Skip to main content
. 2017 Jun 21;7(8):2779–2789. doi: 10.1534/g3.117.044263

Table 2. Single-structure evaluation: goodness of fit for the MTM and for SEM including a genomic (ΛU^*) or residual (ΛE^) trait structure denoted by the BN algorithm it originates from.

BN Giving ΛU^* BN Giving ΛE^ DICa pDb logLc No. Connectionsd No. Nonnull Parameterse
Dent
 — GS 3 −87.0 +61.6 +66.0 10 + 6 = 16 15 + 13 = 28
 — GS 1, 2, 4 −78.5 +65.7 +72.1 10 + 5 = 15 15 + 12 = 27
 — TABU 1, 2 −62.7 +45.1 +23.3 10 + 6 = 16 15 + 15 = 30
 TABU 1 −0.7 −12.6 +12.1 8 + 10 = 18 15 + 15 = 30
 — 0 1024.9f 0 20 30
 TABU 2 +1.0 −14.1 −7.3 9 + 10 = 19 15 + 15 = 30
 GS 1, 2, 3, 4 +57.0 −16.9 −32.4 7 + 10 = 17 15 + 15 = 30
Flint
 — TABU 1 −124.1 +64.0 +105.2 10 + 5 = 15 15 + 13 = 28
 — GS 1, 2, 3, 4 −122.3 +63.3 +126.3 10 + 5 = 15 15 + 13 = 28
 — TABU 2 −117.7 +61.0 +131.1 10 + 6 = 16 15 + 14 = 29
 — 0 1086.0f 0 20 30
 TABU 1, 2 +35.8 +23.1 −3.2 7 + 10 = 17 14 + 15 = 29
 GS1, 2, 3, 4 +72.1 +4.2 −57.1 6 + 10 = 16 12 + 15 = 27

For notation of BN algorithms see Material and Methods, Learning genomic and residual BN.

a

Deviance information criterion: DIC of SEM minus DIC of MTM.

b

Effective number of parameters: pD of SEM minus pD of MTM.

c

Logarithm of Bayesian marginal likelihood: logL of SEM minus logL of MTM.

d

Sum of connections in the networks: genomic plus residual.

e

Sum of nonnull parameters in the covariance matrices: genomic plus residual.

f

Absolute value of pD.