Table 2. Single-structure evaluation: goodness of fit for the MTM and for SEM including a genomic or residual trait structure denoted by the BN algorithm it originates from.
BN Giving | BN Giving | DICa | pDb | logLc | No. Connectionsd | No. Nonnull Parameterse |
---|---|---|---|---|---|---|
Dent | ||||||
— | GS 3 | −87.0 | +61.6 | +66.0 | 10 + 6 = 16 | 15 + 13 = 28 |
— | GS 1, 2, 4 | −78.5 | +65.7 | +72.1 | 10 + 5 = 15 | 15 + 12 = 27 |
— | TABU 1, 2 | −62.7 | +45.1 | +23.3 | 10 + 6 = 16 | 15 + 15 = 30 |
TABU 1 | — | −0.7 | −12.6 | +12.1 | 8 + 10 = 18 | 15 + 15 = 30 |
— | — | 0 | 1024.9f | 0 | 20 | 30 |
TABU 2 | — | +1.0 | −14.1 | −7.3 | 9 + 10 = 19 | 15 + 15 = 30 |
GS 1, 2, 3, 4 | — | +57.0 | −16.9 | −32.4 | 7 + 10 = 17 | 15 + 15 = 30 |
Flint | ||||||
— | TABU 1 | −124.1 | +64.0 | +105.2 | 10 + 5 = 15 | 15 + 13 = 28 |
— | GS 1, 2, 3, 4 | −122.3 | +63.3 | +126.3 | 10 + 5 = 15 | 15 + 13 = 28 |
— | TABU 2 | −117.7 | +61.0 | +131.1 | 10 + 6 = 16 | 15 + 14 = 29 |
— | — | 0 | 1086.0f | 0 | 20 | 30 |
TABU 1, 2 | — | +35.8 | +23.1 | −3.2 | 7 + 10 = 17 | 14 + 15 = 29 |
GS1, 2, 3, 4 | — | +72.1 | +4.2 | −57.1 | 6 + 10 = 16 | 12 + 15 = 27 |
For notation of BN algorithms see Material and Methods, Learning genomic and residual BN.
Deviance information criterion: DIC of SEM minus DIC of MTM.
Effective number of parameters: pD of SEM minus pD of MTM.
Logarithm of Bayesian marginal likelihood: logL of SEM minus logL of MTM.
Sum of connections in the networks: genomic plus residual.
Sum of nonnull parameters in the covariance matrices: genomic plus residual.
Absolute value of pD.