlations as potentially spurious. Genomic and residual net-
works were compared between Dent and Flint.
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Selection exploits genetic properties of a population by passing favorable
alleles onto subsequent generations. Inbreedingof animals andplants, it
is crucial to distinguish between genetic (heritable) contributions and
environmental factors influencing traits, and the decomposition of
phenotypic variances and covariances between traits into their genetic
and environmental components has been under investigation for de-
cades (e.g., Fisher 1918; Hazel 1943; Falconer 1952; Robertson 1959;
Searle 1961; Roff 1995; Lynch and Walsh 1998). Identifying genetic
relationships between traits is an important research focus; an example

is a study of genetic correlations among 16 quantitative traits of maize
(Malik et al. 2005). Insights into the connections between developmen-
tal or phenological traits with target traits such as stress resistance
might assist breeding decisions. While such relationships may be an-
tagonistic when two target traits affect each other negatively, they can
be useful in genome-enabled prediction of traits when a complex trait is
influenced by a second trait that is easier to measure, assess, or breed
for. In addition, it has been found that selection for traits with low
heritability can be enhanced by joint modeling with genetically corre-
lated traits. Several advantages of multiple-trait prediction models have
been corroborated by experimental and simulation studies (e.g., Jia and
Jannink 2012; Pszczola et al. 2013; Guo et al. 2014; Jiang et al. 2015;
Maier et al. 2015).

Discovering and understanding phenotypic relations among traits
is therefore important in this context. Statistical methods have been
developed that specify connections among traits as directed influences,
in contrast to standardmultiple-trait models where connections among
traits are representedbyunstructured covariancematrices.One effective
approach, structural equation models (SEM), can describe systems of
phenotypes connected via feedback or recursive relationships (Gianola
and Sorensen 2004). SEM are regression models that allow for a
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structured dependence among variables, e.g., by a structure matrixL:
Elements ofL represent effects of dependence and can be either freely
varying, or the structure can be constrained by setting some entries to
zero a priori. For a given structure L; the effect of one variable on
another can be estimated using likelihood-based or Bayesian ap-
proaches. SEM are well established and many studies in the animal
sciences have investigated causal relationships among traits using
various SEM approaches and data sets, e.g., body composition and
bone density in mouse intercross populations (Li et al. 2006), calving
traits in cattle (de Maturana et al. 2009, 2010), or gene expression in
mouse data by incorporating genetic markers (Schadt et al. 2005;
Aten et al. 2008). Methodology, applications, and potential advan-
tages of SEM in prediction of traits were reviewed by Rosa et al. (2011)
and Valente et al. (2013). One of the limitations of SEM is that
connections between traits must be assumed known to be able to
estimate their magnitude.

To investigate connections among traits, Bayesian-network (BN)
learning methods can be used. BN are models representing the joint
distribution of random variables (e.g., traits) in terms of their condi-
tional independencies. There are two main types of algorithms for
learning a BN: constraint-based and score-based algorithms. The
former uses a sequence of conditional independence tests to learn the
network among variables, while the latter compares the fit of many
(ideally all) possible networks to the empirical data using a score. BN
have been used formany purposes in quantitative genetics, for example,
to predict individual total egg production of European quails using
earlier expressed phenotypic traits (Felipe et al. 2015) and to study
linkage disequilibrium using single nucleotide polymorphism (SNP)
markers (Morota et al. 2012). BN have also been employed in genome-
assisted prediction of traits, with a performance thatwas at least as good as
that of other methods such as genomic best linear unbiased prediction or
elastic nets (Scutari et al. 2014). In addition, many studies have investi-
gated connections among several traits via a BN analysis incorporating
quantitative trait loci and phenotypic data (Neto et al. 2008, 2010;
Winrow et al. 2009; Hageman et al. 2011; Wang and van Eeuwijk
2014; Peñagaricano et al. 2015). BN can also search for connections
among SNPs and traits for feature selection, or in genome-wide associa-
tion studies by finding theMarkov blanket for one or several traits (Porth
et al. 2013; Scutari et al. 2013). However, interpretation of BNconnections
as causal influences is a delicate issue. Methodology and issues in causal
inference were reviewed by Rockman (2008) and go back to Pearl (2000).
Within the scope of the present study, BN are seen as a hypothesis-
generating tool with respect to the causal nature of the connections found.

Valente et al. (2010) investigated causal connections among phe-
notypic traits using an approach combining BN and SEM. They learned
network structure from Markov chain Monte Carlo (MCMC) samples
of the residual covariance matrix of a Bayesian multiple-trait model
using the inductive causation (IC) algorithm. This was a preliminary
step before fitting an SEM with the selected structure to estimate the
magnitude of influences among traits. These authors illustrated the
effectiveness of their approach with a simulation study.

Here, we also combine BN and SEM analysis to investigate several
traits simultaneously, but with respect to their genomic and residual
relationships: arguably, genomic connections among traits must be
different from residual relationships, the latter mainly due to environ-
mental causes. First, we learn genomic and residual networks using
different BN algorithms. The learned networks may provide a deeper
insight into relationships among traits than pairwise-association mea-
sures (such as correlations or covariances). Instead of using the IC
algorithm to analyze MCMC samples of covariance matrices, we use
predicted (fitted) genomic values and residuals from a multiple-trait

model as input variables for structure-learning algorithms. This
approach allows using available software for learning BN, is computa-
tionally easy and fast, and use of bootstrapping to assess uncertainty
regarding the edges is straightforward. Using this strategy, we study the
behavior of various BN algorithms on experimental data. Afterward, we
compareandassess theBNalgorithmsbyfittinganSEMtothe structures
learned from them.

The methodology is illustrated using a maize data set. Biological
objectives of this case study are the investigation of connections among
maize traits and the comparison of networks with respect to two
underlying sources of information (genomic and residual) and two
heterotic groups (Dent andFlint). Fivewell-characterized complex traits
were studied: biomass yield, plant height,maturity, andmale and female
flowering time. With these, well-known connections can be recon-
structed and new insights into potentially spurious trait connections
are obtained. After illustrating trait connections with respect to their
genomic and residual sources and identifying spurious connections, a
clearer picture on which traits should be included in a multiple-trait
prediction model or in an indirect selection process may be gained.

MATERIALS AND METHODS

Material
The data contain a sample of phenotypes and genotypes representing
two important European heterotic pools, Dent and Flint (Bauer et al.
2013; Lehermeier et al. 2014). In the Dent (Flint) panel, 10 (11) founder
lines were crossed to a common central Dent (Flint) line. Derived
double haploid (DH) lines were evaluated as testcrosses with the central
line from the opposite pool.

In both panels, five phenotypic traits were recorded: biomass dry
matter yield (DMY) (decitons per hectare), biomass dry matter
content (DMC) (percentage), plant height (PH) (centimeters), days
to tasseling (DtTAS) (days), and days to silking (DtSILK) (days).
Phenotypic values are available as adjusted means across locations
and replications. The adjusted means were mean-centered in each
DH population, as we focused on allelic rather than on population
effects. All traits were standardized to unit variance based on their
sample variance.

All DH lines of both panels were genotyped with the Illumina
MaizeSNP50 BeadChip containing 56,110 SNP markers (Ganal et al.
2011). After imputation and SNP quality control, 34,116 high-quality
SNPs remained in the Dent and Flint panels. Only markers that were
polymorphic within a panel were considered, which were 32,801
(30,801) SNPs in the Dent (Flint) panel. A total of 831 (805) Dent
(Flint) DH lines were used for analyses.

Methods
The methodology includes a genetic and a residual structure that are
expected to be different. The rationale behind this assumption is that
genetic connections among traits do not necessarily resemble the re-
sidual ones, and vice versa; typically, genetic and residual factors are
assumed tohave independentdistributions, reflectingcontrol bydisjoint
factors.

Exploring these connections among traits includes the following
steps: (1) fitting a Bayesian multiple-trait Gaussianmodel (MTM) to all
five traits to obtain posterior means of genomic values and of model
residuals for each panel, and transforming the predicted genomic values
tomeetassumptionsonsample independence requiredbyaBNanalysis;
(2) applying the BN analysis to the residual and transformed genomic
trait components; and (3) assessing the quality of the inferred structures
by a structure-comparative SEM analysis.
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MTM: We fitted a Bayesian multivariate Gaussian model to the d ¼ 5
traits and n ¼ 831 ðn ¼ 805Þ genotypes within the Dent (Flint) panel
to separate genomic values from random residual contributions to the
phenotypic values, and to estimate the genomic and residual correla-
tions between traits. The MTM model can be expressed as

y ¼ m51n þ uþ e; (1)

where y; u; and e are (nd · 1)-dimensional column vectors of scaled
adjusted means, genomic values, and residuals sorted by trait and
genotype within trait, respectively; m51n is a Kronecker product of
a (d · 1)-dimensional intercept vector m and an (n · 1)-dimensional
vector of ones. Since phenotypes y are mean centered, only trait-
specific intercepts are included in the model as fixed effects repre-
sented by the d coefficients in m:

The joint distribution of u and e was assumed to be multivariate
normal with the following specification:�

u
e

�
� N2dn

��
0
0

�
;

�
G5K 0
0 R5In·n

��
; (2)

where K is an (n · n)-dimensional realized-kinship matrix estimated
using simple matching coefficients (Sneath and Sokal 1973). G and R
are (d · d)-dimensional covariance matrices containing the genomic
and residual variance and covariance components, and the (n · n)-
dimensional identity matrix In·n represents the independence of re-
siduals among genotypes.

Flat priors were assigned to the elements of the intercept vector m:
The covariance matrices G and R were assumed to follow a priori
independent inverse-Wishart distributionswith specific degrees of free-
dom n and scale matrix Σ; regarded as hyper-parameters, i.e.,

GjΣG; nG � W21ðΣG; nGÞ (3)

and

RjΣR; nR � W21ðΣR; nRÞ: (4)

The hyper-parameters n and Σ were chosen such that: (1) they im-
plied relatively uninformative prior distributions of matricesG and R;
(2) the prior mode of genomic and residual trait variances was 0.5 for
each trait, and (3) the choice of hyper-parameters needed to ensure
that there exists an analog choice of hyper-parameters for a scaled-
inverse x2 prior defined later in the SEM models for trait variance
components. Considering (1), (2), and (3), we set nG ¼ nR ¼ 8 and
ΣG ¼ ΣR ¼ 7 � Id·d; with n and Σ in accordance with the parametri-
zation of the respective distributions in the R package BGLR and the
MTM function of its multiple-trait extension.

AnMCMC approach based on Gibbs sampling was used to explore
posterior distributions. A burn-in of 30,000 MCMC samples was
followedbyanadditional300,000MCMCsamples.TheMCMCsamples
were thinned with a factor of two, resulting in 150,000 MCMC samples
for inference. Posteriormeanswere then calculated form; u; e;G; andR
for the Dent and Flint panels separately. Genomic and residual trait
correlations and their SDswere estimated from samples of the posterior
distributions of G and R:

Subsequent BN analyses concentrated on û and ê separately, the
posterior mean estimates of u and e; respectively. Traditionally in
quantitative genetics and plant breeding, phenotypic variation is
decomposed into genetic and environmental random contributions;
genotype-by-environment interaction can confound both of these con-
tributions. In experimental data from plant breeding, phenotypic data

points are usually averaged across locations representing different en-
vironmental conditions, and every location contains replications of
experiments. This approach reduces noise from environmental effects
and also effectively decreases the influence of genotype-by-environment
effects in the data (Falconer and Mackay 1996). As a consequence,
residuals estimated with model (1) from such data include, e.g., non-
additive genetic effects and nonaccounted-for (micro-)environmental
effects, such as nongenetic physiological and morphological trait de-
pendencies. Random genomic values fitted with model (1) represent,
e.g., genetic connections among traits, induced inter alia by pleiotropy
and linkage disequilibrium. Here, we take the fitted genomic values and
residuals and investigate them with BN.

Predictive ability from a univariate Bayesian prediction model was
derived for each trait with 10 replicates of a fivefold cross-validation to
compare single-trait prediction with multiple-trait prediction. Prior
assumptionswere analogous to thoseof theMTM, that is, scaled-inverse
x2 distributions with four degrees of freedom and a scale parameter
equal to three were employed for each of the genomic and the residual
variances.

Transforming the genomic component to meet assumptions of the
BN learning algorithms: BN learning algorithms assume independent
observations. In the MTM described above, independence of residuals
between genotypes was assumed. In contrast, the genomic components
in u were correlated between genotypes due to kinship (represented by
the matrix KÞ in addition to being dependent within genotypes due to
genomic trait covariance (represented by thematrixGÞ: Before learning
BN from the genomic component, a transformation was therefore
applied to vector u such that the transformed vector u� was distributed
as Ndnð0;G5In·nÞ; i.e., elements of u� were independent between
genotypes while still preserving genomic relationships among traits
as encoded by G:

For this purpose, we decomposed the kinship matrix K into its
Cholesky factors, K ¼ LLT ; where L is an (n · n)-dimensional lower tri-
angular matrix, and define a (dn · dn)-dimensional matrixM ¼ Id·d5L;
so that M21¼ Id·d5L21 and ðId·d5LÞðId·d5L21Þ ¼ Idn·dn:

For u� ¼ M21u we have

Varðu�Þ ¼ Var
�
M21u

� ¼ M21VarðuÞ�M21�T
¼ M21 ðG5KÞ�M21�T
¼ �Id·d5L21�ðG5KÞ�Id · d5L21�T ¼ G5In·n (5)

because L21KðL21ÞT ¼ In·n; which follows directly from the defini-
tion of the Cholesky factor. This transformation and the resulting
covariance structure was used by Vázquez et al. (2010), but for a
single-trait model.

For a standard Cholesky decomposition of K ; a positive definite
realized kinship matrix is needed. Realized kinship matrices are not
guaranteed to be positive definite, in contrast to pedigree-based kinship
matrices. However, adjustments to assure positive definiteness are
available (Nazarian and Gezan 2016).

In subsequent BN analysis, U� and E denoted two (n · d)-
dimensional matrices formed from the vectors u� ¼ M21u and e by
arranging genotypes and traits in rows and columns, respectively.

Learning genomic and residual BN: A BN is a model that describes
connections among random variables. It consists of two components: a
statement about the joint distribution of these random variables,
and its graphical representation as a directed acyclic graph (DAG)
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(Nagarajan et al. 2013). The statement about the joint distribution
f ðVÞ ¼ f ðV1;V2; . . . ;VKÞ of the K random variables V1;V2; . . . ;VK

is that f ðVÞ can be decomposed into a product of conditional
distributions:

f ðVÞ ¼ f ðV1;V2; . . . ;VK Þ ¼
YK
k¼1

f ðVkjpaðVkÞÞ: (6)

Above, paðVkÞ; the “parents” of Vk; denotes the subset of random
variables in V on which Vk depends. Accordingly, Vk is then called
the “child” of all elements in paðVkÞ: In the respective DAG, all
random variables Vk are represented as nodes, and arcs point from
parents to their children. The joint distribution is also referred to as a
global distribution and the conditional distributions are called local
distributions. If the global and local distributions are normal and the
variables are linked by linear constraints, the BN is a Gaussian BN.

Here, the randomvariables investigated are the genomicandresidual
components of phenotypic traits. We chose a Gaussian BN as a
consequence of assuming that quantitative traits, and particularly
genomic values and residuals, follow a normal distribution. Many tests
and scores for learning BN assume independence among the observa-
tionsof the randomvariables. Inourstudy, the realized randomvariables
were the genomic values and the residuals from theMTM, of which the
former had to be transformed as described above. Sowe searched for the
decomposition of the following global distributions:

f ðU�Þ ¼ f
�
U�

�1;U
�
�2; . . . ;U

�
�5
� ¼Y5

k¼1

f
�
U�

�k
��pa�U�

�k
��

(7)

and

f ðEÞ ¼ f ðE�1;E�2; . . . ;E�5Þ ¼
Y5
k¼1

f ðE�kjpaðE�kÞÞ; (8)

where the index “�k” denotes the kth column of the respective matrix.
There are two types of algorithms to learn the structure of networks:

constraint-based and score-based algorithms (Nagarajan et al. 2013).
The constraint-based algorithms employ a series of conditional and
marginal independence tests to infer potential connections and di-
rections between each pair of variables. First, an undirected structure
linking variables directly related to each other is constructed. Next,
trios of variables where one is the outcome of the other two
(“v-structures”) are sought. Last, the remaining connections are ori-
ented whenever possible, such that neither cycles nor new v-structures
are created. For illustration, core structures with three nodes are shown
in Figure 1. In contrast, score-based approaches search through the
space of possible networks (including direction of edges) and compare
them by a goodness-of-fit score, returning the network with the highest
score.

In this study, we chose the Grow-Shrink algorithm (GS) (Margaritis
2003) as an example of a constraint-based approach, and tabu-search
(TABU) (Daly and Shen 2007) as an example of a score-based algo-
rithm. For comparing the constraint-based with the score-based ap-
proach, these two algorithms are ideal when dealing with small
networks of up to 10–15 traits. For larger networks, runtime-optimized
network learning algorithms might be preferred.

The GS was combined with four different tests for marginal and
conditional independence. We used the simple correlation coefficient
with an exact Student’s t-test (GS 1) and with a Monte Carlo permu-
tation test (GS 2) (Legendre 2000). Further, GS was combined with
mutual information, an information-theoretic distance measure. It was
investigated with an asymptotic x2 test (GS 3) and with a Monte Carlo
permutation test (GS 4) (Kullback 1959). Multiple testing issues in the
context of a constraint-based algorithm have been addressed by Aliferis
et al. (2010a,b). According to these authors, for a sample size of�1000,
a significance level of a ¼ 0:05 resulted in a worst-case false positive
rate of 6 · 1024 for arc inclusion. Choosing a ¼ 0:01 in the more
exhaustive GS, false positives should be avoided effectively with five
variables (traits) and �800 genotypes.

The TABU was combined with two different scores: the Bayesian
information criterion (BIC) (Rissanen 1978; Lam and Bacchus 1994)
(TABU 1) and the Bayesian Gaussian equivalent score (BGE) (Geiger

Figure 1 Structure learning: constraint-based algorithms
search for trios of variables and test their relations with
marginal and conditional independence tests. Thereby,
they distinguish between the stochastic decomposition
of the joint distribution of all variables as in (A) and the
decomposition as in (B). These two decompositions can
be represented in a DAG as shown. Whereas the
directions are clear and unique in (B), the influences’
directions in (A) can form three different graphs. Which
of these equivalent structures is most likely, one can only
deduce from the context of other already tested decom-
positions in their neighborhood and from the rule that no
cycles must be formed in the graph.
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andHeckerman 1995) (TABU 2). The BGE is a Bayesian scoringmetric
for Gaussian BN with many favorable properties. Inter alia, BGE as-
signs the same scores to equivalent network structures (Chickering
1995). Equivalent network structures refer to the same decomposition
of the global distribution with different edge directions (e.g., part A of
Figure 1).

In total, six (GS 1, GS 2, GS 3, GS 4, TABU 1, and TABU 2) different
learning settings were applied to the genomic and residual components
of model (1), respectively; all algorithms assuming a Gaussian BN.
Regarding the constraint-based approaches, the number of permuta-
tions used for each of the permutation tests was 450 (slightly more than
half of the genotypes in each of the two panels). Each of the six settings
was run with 500 bootstrap samples and the significance level was set to
0.01 (as mentioned above). After structure learning from the bootstrap
samples, we averagedover the 500 resultingnetworks as described in the
R package bnlearn (Scutari 2010; Nagarajan et al. 2013). Significance of
edges in the averaging process was assessed by an empirical test on the
arcs’ strength (Scutari and Nagarajan 2011).

The structure learned by the BN needed to be translated into a
structurematrix for SEManalysis.Thus, a (d· d)-dimensionalmatrixL
was formed from each learned structure. Each arrow of the DAG
pointing from a parent trait to a child trait becomes a freely varying
coefficient in the structure matrix in the column of the parent and the
row of the child. All other entries were set to zero a priori. The resulting
structure matrices are lower triangular matrices, since loops are not
allowed in a BN structure. The lower triangular form might not be
produced by an arbitrary order of traits but can always be formed by
rearranging the order of the traits by columns and rows; see Supple-
mental Material, Figure S1, for an example of how a DAG is trans-
formed into a structure matrix. If a learned structure was an element of
an equivalent class of several structures, only one representative of this
equivalent class was translated into a structurematrixL and assessed in
SEM analyses. Different SEM based on different L from the same
equivalent class may lead to different sets of coefficients. However, they

lead to the same deviance information criterion (DIC) or likelihood of
the respective SEM.

Hereinafter,LÛ� denotes the structure matrix of a network learned
from Û�; and LÊ denotes the structure matrix of a network learned
from Ê:

Assessing BN inference by SEM: In the followingparagraph,wepresent
how the structures found in theBNanalysis translate intoSEM; doing so
also clarifies howMTM and SEM are related. Genomic or residual trait
dependence can be described by the recursive linear regression models

u� ¼ �LU�5In·n
�
u� þ pu� (9)

and

e ¼ ðLE5In·nÞeþ pe; (10)

where LU� and LE denote the (d · d)-dimensional genomic and
residual structure matrices and pu� ðpeÞ are dn independent and
identically normal-distributed residuals. Independence among geno-
types in pu� follows from the transformation of u into u�; elements of
pe are independent since e are independent among genotypes by the
model assumptions of MTM. If the genomic and residual structures
in Equations 9 and 10 explain all genomic and residual trait covari-
ances (which true structures ideally do), then pu� and pe are also
independent between traits.

For genotype i; the models are

u�i ¼ LU�ui� þ
�
pu�
�
i (11)

and

ei ¼ LEei þ
�
pe
�
i: (12)

Equations 11 and 12 can be rearranged into

n Table 1 Phenotypic, genomic, and residual correlations for five traits in Dent (lower triangular) and Flint (upper triangular) with
posterior SDs in parentheses where appropriate as well as single-trait predictive abilities

Dent\Flint DMY DMC PH DtTAS DtSILK

Phenotypic correlations
DMY 20.36 0.68 0.60 0.56
DMC 20.13 20.50 20.59 20.64
PH 0.59 20.27 0.66 0.66
DtTAS 0.39 20.51 0.46 0.91
DtSILK 0.32 20.57 0.45 0.80

Genomic correlations
DMY 20.64 (0.07) 0.82 (0.04) 0.75 (0.05) 0.73 (0.05)
DMC 20.29 (0.10) 20.65 (0.06) 20.71 (0.05) 20.77 (0.04)
PH 0.79 (0.04) 20.27 (0.08) 0.76 (0.04) 0.75 (0.04)
DtTAS 0.60 (0.07) 20.66 (0.06) 0.60 (0.06) 0.95 (0.01)
DtSILK 0.46 (0.08) 20.67 (0.06) 0.52 (0.07) 0.88 (0.02)

Residual correlations
DMY 0.14 (0.05) 0.41 (0.04) 0.19 (0.05) 0.14 (0.06)
DMC 0.06 (0.05) 20.10 (0.06) 20.26 (0.05) 20.25 (0.05)
PH 0.33 (0.05) 20.22 (0.05) 0.35 (0.05) 0.36 (0.05)
DtTAS 0.20 (0.05) 20.26 (0.05) 0.25 (0.05) 0.68 (0.03)
DtSILK 0.17 (0.05) 20.35 (0.05) 0.34 (0.05) 0.63 (0.03)

Single-trait predictive abilitiesa

Flint 0.63 (0.04) 0.66 (0.05) 0.69 (0.04) 0.74 (0.04) 0.76 (0.04)
Dent 0.51 (0.05) 0.64 (0.04) 0.69 (0.04) 0.61 (0.04) 0.68 (0.03)

Traits: biomass dry matter yield (DMY) (dt/ha), biomass dry matter content (DMC) (%), plant height (PH) (cm), days to tasseling (DtTAS) (days), days to silking (DtSILK)
(days).
a
Average of 10 random fivefold cross-validations.
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u�i ¼
�
Id · d2LU�

�21�pu��i (13)

and

ei ¼ ðId · d2LEÞ21�pe�i; (14)

which imply that

Var
�
u�i
� ¼ Var

��
Id · d2LU�

�21�pu��i
�

¼
	
Id · d2LU�


21
Var
	�

pu�
�
i


h�
Id · d 2LU�

�21
iT
(15)

and

VarðeiÞ ¼ Var
�ðId · d2LEÞ21�pe�i�

¼ ðId · d2LEÞ21Var
	�

pe
�
i


h
ðId · d 2LEÞ21

iT
; (16)

where Var
	�

pu�
�
i



and Var

	�
pu�
�
i



are unknown diagonal matri-

ces. Let Cu ¼ Var
	�

pu�
�
i



and Ce ¼ Var

	�
pu�
�
i



for all i; i.e., the

model is homoscedastic. Note that Varðui�Þ ¼ VarðuiÞ when consid-
ering individual genotypes. Assuming that both genomic and residual
variances of traits are the same for all genotypes, the genomic and
residual covariance matrices G and R can be replaced by

G� ¼ Var
�
u�i
� ¼ VarðuiÞ

¼
	
Id · d2LU�


21
Cu

�	
Id · d 2LU�


21
�T

(17)

for all i and

R�¼VarðeiÞ ¼ ðId · d2 LEÞ21Ce
�ðId · d 2LEÞ21�T (18)

for all i. Since the true structure matrices LU� and LE are unknown,
the inferred structures from the BN, LÛ� and LÊ; are used instead.

Then, the MTM can be reformulated as the following SEM in its
reduced form (Gianola and Sorensen 2004; Valente et al. 2010):

y ¼ m51n þ uþ e; (19)

where

�
u
e

�
� N2dn

 �
0
0

�
;

 
G�5K 0

0 R�5In·n

!!
:

The Bayesian Gibbs sampling implementation is as for a MTM, but,
additionally,G� ðR� Þ is sampled from its posterior distribution based on
Equation 17 (Equation 18). The structures ofLÛ� andLÊ affect whether
or not the use of G� and R� instead of G and R induces a reduction in
the number of parameters. For example,G� andG ðR� and RÞ have the
same number of nonnull parameters if the structure is fully recursive.

In our Bayesianmodel, the diagonal elements ofmatricesCu andCe

were assigned independent scaled-inverse x2 prior distributions with
four degrees of freedom and scale of three. As mentioned above, this
choice of hyper-parameters yields the same prior distribution as in the
MTMwith respect to the diagonal elements of the covariance matrices.
Also, the trait variances’ prior mode is again 0.5 and the priors are
relatively uninformative. The nonnull coefficients ofLÛ� andLÊ were
assigned independent normal distributions with null mean and vari-
ance of 6:3 and 0:07; respectively.

The prior distribution’s variance for the nonnull coefficients ofLÛ�
andLÊ was chosen to align with the estimated genomic (residual) covari-
ance components in the MTM, which lay in the interval between 23:7
ð20:13Þ and 5:0 ð0:52Þ: When a normal prior distribution with null
mean is assumed for the SEM structure matrices’ coefficients, then 5:0
ð0:52Þ lies within two times its SDwhen its variance (a hyper-parameter)
is chosen to be larger than ð5=2Þ2 ¼ 6:25 ½ð0:52=2Þ2 ¼ 0:0676�:

Predictive ability and goodness of fit of theMTM vs. the SEMwere used
to assess if the structures found in BN analysis were a better representation
of trait connections than a fully recursive structure. We employed the
DIC (Spiegelhalter et al. 2002), themarginal likelihood, and the predictive
ability from 10 replicates of a fivefold cross-validation. The same 50
training- and test-set combinations were used for all models, including
the single-trait model. Predictive ability was measured as the correlation
between the adjusted means y and their predicted values ŷ derived from
the MTM or SEM. We fitted SEM with both or only one structured
component, i.e., SEM with G� and R� ; G and R� ; or G� and R:

Figure 2 Transformation of the genomic component: relationships between estimated genomic values of DMY ûDMY and DMC ûDMC from the
Dent panel and their counterparts ðû�DMY and û�DMCÞ after transformation.
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Data availability
Phenotypic data are available from file S1 of Lehermeier et al. (2014) at
http://www.genetics.org/content/suppl/2014/09/17/198.1.3.DC1. Ge-
notypic data were deposited in a previous project (Bauer et al. 2013)
at National Center for Biotechnology Information Gene Expression
Omnibus as data set GSE50558 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE50558). Analyses were performed with the sta-
tistical programming tool R (RCore Team 2014). Single-trait prediction
was implemented with the BLR function (de los Campos and Pérez-
Rodríguez 2012). Structure learning, MTM, and SEM analyses were
implemented using the R packages bnlearn (Scutari 2010; Nagarajan
et al. 2013) and an extension of the BGLR package (de los Campos and
Pérez-Rodríguez 2014; Lehermeier et al. 2015) which is available on
github (https://github.com/QuantGen/MTM).

RESULTS

Trait correlations
Phenotypic, genomic, and residual correlations between the five traits
were estimated with the MTM for the Flint and Dent panels separately
(Table 1). In both panels, there was a strong positive genomic correlation
between flowering traits DtTAS and DtSILK, and between the yield-
related traits DMY and PH. Genomic correlations were positive for trait
combinations not including DMC, whereas DMC was negatively cor-
related with all other traits. The magnitude of genomic correlations
differed between the two panels; for example, the genomic correlation
betweenDMCandDMYwas20.29 in theDent panel, and20.64 in the
Flint panel. Posterior SDs of correlation estimates varied between 0.01
and 0.10. Single-trait predictive abilities (Table 1) were high and similar
to those found in Lehermeier et al. (2014), where a detailed single-trait
analysis of the phenotypic and genotypic data can be found.

Transformation of the genomic component
As the genotypic values in theMTMwere correlated between genotypes
due to kinship, estimates were transformed to meet the model assump-
tionsof theBNalgorithms.The transformationmodifiedtherelationship

between estimated genotypic values as expected (as an example, see
Figure 2).

BN
BN inference was sensitive to the choice of algorithm and test (for
detailed results see Figure S2, Figure S3, Figure S4, and Figure S5). The
inferred networks varied in up to two edges and/or three directions.
In general, score-based algorithms tended to choose more edges than
constraint-based algorithms, and the networks of residual components
were sparser than those of genomic components.Within the constraint-
based or score-based approaches, inference was more consistent than
between them.

BN inference of residual componentswas very similar in theDent and
Flint panels, irrespective of the algorithmic settings (Figure S3 and Figure
S5). Connections that appeared in both panels were those between the
flowering traits, from DtSILK to PH, from DMY to DMC, and between
DMY and PH. Specific to the Flint panel was the edge from DtTAS to
DMC, while the Dent panel showed a corresponding connection from
DtSILK to DMC. An additional edge in the Dent panel not detected in
the Flint panel was between DMC and PH. One network in the Flint
panel showed an edge from PH to DtTAS, but it was only supported by
56% of the bootstrap samples in the respective network algorithm.

BN inference of genomic components was more variable than that of
residualcomponentswithinandacrosspanels. In theFlintpanel, algorithms
recognizededges fromDtSILKtoDtTAS, fromDtTAStoPH, fromDtSILK
to DMC; and between DMY and DMC, between DMY and DtTAS,
betweenDMY and PH, and betweenDMCandDtTAS. In theDent panel,
only the connection between DMC and DMY was never inferred by any
algorithm. A fully recursive network (i.e., including all possible arcs) was
never inferred, neither on the genomic nor on the residual components.

Network assessment by SEM analysis
For assessing the structures inferred by the different BN algorithms, we
integrated them into SEM, and compared them with MTM using
goodness-of-fit criteria and predictive ability (Table 2, Table 3, Table
S1, and Table S2). When two or more BN algorithms inferred the same

n Table 2 Single-structure evaluation: goodness of fit for the MTM and for SEM including a genomic ðL
Û�Þ or residual ðLÊ

Þ trait structure
denoted by the BN algorithm it originates from

BN Giving LÛ� BN Giving LÊ DICa pD
b logLc No. Connectionsd No. Nonnull Parameterse

Dent
— GS 3 287.0 +61.6 +66.0 10 + 6 = 16 15 + 13 = 28
— GS 1, 2, 4 278.5 +65.7 +72.1 10 + 5 = 15 15 + 12 = 27
— TABU 1, 2 262.7 +45.1 +23.3 10 + 6 = 16 15 + 15 = 30
TABU 1 — 20.7 212.6 +12.1 8 + 10 = 18 15 + 15 = 30
— — 0 1024.9f 0 20 30
TABU 2 — +1.0 214.1 27.3 9 + 10 = 19 15 + 15 = 30
GS 1, 2, 3, 4 — +57.0 216.9 232.4 7 + 10 = 17 15 + 15 = 30

Flint
— TABU 1 2124.1 +64.0 +105.2 10 + 5 = 15 15 + 13 = 28
— GS 1, 2, 3, 4 2122.3 +63.3 +126.3 10 + 5 = 15 15 + 13 = 28
— TABU 2 2117.7 +61.0 +131.1 10 + 6 = 16 15 + 14 = 29
— — 0 1086.0f 0 20 30
TABU 1, 2 — +35.8 +23.1 23.2 7 + 10 = 17 14 + 15 = 29
GS1, 2, 3, 4 — +72.1 +4.2 257.1 6 + 10 = 16 12 + 15 = 27

For notation of BN algorithms see Material and Methods, Learning genomic and residual BN.
a
Deviance information criterion: DIC of SEM minus DIC of MTM.

b
Effective number of parameters: pD of SEM minus pD of MTM.

c
Logarithm of Bayesian marginal likelihood: logL of SEM minus logL of MTM.

d
Sum of connections in the networks: genomic plus residual.

e
Sum of nonnull parameters in the covariance matrices: genomic plus residual.

f
Absolute value of pD.
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network for the same component (genomic or residual), SEM analysis
was only performed once for this structure. In the SEM, genomic and
residual networks were assessed separately ðG and R� or G� and RÞ
(Table 2 and Table S1) and jointly ðG� and R� Þ (Table 3 and Table S2).

For illustration of the variable reduction attained by application of
the structures to the residual or genomic components, the number of
connections in thenetworks and the resultingnumberof nonnull entries
in G� and R� were derived (Table 2 and Table 3). For each SEM, the
sum of the number of connections in the networks and the sum of
nonnull entries in the covariance matrices were split into the genomic
and the residual contributions. In general, residual networks were
sparser than genomic networks, and SEM on residual structures were
more parsimonious in the Flint panel than in the Dent panel.

Goodness of fit was assessed with the DIC andwith the logarithm of
the Bayesian marginal likelihood (logL) (Table 2 and Table 3). logL
evaluates the fit of the model to the data and prior assumptions, and
DIC takes into account and penalizes the number of parameters in the
model. Models were ranked according to their DIC, which differed
from their logL ranking. In Dent (Flint), eight (four) SEM with both
a structured residual and structured genomic component had a lower
DIC than the MTM (Table 3). In Flint, no SEM with only a genomic
structure had a lower DIC than the MTM (Table 2). In general, DIC
and logL varied more in Flint than in Dent (Table 2 and Table 3).

Predictive abilities of SEM
Predictive abilities and their SDs were derived from 10 replicates of a
fivefold cross-validation with random sampling of training and test sets
within each panel (Table S1 and Table S2). Averaged over traits and for
each trait individually, predictive abilities were similar for all models
(single-trait, MTM, and SEM) and differences between models were ,1
SD and not significant. The magnitude of predictive-ability estimates in
the single-structure SEM was consistent with predictive-ability estimates

in the double-structure SEM in both panels. Since all SEMwith a genomic
structure in the Flint panel had higher DIC (Table 2) and slightly lower
predictive ability estimates (Table S1) than the MTM, genomic structures
might not have been identified correctly, which might also have affected
the double-structure SEM.

Goodness of fit of SEM and choice of best networks
Considering all model performance criteria jointly, the best-performing
networks in the SEManalysis are given in Figure 3. In theDent panel, the
SEM with the structure derived from the residuals with GS 3 and the
SEM derived from the genomic component with TABU 1 performed
best considering both the double-structure and single-structure settings.
In the Flint panel, the SEMwith the structure derived from the genomic
component with TABU 1 and 2 had a better fit than the SEM with the
structure derived from the genomic component with GS 1, 2, 3, and 4,
although both had a higher DIC than the MTM. Regarding the residual
structure in the Flint panel, we selected the structure derived with GS 1,
2, 3, and 4 because the SEMwith the structure derived with TABU 2 had
a higher DIC than the SEM with the structure derived with GS 1, 2, 3,
and 4; and the SEM with the structure derived with TABU 1 had a
considerably smaller logL than the SEM with the structure derived with
GS 1, 2, 3, and 4. Consequently, Figure 3 shows the structures derived
with TABU 1 for the genomic components and the structure derived
with GS 3 for the residual components for both panels.

DISCUSSION

Scope of methodology
Structures derived from BN algorithms conveyed more information
thanmere trait-association values fromanMTMbecausemanypairwise
correlations are suggested to arise from indirect associations that are
mediated by one or more variables. For example, the relatively strong

n Table 3 Double-structure evaluation: goodness of fit for MTM and for SEM including both genomic ðL
Û�Þ and residual ðL

Ê
Þ trait

structure denoted by the BN algorithms they originate from

BN Giving LÛ� BN Giving LÊ DICa pD
b logLc No. Connectionsd No. Nonnull Parameterse

Dent
TABU 1 GS 3 287.0 +47.6 +63.8 8 + 6 = 14 15 + 13 = 28
TABU 2 GS 3 286.0 +47.4 +66.1 9 + 6 = 15 15 + 13 = 30
TABU 1 GS 1, 2, 4 275.1 +48.0 +35.5 8 + 5 = 13 15 + 12 = 27
TABU 2 GS 1, 2, 4 274.4 +47.8 +52.7 9 + 5 = 14 15 + 12 = 27
TABU 1 TABU 1, 2 264.3 +34.6 +66.0 8 + 6 = 14 15 + 15 = 30
TABU 2 TABU 1, 2 263.9 +34.5 +54.1 8 + 6 = 14 15 + 15 = 30
GS 1, 2, 3, 4 GS 3 231.2 +47.0 +41.3 7 + 6 = 13 15 + 13 = 28
GS 1, 2, 3, 4 GS 1, 2, 4 226.6 +51.3 +21.1 7 + 5 = 12 15 + 12 = 27
GS 1, 2, 3, 4 TABU 1, 2 29.2 +33.2 +23.0 7 + 6 = 13 15 + 15 = 30
— — 0 1024.9f 0 20 30

Flint
TABU 1, 2 TABU 1 217.2 +108.1 +52.0 7 + 5 = 12 14 + 13 = 27
GS 1, 2, 3, 4 TABU 2 215.6 +77.7 +40.4 6 + 6 = 12 12 + 14 = 26
TABU 1, 2 GS 1, 2, 3, 4 214.8 +105.5 +65.9 7 + 5 = 12 14 + 13 = 27
TABU 1, 2 TABU 2 214.0 +103.5 +65.3 7 + 6 = 13 14 + 14 = 28
— — 0 1086.0f 0 20 30
GS1, 2, 3, 4 TABU 1 +30.4 +76.5 +34.8 6 + 5 = 11 12 + 13 = 25
GS1, 2, 3, 4 GS 1, 2, 3, 4 +33.1 +74.2 +22.9 6 + 5 = 11 12 + 13 = 25

For notation of BN algorithms see Material and Methods, Learning genomic and residual BN.
a
Deviance information criterion: DIC of SEM minus DIC of MTM.

b
Effective number of parameters: pD of SEM minus pD of MTM.

c
Logarithm of Bayesian marginal likelihood: logL of SEM minus logL of MTM.

d
Sum of connections in the networks: genomic plus residual.

e
Sum of nonnull parameters in the covariance matrices: genomic plus residual.

f
Absolute value of pD.
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genomic correlations between PH and DMC and between DtSILK and
DMY in the Flint panel, and the relatively strong genomic correlation
between DtSILK andDMC in the Dent panel, did not correspond to an
edge in the genomic networks (Figure 3). As illustrated by Valente et al.
(2015), a wrong interpretation or use of trait associations can lead to
erroneous selection decisions or interventions. Therefore, knowledge
on network structures among traits might be useful in addition to
knowledge on trait correlationswith respect to indirect selection efforts.

Genomic correlations, networks, and model performance criteria
varied between the Dent and Flint panels, and incorporating genomic
networks into prediction models improved goodness of fit more in Dent
than in Flint. As the DH lines in the Dent panel were genetically more
diverse than in the Flint panel (Lehermeier et al. 2014), this could imply
that formulating an SEM is more advantageous when dealing with a
diverse set of genotypes. We also noted that the DIC in the single-struc-
ture SEM was more variable in Flint than in Dent. Variable selection
through the network algorithms was more stringent in Flint and, there-
fore, the SEM differed more from each other and from theMTM than in
Dent (Table 2). Based on the comparison of the two data sets, the impact
of genetic structure on network inference could not be shown conclu-
sively. In combination with an investigation of methods for control of
variable selection intensity (i.e., propensity of an algorithm, test, or score
to a sparser network), this topic warrants further research.

In both panels, themarginal logL was higher formany SEM than for
MTM, even though the network structure on the covariance matrices
implied variable selection.This shows that restrictions on the covariance
structures among traits were generally supported by the data. Following

the principle of parsimony, a fully recursive structure might not be the
best representation of connections among traits.

Choice of method for network construction
Our results suggest that the choice of method for network learning is
crucial, and that a thorough assessment of network structures is necessary
when dealing with real-life data. Resulting networks might not explain or
fit the data better than a full network as seen here (especially for the
genomic component in Flint). Assessment of the different network
structures was done by considering several model quality criteria (DIC,
logL, number of parameters, and cross-validated predictive ability) to-
gether, and by evaluating if these criteria ranked networks consistently.
Marginal likelihoods are used routinely to evaluate the plausibility of prior
assumptions (e.g., Spiegelhalter et al. 2002) from the observed data. After
we learned the BN, we translated them into prior assumptions for SEM,
and then assessed the various SEM for their priors via marginal likeli-
hoods. DIC conveys information on number of effective parameters in
model comparisons. Different prior assumptions translate into different
numbers of effective parameters in the SEM, i.e., model complexity varies
over networks. As DIC reflects model complexity, it is a natural com-
panion to the marginal likelihood for SEM ranking. While goodness-of-
fit criteria evaluate the quality of data description by a network, predictive
ability reflects the generalization of structure estimation from one subset
of the data (training set) to another subset (test set). However, true
structures of traits remain unknown and validating inferred connections
in experiments with a broad range of genetic material after hypothesis
generation with BN and SEM is crucial.

Figure 3 Trait networks for genomic values and residuals in
Dent and Flint: graphs of the genomic component from the
tabu-search algorithm using BIC as score. Structure learning
was performed with 500 bootstrap samples. Graphs of the
residuals from the GS algorithm with mutual information as
test statistic, also with 500 bootstrap samples and a
significance level of a = 0.01. Labels of edges indicate the
proportion of bootstrap samples supporting the edge and
(in parentheses) the proportion having the direction shown.
Edges that were not significant in the averaging process
due to a network-internal empirical test on the arc’s
strength are not shown.
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SEManalysis suggestedscore-basedapproachesarebetter for learning
the structure of the genomic networks, and constraint-based approaches
are better for the residual networks. This might have resulted from
constraint-based algorithms having been more restrictive (given the
chosen significance level) and from residual networks being sparser than
genomic networks. Evidence for the significance of edges (i.e., support of
the edge in.70% of the bootstrap samples) was generally higher in the
constraint-based networks than in the score-based networks.

Influence of the significance level in the constraint-based algorithms
warrants further investigation.However, itmight be expected that a larger
a for learning BN from the residuals would result in more complex
networks, and, at some point, that additional complexity would result
in lower predictive ability and/or overfitting. Advanced network-
construction algorithms, such as max-min hill-climbing (Tsamardinos
et al. 2006), combine a constraint-based edge search with a score-based
directing of the edges. Such combined approaches should be investigated
in future research because they allow variation of the significance level in
combination with a score-based network search (i.e., directing arcs).

Interpretation of network structures
If variables A and B are directly associated with each other, and B and C
are alike, then an association between A and C would be a logical
consequence, even if there is no direct association between A and C (cf.
part A of Figure 3).When a BN is inferred, such associations that can be
explained by a chain of other associations are not depicted as connec-
tions. This means that a connection in a network is more reliable than a
significant association between two variables because BN eliminate
connections that are unlikely to be direct.

Therefore, BN connections provide information beyondmere pairwise
associations between traits. If therewere a causal connection between child
and parent variable, then the child variable would change with a change of
theparentvariable. For example, if silking time inDentmaterial is changed,
e.g., by early seeding, it is likely that PH at harvest changes too, according
to the residual network in the Dent panel. If the genotypic value of PH is
changed in the Dent panel, e.g., by selection, this change is likely to affect
the genotypic value of DMY, according to the genomic network in the
Dent panel. Nonetheless, the interpretation of BN connections as causal
effects is delicate and needs further assumptions than those made here,
especially the assumption of absence of additional variables influencing
those already included in the study. Thus, we suggest interpretation of our
networks as an overall association among more than two entities, i.e.,
values of the child variable are associated with values of the parent
variable.

Residual networks followed some temporal order as traits measured at
harvest (PH, DMY, and DMC) depended on traits measured during the
vegetation period (DtTAS and DtSILK). Additionally, the inference of
direction between DtTAS and DtSILK in the residual networks was
relatively uncertain with 52 and 55% of bootstrap samples supporting
thedirection.Thismightbebecausebothfloweringtraitsaredeterminedby
the timeof transition fromvegetative to reproductivegrowth(TVR)andno
directdependencebetween themtruly exists, asboth traitsdependonTVR.
The connection betweenDtTAS andDtSILKwould then be an example of
an induced connection by an unobserved confounder in a network.

Aconclusionof our study is thatby illustrating trait connectionswith
respect to their genomic and residual nature separately and identifying
spurious connections, a clearer picture on traits can be gained. This can
be useful for multiple-trait prediction and indirect selection.
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