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ABSTRACT Improving water-use efficiency by incorporating drought avoidance traits into new wheat
varieties is an important objective for wheat breeding in water-limited environments. This study uses
genome wide association studies (GWAS) to identify candidate loci for water-soluble carbohydrate
accumulation—an important drought-avoidance characteristic in wheat. Phenotypes from a multi-environment
trial with experiments differing in water availability and separate single nucleotide polymorphism (SNP) and
diversity arrays technology (DArT) marker sets were used to perform the analyses. Significant associations for
water-soluble carbohydrate accumulation were identified on chromosomes 1A, 1B, 1D, 2D, and 4A. Notably,
these loci did not collocate with the major loci identified for relative maturity. Loci on chromosome 1D
collocated with markers previously associated with the high molecular weight glutenin Glu-D1 locus.
Genetic · environmental interactions impacted the results strongly, with significant associations for carbohy-
drate accumulation identified only in the water-deficit experiments. The markers associated with carbohydrate
accumulation may be useful for marker-assisted selection of drought tolerance in wheat.
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Reduction in grain yield and quality due to drought decrease the
sustainability of farming systems, and threatens global food security
(Ray et al. 2012; Reynolds et al. 2016). Incorporating traits that improve
water-use efficiency (WUE) in water-limited environments into elite

breeding germplasm is an important aim for wheat genetic improvement
(Rebetzke et al. 2009; Reynolds et al. 2015). Water soluble carbohydrate
(WSC) accumulation and remobilization are promising traits that could
contribute to improved grain-filling under water-limited conditions, and,
consequently, improved WUE (Bidinger et al. 1977; Pheloung and
Siddique 1991; Gebbing and Schnyder 1999; Foulkes et al. 2007;
Piaskowski et al. 2016). Carbohydrate accumulation occurs when the crop
synthesizes assimilate at a rate greater than sink requirement. In wheat,
most of the carbohydrate is stored in the form of fructans, with a minor
component of sucrose and hexose (Schnyder 1993; Wardlaw and
Willenbrink 1994). Both the accumulation and remobilization of WSC
is modified by environmental conditions that alter the balance between
sources and sinks of assimilate. In particular, the availability of source
carbon (as sucrose) affects accumulation (Xue et al. 2013). The WSC
can be remobilized for use in growth or respiration (Kiniry 1993).
However, the main sink for remobilization is the developing grain
(Schnyder 1993; van Herwaarden et al. 1998; Takahashi et al. 2001),
with remobilized WSC contributing as much as 30–50% of grain yield
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under terminal drought conditions, and 10–20% under well-watered
conditions (Bidinger et al. 1977; Pheloung and Siddique 1991; Schnyder
1993; Gebbing and Schnyder 1999; Piaskowski et al. 2016).

Flowering time is a key trait associated with WSC accumulation
owing to the nature of WSC accumulation across crop growth stages
(Passioura 1996; Rebetzke et al. 2008). Accumulation of WSC in-
creases from before anthesis to a peak at 7–20 d after anthesis
(Gebbing 2003; Ehdaie et al. 2008; Zhu et al. 2010) where WSC
concentration (WSCC) can reach as much as 40% of total stem
weight (Schnyder 1993). After anthesis, WSC levels decline due to
remobilization to other sinks. Under water deficit conditions, this
peak can sometimes occur before anthesis (Goggin and Setter 2004),
and remobilization is earlier and proportionally greater (Bidinger
et al. 1977; Virgona and Barlow 1991).

A number of studies have reported on genetic control and quanti-
tative trait loci (QTL) for WSC accumulation and related characters
in wheat (Snape et al. 2007; Yang et al. 2007; Rebetzke et al. 2008;
McIntyre et al. 2010; Pinto et al. 2010; Bennett et al. 2012). Mapping
populations typically varied for the major developmental genes for
photoperiod sensitivity and reduced plant height, which can indi-
rectly cause much of the observed phenotypic variability for grain
yield and other traits (Rattey et al. 2009; Bennett et al. 2012; Edae
et al. 2014). The biparental populations assessed in Rebetzke et al.
(2008) were segregating for the photoperiod sensitivity locus
Ppd-D1 and the semi-dwarfing loci Rht-B1 and Rht-D1, and these
loci collocated with QTL for WSCC, WSC total amount per square
meter, and WSC per tiller.

Genomic strategies show significant promise for the improvement
and understanding of drought tolerance traits (Langridge and Reynolds
2015). The primary objectives of this study were to identify markers
associated with WSCC by genome-wide association studies (GWAS)
and characterize the dependency of marker associations on environ-
ments. We conducted GWAS separately for two molecular marker sets
(SNP and DArT markers) and for each experiment to assess the var-
iability of marker-trait associations due to genotype · environment
(G · E) interaction (Oldmeadow et al. 2011; Zila et al. 2013). We also
conducted GWAS for relative maturity to ascertain if loci with signif-
icant associations withWSCCwere due to the indirect effects of relative
maturity on WSCC.

MATERIALS AND METHODS

Genotypes used in this study
The genotypes for the GWAS analyses were selected from evaluation
trials conducted in multiple environments in 2009 and 2010. Each field
trial contained 990 genotypes. Some genotypes were not repeated at
every experiment,witha total of 1314genotypes tested.Thus, for relative
maturity GWAS, all 990 genotypes were used in 2009 experiments, and
972 genotypes were used in 2010 experiments. The accumulation of
WSC varies with plant development (Ehdaie et al. 2008), so the subset
used for WSCC GWAS consisted of 312 breeding lines from the
2009 experiments constrained to a 3–5 d difference in anthesis date
as well as 46 commercially grown varieties. For the second year of this
study in 2010, except for 11 breeding lines excluded from the overall
experiments, the same breeding lines and varieties were evaluated for
WSCC.

Experimental design and site locations
Experiments with contrasting irrigation and rainfed treatments were
grownatYancoAgricultural Institute(Yanco,Australia)andColeambally
Community Experimental Demonstration Farm (Coleambally,

Australia) in 2009 and 2010. A split-plot design was used, in which the
main-plot factor was irrigation treatment (irrigated or rainfed), and
the 990 genotype entries (including the subset of genotypes forWSC
measurement) were the subplot factor. There were two replicates of
each treatment at each location. Genotype placement was optimized
with the spatial design package DiGGer (Coombes 2002). For the
laboratory phase measuring WSC using near-infrared spectroscopy
(NIRS), an experimental design structured by day of measure-
ment and NIRS instrument carousel and well was implemented
to account for extraneous variation originating from laboratory
processes. Samples from both field locations were pooled into one
laboratory phase experimental design for each year, and the place-
ment of genotypes within the laboratory experimental phase was
also optimized with DiGGer (Coombes 2002), with partial replica-
tion of 20% of experiment field plots sampled (i.e., a replication
level of 1.2), following the methods in Cullis et al. (2006) and
Smith et al. (2006).

All experiments were sown on a full soil profile ofmoisture, achieved
by flood irrigating each site 4–6 wk before sowing, so that the focus
on water deficit conditions would be in the later stages of crop
growth. Sowing dates were targeted for the first 2 wk of May, and
sowing rates were 115 kg ha21 in the irrigated and 70 kg ha21 in
the rainfed treatments, respectively. Presowing nitrogen was tar-
geted to be 120 kg N ha21 from the combination of deep soil
nitrogen (following soil testing—data not shown) and fertilizer ap-
plied at sowing. Irrigated experiments were fertilized supplemen-
tally through the growing season to a total of �300 kg N ha21

consistent with predicted N demand by the crop. Experiments were
subject to a strict weed, pest, and disease control regime to maximize
yield potential. Soil moisture at each experiment was monitored
using gypsum block AM400 soil moisture data loggers (Hansen,
Wenatchee, WA). Onsite weather stations (Davis Instruments,
Hayward, CA) were used to record rainfall and air temperature.
Irrigation treatments were flood irrigated when soil water potential
fell below 275 kPa. Both sites had below average rainfall and above
average temperatures in 2009, while conditions at both sites in
2010 had higher rainfall and lower temperatures than average.

Measurements and observations
Relative maturity at a common date around the median flowering date
for all entries within each experiment was determined using the Zadoks
decimal score for plant development (Zadoks et al. 1974). Scores for
each field experiment were taken when most lines were in the range
Z50–Z69 (head emergence to completion of anthesis).

Lines selected for WSCC analysis were sampled from a 50-cm long
section of row (0.09 m2) when the irrigated treatments at each
site were �180� d postanthesis, following the sampling method
of Rebetzke et al. (2008). For WSC analysis, �5–10 stalks (in-
cluding leaves, leaf sheaths, and heads, but not senesced plant
material) were subsampled from each biomass sample, and ground
to pass through a 2 mm-sized screen. Ground biomass samples
were homogenized, desiccated, and scanned by NIRS with a
Bruker Multi-purpose Analyzer (Bruker Optik GmbH, Ettlingen,
Germany) and OPUS software (version 5.1). Scanned spectra were
transformed using the first derivative and multiplicative scatter
correction. Calibrations to obtain predicted WSCC values
from spectra measurements were constructed using the “Quant
2 Method” component of the OPUS software with a randomly
selected 10% subset of samples. WSCC for the calibration samples
was determined using the alkaline ferricyanide method (Piltz and
Law 2007).
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Statistical methods for phenotype values
A multiplicative mixed linear model was used to analyze the multi-
experiment phenotype data for both traits following Gilmour et al.
(1997) and Beeck et al. (2010). The linear mixed model is given by

y ¼ Xtþ Zgg þ Zuuþ h

where y is the ðn· 1Þ data vector of the response variable across p
experiments with N plots per experiment; t is a ðt · 1Þ vector of fixed
effects (including linear trends across range and row) with associated
design matrix X: The term u is a random component with associated
design matrix Zuand contains experimental blocking structures used
to capture extraneous variation (including field range and row for
both traits, and laboratory day of measurement, NIRS carousel and
well for WSCC only).

The residual error ish ¼ ðh1; . . . ;hpÞ;which, at the jth experiment,
was assumed to have distribution hj � Nð0;s2

j RjÞ; where s2
j is the

residual variance for the jth experiment and Rj is a matrix that contains
a parameterization for a separable autoregressive AR15AR1 process
tomodel potential spatial correlation of the observations for the relative
maturity analysis. For WSCC analysis, unique residual variances for
each year were modeled.

The term g is a random component with associated design matrix
Zgused tomodel the genotypewithin experiment effects, which combine
the genotype and G · E interaction effects. Organizing the genotype
within environment effects as a matrix of rows corresponding to geno-
types and columns corresponding to environments facilitates modeling
g as a multiplicative k-factor analytic (FA) model (Smith et al. 2001):

g ¼ ðL 5  ImÞf þ d

whereL is a matrix with jth column containing the jth factor loadings
for the p experiments, f is a vector of genotype scores across the p
experiments, and d ¼ ðd1; . . . ; dpÞ is a residual genetic term, where, at
the jth experiment, dj � Nð0;s2

gjImÞ; and s2
gj is the residual genetic

variance for the jth experiment. The term Im represents an m ·m
identity matrix.

The variancemodel for the combined genotype andG · E effects is
given by

varðgÞ ¼
�
LL9þ c

�
5Im

where c is a diagonal matrix of the p environment specific variances.
Foreachanalysis, themostparsimoniousFAmodelwas identifiedusing

the Akaike Information Criterion (AIC) (Akaike 1974). The nongenetic
random effects were maintained in the model if they were significant
according to log likelihood ratio tests relative to the full model with all
nongenetic random effects (Stram and Lee 1994). Fixed effects were tested
for significance using Wald F-statistics (Kenward and Roger 1997).

Empirical best linear unbiased predictors (E-BLUPs) for phenotypic
values were obtained from the FA models for each individual
experiment (Kelly et al. 2007; Cullis et al. 2010). For both relative
maturity andWSCC, experiments were clustered using the matrix of
genetic correlations between experiments (Cullis et al. 2010). All
data were analyzed using the software package ASReml-R (Butler
et al. 2009), in the R statistical software environment (R Develop-
ment Core Team 2012).

Genotyping methods
Two separate marker sets were used: 985 lines from the overall exper-
iment were genotyped using the Illumina 9k Infinum iSelect beadchip

array (Cavanagh et al. 2013), resulting in 4883 polymorphic SNPs
across the population. Similarly, 955 lines were genotyped with Diver-
sity Arrays technology (DArT) (Akbari et al. 2006) resulting in 2013
polymorphic markers across the population. Genotyping included
all 358 lines phenotyped for WSCC. Genotype information for SNP
and DArT marker datasets were prepared separately for analysis
using the R software package Synbreed (Wimmer et al. 2012). Im-
putation of missing values (3.5% for SNPs and 15% for DArTs) was
performed using the software package Beagle (Browning and
Browning 2009). Each marker dataset was filtered for duplicated
and monomorphic markers, as well as markers with minor allele
frequency of,5%. The resulting 4162 SNP markers and 1773 DArT
markers were used to compute a separate scaled identity by descent
relationship matrix (K) after Endelman and Jannink (2012) for each
marker dataset.

Consensus maps were used for marker physical positions. For the
DArT dataset this study used theWheat InterpolatedMaps (version 6)
as a reference to locate the positions of DArT markers (Dr Andrzej
Kilian, Diversity Arrays Pty Limited, personal communication), and
for the SNP dataset the 9K Consensus Map (version 4) was used
(Dr Matthew Hayden, DEPI Victoria, personal communication.).

Linkage disequilibrium analysis
Patterns of linkage disequilibrium (LD) in the SNP and DArT marker
sets were estimated using the methods of Breseghello and Sorrells
(2006). Pairwise LD estimates (r2) were calculated with the software
package PLINK (Purcell et al. 2007) for unlinked loci pairs and for
syntenic loci separately. Syntenic r2 was plotted against pairwise genetic
distance from the consensus maps for all chromosomes on each ge-
nome with a second degree locally weighted polynomial regression
(LOESS) curve fitted to each scatter plot (Cleveland 1979). All of the
unlinked r2 estimates were square-root-transformed to approximate a
normal distribution, and the 5% quantile of that distribution was de-
termined following Breseghello and Sorrells (2006). The intersection of
the LOESS curve and the 5% quantile for unlinked marker pairs was
taken as an estimate of the extent of LD decay within each genome
following Laidò et al. (2014).

GWAS methods
Separate association analyses for each trait at each experiment were
performedusing the phenotype E-BLUPs described above. Associations
using SNP and DArT marker sets were performed separately. The
compressed mixed linear model approach (Zhang et al. 2010) was
implemented in the R software package Genome Association and Pre-
diction Integrated Tool (GAPIT) (Lipka et al. 2012) as follows:

ŷ ¼ Xbþ Zguþ h

where ŷ is the vector of E-BLUPs for one trait measured in one
experiment, b is a vector of fixed effects for the corresponding design
matrix (X), including a molecular marker. The vector of overall ge-
netic line effects u (with associated design matrix Zg) is modeled as
VarðuÞ ¼ Ks2

a; where K is the relationship matrix and s2
a is the

estimated additive genetic variance. h is the vector of random resid-
uals. False discovery rates (FDR) were estimated separately for each
experiment following Benjamini and Hochberg (1995) with a nomi-
nal threshold of 10% to declare significant associations.

Data availability
Supplemental Material, File S1 contains a detailed description of all
Supplemental files. File S2 contains phenotype information for WSCC.
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File S3 contains phenotype information for relative maturity at flower-
ing time. File S4 contains SNP genotypes for each individual. File S5
contains DArT genotypes for each individual.

RESULTS

Genotype 3 environment interactions
Consistent with experimental weather conditions, genetic correla-
tions for WSCC between experiments showed two distinct environ-
ment groups, with the Yanco and Coleambally 2009 rainfed
experiments, which experienced terminal water deficit, forming
one cluster, and the other experiments collectively representing a
well-watered cluster. Within these clusters, the genetic correlations
were maintained at rG = 0.87 between the two rainfed experiments
that make up the water deficit environment cluster, and ranged from
rG = 0.74–0.98 in the well-watered environment cluster. Between
the two clusters, genetic correlations ranged from rG = 0.02–0.35.
For relative maturity, no environmental clustering was evident, and

genetic correlations between all experiments were very high, rang-
ing from rG = 0.92 to rG = 0.99.

LD and minor allele frequency
Weevaluated the distribution of LDwithin chromosomes separately for
eachmarker set and for each of the three wheat genomes. LD was more
extensive with respect to linkage distances within the D genome for the
DArT marker set, as the average DArT marker LD did not decrease
below the 5% quantile for unlinked marker pairs (r2 = 0.0456) until
the distance between markers was$25 cM (Figure 1). By comparison,
the average LD was ,0.0456 at distances of 16–18 cM for the A and
B genomes respectively. In contrast, LD decreased below the 5% quantile
(r2 = 0.0470) for the SNP marker set at 21 cM for both the D and B
genomes, while LD for the A genome was higher at 24 cM (Figure 2).

Theminor allele frequencydistribution for SNPmarkerswas similar
to that for the DArT markers, although the DArT markers had a lower
proportion of the rarest allele class (MAF = 5–7.25%; Figure 3). SNPs

Figure 1 Pairwise LD estimates (r2) plotted against Euclidian pairwise
marker distances for markers on the same consensus chromosome for
the DArT marker set.

Figure 2 Pairwise LD estimates (r2) plotted against Euclidian pairwise
marker distances for markers on the same consensus chromosome for
the SNP marker set.
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with MAF below 5% were not included in the analysis because of their
reduced power for GWAS.

GWAS
Bothmarker sets displayed a low degree of population structure (Figure
4) with no obvious patterns among genotypes. For genomic relation-
ship matrices computed from either SNP or DArT markers separately,
the first two eigenvectors collectively explained only 15% of the varia-
tion in genomic relationships, indicating a lack of strong subpopulation
structure in the association population. Only markers identified as
statistically significant (with P-values below the 10% FDR threshold)
inmore than one experiment in the association studies were considered
reliable associations (Table 1 and Table 2).

The GWAS for relative maturity using the DArTmarkers identified
onlyonemarker(onchromosome2D),whichwasdetectedas significant
in threeexperiments, all of themin thewell-wateredenvironment cluster
(10COLE_IRR, 10COLE_RFD, and 10YANA_IRR; Table 2). This
marker is located .30 cM from the marker associated with WSCC
on the same chromosome. In contrast, GWAS for relative maturity
using the SNP marker set identified 17 markers significant in more
than one experiment (Table 2). SNP associations with relative maturity
within specific experiments did not follow the pattern of environmental
clustering observed for WSCC. Rather, five of 17 SNP associations
with relative maturity were observed in all experiments. Some environ-
mental-specificity was observed for relative maturity associations, but
this did not reflect differences between well-watered and water-limited
conditions. For example, four of 17 SNP associations were detected at
both treatments within the same year-location combination (Table 2),

suggesting G · E patterns for relative maturity due to local weather
patterns rather than water availability.

Among the SNPs associated with relativematurity, 11markers were
located within 3 cM of each other on the consensus map on chromo-
some 5A, and three markers collocated on chromosome 5B. Addi-
tionally, one marker was identified on each of chromosomes 2D, 4B,
and 5D. Four of the significant markers on 5A and the marker on 2D
were detected in all eight experiments.

The range inMAF of trait-associated loci ranged from0.107 to 0.491
for the DArT marker set, and at least one relatively rare SNP allele was
detected for relative maturity (MAF = 0.058 on chromosome 4B).
The highest MAF for associated loci in the SNP marker set was 0.400.

DISCUSSION

Comparison of analysis at individual experiments
GWAS results for both relative maturity and WSCC show that signif-
icant associations canbe experiment-specific, and relatable to the overall
G · E relationships between experiments for each trait. Genetic cor-
relations between all experiments were very high for relative maturity
(indicating limited G · E interaction), and significant loci were de-
tected in all experiments. In contrast, G · E was strong for WSCC,
with factor analysis revealing two distinct environment types, corre-
sponding to well-watered and water-deficit environments. Reflecting
these differences in overall G · E patterns between relative maturity
and WSCC, several markers were associated with relative maturity

Figure 3 Minor allele frequency distribution for SNP and DArT marker
datasets used for associations.

Figure 4 PCA plot of the first two eigenvectors from the relationship
matrix of each marker set. For both marker types, the first two principle
components account for �15% of the observed variation in genomic
relationships.
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across all experiments, whereas the significant associations for WSCC
were detected only in two experiments in the water deficit environment
cluster. No significant associations forWSCCwere detected in the well-
watered environment cluster of experiments.

Combinations of well-watered and water deficit environments have
been used for WSCC QTL detection previously, and, in some studies,
such as Yang et al. (2007) and Pinto et al. (2010), QTL for WSCC were
detected in well-watered, or water deficit environments but not in both.
This discrepancy illustrates the importance of environmental charac-
terization in QTL analysis, and the value in understanding the target
population of environments that each QTL analysis is performed in.
Once established, GWAS can be conducted separately for each exper-
iment, or separately for traits values averaged over environments within
well-defined clusters. Experiment-by-experiment GWAS should allow
a means to replicate QTL detection in comparable environments, and
as both Oldmeadow et al. (2011) and Zila et al. (2013) indicate, to
understand possible QTL · environment interactions.

Loci associated with WSCC
GWASdetected associations betweenmarkers on chromosomes1A, 1B,
1D, 2D, and 4A withWSCCmeasured in water-limited conditions. No
markers were associated with both WSCC and relative maturity, in
contrast to Rebetzke et al. (2008), where flowering time loci explained
large proportions of variation forWSCC. The results herein may reflect
the sampling methods used for phenotyping WSCC, or because the
association population lines for WSCC were selected to be constrained
for development.

Among the markers significantly associated with WSCC in the two
water deficit environment experiments, wPt-7359 on 1B has not been
previously reported in trait associations, but wPt-800147 on 4A was
associated with plant height (Yu et al. 2014) and seedling shoot dry
weight under normal and saline conditions (Masoudi et al. 2015).
Marker wPt-3743 on 1D was associated with a range of other traits,
including grain yield and resistance to yellow rust, powdery mildew,
and leaf rust (Crossa et al. 2007), grain yield and spike length under salt
stress conditions (Azadi et al. 2015), and spike number (tiller number)
per plant (Cui et al. 2014). Marker wPt-9592 on 1A was previously
associated with grain yield under water deficit conditions (in particular,
terminal drought; Crossa et al. 2007), heading date after vernalization
(Le Gouis et al. 2012), and seed dormancy (Singh et al. (2010).

MarkerwPt-3743 on chromosome 1Dwas previously reported to be
located near the high molecular weight glutenin Glu-D1 locus and the
storage protein activator gene locus SPA-D (Plessis et al. 2013; Deng
et al. 2015; Jin et al. 2015). MarkerwPt-733835 is also in this region (Jin
et al. 2015). The Glu-D1 locus is important for selection as, along with
theGlu-A1 andGlu-B1 loci, it is responsible for a large percentage of the
phenotypic variation for dough quality. The combination of glutenin
alleles present at the Glu-1D locus will largely determine the end use
and grain quality class of wheat varieties (Payne 1987; Whiting 2004).
Glutenin protein complexes play an important role in conferring elas-
ticity and strength in wheat dough (Plessis et al. 2013), and the Glu loci
have been shown to collocate with QTL for nitrogen and dry matter
accumulation in grain (Charmet et al. 2005).

Rebetzke et al. (2008) identified QTL for WSC per tiller that collo-
cated with the glutenin loci Glu-A1, and Glu-B1. The Glu-D1 and
SPA-D loci contribute to phenotypic variation for grain yield and grain
number through the plant response to nitrogen (Bordes et al. 2013).
Potentially theGlu loci could be involvedwith the inheritance ofWSCC
through an interaction between nitrogen use, tiller number, and grain
weight. WSCC is influenced by nitrogen content, as higher nitrogen
availability in the plant drives sink demand for assimilate (vanHerwaardenn
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et al. 1998; Ruuska et al. 2008), and WSC tends to accumulate in the
absence of sink demand (Gebbing 2003).

Loci associated with relative maturity
Significant associationswere identified in the vicinity of a number of the
known major flowering time loci, including the main photoperiod and
vernalization loci under selection in wheat breeding germplasm pool
globally (Yan et al. 2004; Eagles et al. 2009, 2010; Cane et al. 2013; Slafer
et al. 2015). Both DArT and SNP markers were identified close to the
photoperiod-sensitivity locus Ppd-D1 on chromosome 2D on the con-
sensus map (Table 1). Given the importance of the Ppd-D1 locus to
selection of growth duration and adaptability (Kamran et al. 2014;
Slafer et al. 2015), the SNP and DArT markers identified here may
prove useful to supplement other markers for this locus, such as those
outlined in Cane et al. (2013).

The analyses were able to detect significant associations near the
Vrn-A1, Vrn-B1, and Vrn-D1 loci across multiple experiments, al-
though only SNP markers were identified as statistically significant,
including 11 markers near Vrn-A1, three markers near Vrn-B1, and
one marker was detected near Vrn-D1 (Table 1). For the genotypes in
this study, variation in at these loci would be expected to include alleles
for both spring and winter alleles, as well as winter alleles that confer
different vernalization requirements (Eagles et al. 2010, 2014; Harris
et al. 2017). One marker identified (wsnp_AJ612027A_Ta_2_1) was
also reported to be associated with the Vrn-A1 locus by Lopes et al.
(2015). Threemarkers identified on 5B are within 10 cMof theVrn-B1
locus reported by Guedira et al. (2014). The single marker on chromo-
some 5D associated with relative maturity (wsnp_Ex_c508_1008029) at
both 10YANA_IRR and 10YANA_experiments corresponds to the
vicinity of the Vrn-D1 locus (Eagles et al. 2009).

An additional marker associated with relative maturity at both the
09YANA_IRR and 09YANA_RFD experiments was located on chro-
mosome 4B (wsnp_BE422566B_Ta_1_2). This marker was significant
in both the water deficit environments as well as the well-watered
environments in this study. QTL for heading date on this chromosome
have been previously reported by Hanocq et al. (2007), Griffiths et al.
(2009), and Le Gouis et al. (2012), and photoperiod sensitivity QTL on
this chromosome have been reported by Shindo et al. (2003) and
Sourdille et al. (2003).

Comparison of DArT and SNP molecular marker sets
DArT markers were developed using methylation-sensitive restriction
enzymes, and, as such, can represent methylation polymorphisms that
provide both genetic and epigenetic information (Wenzl et al. 2004;
Akbari et al. 2006). It is also possible for DArTmarkers to be located in
insertion/deletion sites (indels), although�80% are SNPs (Kilian et al.
2005). Theminor allele frequency distribution for bothmarker sets was
close to uniform acrossmost of the allele frequency range, in contrast to
the expected inflation of rare alleles expected for markers under drift–
mutation equilibrium (Hamblin et al. 2011). This frequency spectrum
in the SNP marker set was noted previously by Cavanagh et al. (2013),
who concluded “The observed MAF is the consequence of intentional
bias in SNP selection, where common alleles were favored by choosing
more broadly distributed SNPs.”

Our genotype set had more than twice as many polymorphic SNP
markers than DArT markers, and the DArT marker set had a higher
proportionofmissingdata.Across theAandBgenomes,DArTmarkers
exhibit amore rapidbreakdownofLDthanSNPmarkers,but thepattern
was reversed in the D genome. The longer linkage blocks in the D
genome for both SNP and DArT markers is consistent with previ-
ous reports (Wang et al. 2014). The differences in marker density,

distribution and LD structure between the two markers sets are the
most likely causes of the observed differences in association analyses.

Conclusions
This study highlights the need to characterize G · E interactions
in multi-environment datasets, and to define target populations of
environments for marker-trait associations. These populations of
environments define the scope of inference for interpreting GWAS
results. In this study, we identified two clusters of experiments based
on their genotypic correlations for the expression of WSCC. Marker
associations for WSCC were identified only in the water deficit
experiments, which represented a minority of the experiments;
these associations would have been missed if the trait values were
averaged across all experiments.

The loci identified for WSCC have both previously been associated
with performance under water limited conditions, but did not reflect
linkage tomajor effect relativematurity loci.Themarkeron1Dcolocates
with the Glu-D1 locus, which may have some pleiotropic effect on
WSCC. These reported associations may be useful for marker-assisted
selection of WSCC in water-limited environments, independent of
relative maturity.
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