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Abstract

Improved clinical care for Bipolar Disorder (BD) relies on the identification of diagnostic markers 

that can reliably detect disease-related signals in clinically heterogeneous populations. At the very 

least, diagnostic markers should be able to differentiate patients with BD from healthy individuals 

and from individuals at familial risk for BD who either remain well or develop other 

psychopathology, most commonly Major Depressive Disorder (MDD). These issues are 

particularly pertinent to the development of translational applications of neuroimaging as they 

represent challenges for which clinical observation alone is insufficient. We therefore applied 

pattern classification to task-based functional magnetic resonance imaging (fMRI) data of the n-

back working memory task, to test their predictive value in differentiating patients with BD (n=30) 

from healthy individuals (n=30) and from patients’ relatives who were either diagnosed with MDD 

(n=30) or were free of any personal lifetime history of psychopathology (n=30). Diagnostic 

stability in these groups was confirmed with 4-year prospective follow-up. Task-based activation 

patterns from the fMRI data were analyzed with Gaussian Process Classifiers (GPC), a machine 

learning approach to detecting multivariate patterns in neuroimaging datasets. Consistent 

significant classification results were only obtained using data from the 3-back versus 0-back 

contrast. Using contrast, patients with BD were correctly classified compared to unrelated healthy 

individuals with an accuracy of 83.5%, sensitivity of 84.6% and specificity of 92.3%. 

Classification accuracy, sensitivity and specificity when comparing patients with BD to their 

relatives with MDD, were respectively 73.1%, 53.9% and 94.5%. Classification accuracy, 

sensitivity and specificity when comparing patients with BD to their healthy relatives were 

respectively 81.8%, 72.7% and 90.9%. We show that significant individual classification can be 

achieved using whole brain pattern analysis of task-based working memory fMRI data. The high 
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accuracy and specificity achieved by all three classifiers suggest that multivariate pattern 

recognition analyses can aid clinicians in the clinical care of BD in situations of true clinical 

uncertainty regarding the diagnosis and prognosis.

INTRODUCTION

Bipolar disorder (BD) is an affective disorder that ranks amongst the leading causes of 

disability worldwide across all age groups (World Health Organization, 2008). This 

motivates efforts to characterize valid and reliable biological markers of disease expression 

in order to facilitate early identification and novel treatment discovery.

Magnetic resonance imaging (MRI) has been extensively used to investigate the neural 

correlates of disease expression in BD. Structural MRI (sMRI) studies have demonstrated 

that BD is associated with reductions in whole brain and regional gray matter volumes 

(Hallahan et al., 2011; Kempton et al., 2011; Fears et al., 2014). Functional MRI (fMRI) 

studies have provided further information in terms of changes in regional blood-oxygen-

level-dependent (BOLD) signal, most commonly in the domains of affect processing and 

executive control, where both genetically-derived and disease-related deficits have been 

reported (Glahn et al., 2010; Fears et al., 2014). The common network for affect processing 

notably involves the amygdala (AMG), ventral striatum and putamen and the ventral 

prefrontal (VPFC), ventral anterior cingulate (ACC) and insular cortices (Lindquist et al., 

2012). The common network supporting executive control functions includes dorsal striatal 

structures as well as the dorsolateral prefrontal (DLPFC), dorsal ACC, and parietal (PAR) 

cortices (Niendam et al., 2012). In patients with BD, exaggerated activation during affective 

and executive tasks has been consistently observed in the AMG, insula, and ventral ACC 

coupled with reduced PFC engagement (Chen at al., 2011; Cusi et al., 2012; Delvecchio et 

al., 2012; Fusar-Poli et al., 2012; Jogia et al., 2012; Cremaschi et al., 2013; Dima et al., 

2013). These observations have improved the characterization of the biological 

underpinnings of BD but have had limited clinical utility as they are based on group-level 

inferences that cannot be readily applied to the categorization of single individuals.

Advances in machine learning techniques, a field of artificial intelligence, represent a major 

development that could lead to clinical useful neuroimaging applications in psychiatry. 

Multivariate pattern recognition is a particular type of machine learning concerned with the 

discovery of regularities in data through the use of computer algorithms (Vapnik 1995). 

Frequently used machine learning approaches are support vector machines (SVM) and 

Gaussian Process Classifiers (GPC) (Figure 1). Our group and others have shown that the 

application of multivariate pattern recognition analyses can reliably classify patients with 

BD from healthy individuals (Rocha-Rego et al., 2014; Mwangi et al., 2014; Schnack et al., 

2014) and from patients with schizophrenia (Schnack et al., 2014) or Major Depressive 

Disorder (MDD) (Grotegerd et al., 2013; Grotegerd et al., 2014) with an accuracy of 

approximately 70–80%.

It can be argued however, that neuroimaging may be able to make a unique contribution in 

situations where clinical assessment and observation are not sufficient for diagnosis and 

prognosis. For clinicians, one of the greatest challenges lies in the differential diagnosis of 
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BD from MDD. Although mania is the diagnostic hallmark of BD, in the majority of 

patients the disorder first presents with depressive symptoms (Forty et al., 2009). Even after 

disease onset, depressive symptoms dominate and contribute to morbidity and psychosocial 

disability (Judd et al., 2002). A substantial body of research has focused on identifying 

phenomenological features that could differentiate MDD from BD depression; the weight of 

evidence suggests that reliable and accurate differentiation at the level of the individual 

patient is beyond the resolution of even rigorous and detailed clinical assessment (Mitchell 

et al., 2008), particularly amongst those with a family history of BD (Mitchell et al., 2011). 

Consequently, many patients are misdiagnosed and treated as having MDD either because 

they present with depression at illness onset or because they generally underreport manic 

symptoms. This has important treatment implications as antidepressant treatment in BD may 

exaggerate mood instability (El-Mallakh et al., 2015). A further challenge lies in predicting 

the outcome of asymptomatic individuals with a family history of BD. As a group, these 

individuals are a higher risk than the general population for developing BD (Duffy et al., 

2015; Fullerton et al., 2015).

Therefore the aim of the current study was to test whether neuroimaging can indeed assist 

clinicians when faced with true clinical uncertainty in situations where clinical acumen and 

observation are insufficient. We tackle two challenges; one focuses on the differential 

diagnosis of BD from MDD in the presence of family history of BD in the MDD patients. 

The other on the correct identification of individuals who have remained well but would be 

conventionally considered “at risk” based on having a first-degree relative with BD. We 

therefore test the hypothesis that GPCs of task-based fMRI data during the n-back working 

memory task can identify patterns of neural function that will prove useful in differentiating 

patients with BD from healthy unrelated individuals, and individuals at familial risk for BD 

who have either developed MDD or remained free of psychopathology. We focus on the 

functional neuroanatomy of the n-back task because it has been shown to be robust to 

variations in the paradigms used, scanner types and acquisition sequences (Owen et al., 

2005; Dima et al., 2014) and has been reliably used to elicit disease-related abnormalities in 

patients with BD and their relatives (Fusar-Poli et al., 2012; Cremaschi et al., 2013).

METHODS

The study sample comprised 120 demographically matched participants consisting of 30 

patients with BD-type I, 30 of their first-degree relatives diagnosed with MDD, 30 

psychiatrically healthy first-degree relatives and 30 unrelated healthy controls (Table 1). 

Participants were drawn from with the VIBES study sample (Frangou 2009; Kempton et al., 

2009a,b; Walterfang et al., 2009; Takahashi et al., 2010; Forcada et al., 2011; Lelli-Chiesa et 

al., 2011; Perrier et al., 2011; Pompei et al., 2011a,b; Ruberto et al., 2011; Jogia et al., 2011; 

Jogia et al., 2012a,b; Dima et al., 2013; Rocha-Rego et al., 2014; Delvecchio et al., 2015). 

Participants with BD or MDD fulfilled the respective diagnostic criteria outlined in the 

Diagnostic and Statistical Manual of Mental Disorders, 4th edition, revised (DSM-IV) 

(APA, 1994). Healthy relatives had no lifetime history of any major psychiatric disorder. 

Healthy unrelated controls had no family history or personal lifetime history of any major 

psychiatric disorder. All participants were free of any medical comorbidity and had no 

lifetime history of substance dependence or substance abuse in the six months leading to 
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their brain scan. The diagnostic status of all participants was assessed using the Structured 

Clinical Interview for DSM-IV for Axis I diagnoses (First et al., 2002a, b). Patients with BD 

and their relatives with MDD did not differ in the age of onset of their respective diagnosis. 

The diagnostic stability of patients with BD, their MDD and healthy relatives was confirmed 

through annual interview over a 4-year period following their brain scan. On the day of 

scanning, all participants were assessed using the Hamilton Depression Rating Scale 

(HDRS) (Hamilton, 1960), the Young Mania Rating Scale (YMRS) (Young et al., 1978), the 

Brief Psychiatric Rating Scale (BPRS) (Lukoff et al., 1986) and the Wechsler Adult 

Intelligence Scale 3rd Edition (Wechsler, 1997). To ensure patients with BD and relatives 

with MDD were in remission their psychopathology was assessed weekly over period of 1 

month leading to their scan and at each assessment patients’ scored below 7 in the HDRS 

and YMRS. Although the level of symptomatology was very low, patients with BD were 

more symptomatic than all other groups (p<0.001). The BPRS, HDRS and YMRS scores 

were highly correlated (all r > 0.78, all p< 0.001). BD patients were medicated at the time of 

scanning with atypical antipsychotics (n=21), antiepileptics (n=8), lithium (n=14), as 

monotherapy (n=18) or combination therapy (n=12). Three relatives with MDD were on 

selective serotonin re-uptake inhibitors. All medicated participants had remained on the 

same type and dose of medication for a minimum of 6 months prior to scanning. Informed 

consent was obtained from all participants. The study was approved by the institutional 

ethics review board.

Working Memory Functional Imaging Task

The n-back task was employed in a block design incorporating alternating experimental and 

sensorimotor control conditions. A series of letters in yellow font were displayed on a blue 

screen for two seconds each. Participants were instructed to indicate by a button press 

whether the letter currently displayed matched the letter from the preceding n trials. In the 

sensorimotor control (0-back) the letter “X” was the designated target. In the experimental 

conditions (1, 2, 3-back) the target letter was defined as any letter that was identical to the 

one presented in the preceding one, two, or three trials. There were 18 epochs in all, each 

lasting 30 seconds, comprising 14 letters with a ratio of target to non-target letters ranging 

from 2:12 to 4:10 per epoch. The entire experiment lasted 9 minutes and included a total of 

49 target and 203 non-target stimuli. To avoid any systematic order effects the conditions 

were pseudo-randomised. Performance was evaluated in terms of reaction time to target 

letters and accuracy (% correct responses). The task was explained to participants prior to 

scanning but there was no training.

Image acquisition

Gradient echo planar magnetic resonance (MR) images were acquired using a 1.5-Tesla GE 

Neurooptimised Signa MR system (General Electric, Milwaukee, WI, USA) fitted with 40 

mT/m highspeed gradients. Foam padding and a forehead strap were used to limit head 

motion. A quadrature birdcage head coil was used for radio frequency (RF) transmission and 

reception. A total of 180 T2*-weighted MR brain volumes depicting BOLD contrast were 

acquired at each of 36 near-axial planes parallel to the inter-commissural (AC-PC) plane; 

repetition time (TR) = 3000ms, echo time (TE) = 40ms, slice thickness = 3mm, voxel 

dimensions = 3.75 × 3.75 × 3.30mm, interslice gap = 0.3mm, matrix size = 64 * 64, flip 
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angle=90°. Prior to each acquisition sequence, four dummy data acquisition scans were 

performed to allow the scanner to reach a steady state in T1 contrast. During the same 

session, a high-resolution T1-weighted structural image was acquired in the axial plane 

(inversion recovery prepared, spoiled gradient-echo sequence; TR = 18ms, TE = 5.1 ms, TI 

= 450 ms, slice thickness = 1.5 mm, voxel dimensions = 0.9375 × 0.9375 × 1.5 mm, matrix 

size 256 * 192, field of view = 240 × 180 mm, flip angle = 20°, number of excitations = 1) 

for subsequent co-registration.

Image Processing

Conventional fMRI analyses were implemented using Statistical Parametric Mapping 

(SPM8) (www.fil.ion.ucl.ac.uk/spm/software/spm8/). fMRI images were realigned, 

normalized and smoothed using an 8 mm full-width-half-maximum Gaussian kernel. To 

ensure data quality, task registration parameters were extracted and were used to identify 

participants with excessive interscan motion (defined as >4 mm translation, >4° rotation) 

and to conduct group comparisons. No subjects were excluded and there were no significant 

group differences in motion. The smoothed single-participant images were analysed via 

multiple regressions using the linear convolution model, with vectors of onset representing 

the memory load conditions (1, 2, and 3 back) and the 0-back condition as sensorimotor 

control. Six movement parameters were also entered as nuisance covariates. Serial 

correlations were removed using an AR(1) model. A high pass filter (128s) was applied to 

remove low-frequency noise. Contrast images of each memory load condition (1-, 2-, 3- 

back) versus 0-back were produced for each participant. At the individual subject level, a 

standard general linear modelling (GLM) approach was used to obtain estimates of the 

response size (beta) in each the memory load condition against the 0-back control condition.

Conventional fMRI Analysis

We examined the effect of group (patients with BD, MDD relatives, healthy relatives and 

unrelated healthy controls) on BOLD signal using a standard general linear modelling 

(GLM) in SPM8 separately for each memory load condition (1-, 2-, 3- back) against the 0-

back control. We examined each condition separately, instead of modelling activation 

changes with increasing load. This is because it has long been known that cortical loci, 

particularly in prefrontal regions, show non-linear changes in activation with increasing 

memory load (Callicott et al., 1999) which could increase voxel level variability. 

Suprathreshold clusters were identified using family wise error (FWE) voxel-wise correction 

of p<0.05. Stereotactic coordinates were converted from MNI spatial array to that of 

Talairach and Tournoux (www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html) and 

corresponding anatomical and Brodmann area (BA) labels were identified with The 

Talairach Daemon Client (www.talairach.org). Measures of brain activation (weighted 

parameter estimates) from each subject were extracted using the MarsBaR toolbox 

(marsbar.sourceforge.net) from regions of interest (ROIs) defined on the basis of the whole 

brain analysis as 5 mm radius spheres at peak height coordinates within each suprathreshold 

cluster. These measures were also used to examine the role of potentially confounding 

variables of age, IQ, age of onset, task performance and medication. Although we report 

uncorrected P values, due to the large number of correlations undertaken the level of 

significant inference was set at a conservative P vale of 0.005.
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Multivariate pattern classification

Probability of group membership was determined using Gaussian Process Classifiers (GPCs) 

implemented in the Pattern Recognition for Neuroimaging Toolbox (PRoNTo) 

(www.mlnl.cs.ucl.ac.uk/pronto/) using whole-brain individual beta maps/GLM coefficients 

for the contrasts of 1-back, 2-back and 3-back versus 0-back. Technical descriptions of GPC 

inference have been presented elsewhere (Schrouff et al. 2013). Briefly, the classifier is first 

trained to determine a predictive distribution that best distinguishes between two groups 

(e.g., case and controls); any parameters controlling the behaviour of this distribution are 

computed by maximizing the logarithm of the marginal likelihood on the training data only. 

Then in the test phase, the classifier predicts the group membership of a previously unseen 

example. This is achieved by integrating over the predictive distribution for the test case and 

passing the output through a sigmoidal function, resulting in predictive probabilities scaled 

between 0 and 1 which precisely quantify the predictive uncertainty of the classifier for the 

test case.

We focus on the usefulness of fMRI data derived from the n-back task in differentiating 

patients with BD from (a) healthy individuals, (b) their relatives with MDD, and (c) from 

their psychiatrically healthy relatives. Each classifiers was trained a leave-two-out cross-

validation. For each cross-validation iteration, a matched pair of subjects from each group 

was excluded first and then the data were partitioned into training and test sets. For each 

trial, we thresholded the probabilistic predictions at 0.5 to convert the probabilistic 

predictions to class labels allowing the sensitivity and specificity of classification to be 

computed over all trials (Rasmussen and Williams, 2006). Statistical significance of each 

classifier was determined by permutation testing, as described previously (Marquand et al., 

2010). Briefly, permutation testing was performed by repeatedly retraining the classifier 

after permuting the class labels (1000 permutations). A P-value for classification accuracy 

was computed by counting the number of permutations for which the permuted accuracy 

was equal or greater than the true accuracy (obtained with non-permuted labels), then 

dividing by 1000. In addition for each classifier, Pearson correlation analyses were carried 

out between GPC predictive probability and total BPRS scores, age, IQ, task performance, 

age of onset and medication dose. As a secondary outcome we generated an unthresholded 

GPC weight map for each classifier. As GPC classifiers are multivariate, these 

discrimination maps do not describe focal activation effects but instead they represent the 

spatially distributed pattern of coefficients that quantify the contribution of each voxel to the 

classifier’s decision function. We then estimated the positive (PPV) and negative (NPV) 

predictive value of each classifier.

RESULTS

Conventional fMRI Analysis

There were no group differences in the 1-back or 2-back versus 0-back contrasts. In the 3-

back versus 0-back contrast a main effect of group was found (p=0.05 FWE voxel level 

corrected) in the middle frontal gyrus (BA10) (x=36 y=58 z=0, F score= 6.64, cluster size 

240), the superior temporal gyrus (BA22) (x=58 y=−44 z=12, F score=6.54, cluster size 169) 

and the posterior cingulate cortex (BA30) (x=−28 y=−68 z=8, F score= 6.97, cluster size 
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76). Patients with BD had reduced mean level of activation in the middle frontal gyrus 

compared to healthy relatives and unrelated controls (p <0.02); however relatives with MDD 

did not differ compared to any other group and had an intermediate level of mean activation 

between healthy relatives/unrelated controls and BD patients. In the superior temporal gyrus, 

BD patients showed a greater mean level of activation compared to healthy controls and 

psychiatrically well relatives (p<0.05); however, relatives with MDD did not differ 

compared to any group and had an intermediate level of mean activation between healthy 

relatives/controls and BD patients. In the posterior cingulate cortex, the mean level of 

activation was reduced in relatives with MDD compared to all the other groups (p<0.04); all 

other pairwise comparisons were not significant.

We examined the role of potential confounders in several ways. We used three multivariate 

analyses of variance with medication status (antiepileptics vs. not on antiepileptic, lithium 

vs. not on lithium and antipsychotic vs. not on antipsychotics) as the independent factors and 

levels of activation in suprathreshold clusters in patients with BD as dependent variables. No 

group differences were found (all P>0.28). We examined correlations between activation in 

suprathreshold regions in patients with BD and dose of lithium and antipsychotics on the 

day of scanning. None were significant (all r<0.21, P>0.28). Similarly, we did not observe 

any correlation with age of onset in patients and relatives with MDD (all r<0.23, P>0.07). 

Further analyses in the entire sample did not reveal significant correlations between the level 

of activation in any suprathreshold cluster and age (all r<0.10, P>0.27), IQ (all r<0.08, 

P>0.38), accuracy (all r<0.06, P>0.51) and response time (all r<0.16, P>0.08). None of these 

correlations survive correction for multiple testing.

Multivariate Classification

Patients with BD versus unrelated healthy controls—Classifiers using the 1-back 

or 2-back versus 0-back contrast did not lead to a statistically significant differentiation 

between patients with BD and healthy controls. Classification based on the 1-back versus 0-

back contrast resulted in 65.5% accuracy, 61. 5% sensitivity (true positives for BD) and 

69.2% specificity (true negatives for unrelated controls) and was not significant (p=0.01). 

Classification based on the 2-back versus 0-back contrast resulted in 73.1% accuracy, 76.9% 

sensitivity and 69.3% specificity and was also not significant (p=0.08). In contrast, the 

classifier based on the 3-back versus 0-back contrast significantly differentiated patients 

from unrelated controls with an accuracy of 83.5% (p=0.001). The sensitivity of the 

classification was 84.6% and the specificity 92.3%/. The PPV (probability that individuals 

classified as BD patients were correctly identified) and NPV (probability that individuals 

classified as healthy controls were correctly identified) values were respectively 0.91 and 

0.85. The unthresholded discrimination map showing the global spatial pattern by which the 

two groups differ based on the 3-back versus 0-back classifier is displayed in Figure 2A; the 

largest clusters discriminating patients with BD from unrelated controls were located in the 

left inferior/middle/superior frontal gyrus and in the superior parietal lobule.

Patients with BD versus relatives with MDD—Significant results were found for 

classifiers based on contrast images from the 1-back (p=0.003), 2-back (p=0.001) and 3-

back (p=0.001) conditions. The classifier based on the 1-back versus 0-back contrast 
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resulted in 76.9% accuracy, 53.9% sensitivity (true positives for patients with BD), 100% 

specificity (true negatives for relatives with MDD), PPV of 1 and NPV of 0.68. The 

classifier based on the 2-back versus 0-back contrast resulted in 73% accuracy, 61.5% 

sensitivity, 84.6% specificity, 0.79 PPV and 0.68 NPV. The classifier based on the 3-back 

versus 0-back contrast resulted in 73.1% accuracy, 53.9% sensitivity, 94.5%specificity, 0.90 

PPV and 0.67 NPV. To maintain consistency with the results of the other classification 

problems, the unthresholded discrimination map showing the global spatial pattern by which 

the two groups differ based on the 3-back versus 0-back classifier is displayed in Figure 2B; 

the largest discriminating clusters were located in the left superior frontal gyrus, right middle 

frontal gyrus, bilaterally in the middle/superior frontal gyrus and the right temporal lobe.

Patients with BD versus healthy relatives—Classifiers using the 1-back or 2-back 

versus 0-back contrast did not differentiate between patients with BD and healthy relatives. 

Classification based on the 1-back versus 0-back contrast resulted in 54.5% accuracy, 36.6% 

sensitivity (true positives for patients with BD) and 72.3% specificity (true negatives for 

healthy relatives) but the results were not significant (p=0.41). Classification based on the 2-

back versus 0-back contrast resulted in 59.1% accuracy, 36.3% sensitivity and 81.2% 

specificity and was also not significant (p=0.17). In contrast, the classifier based on the 3-

back versus 0-back contrast was significant (p=0.004) and had 81.8% accuracy, 72.7% 

sensitivity, 90.9% specificity (true for healthy relative), 0.88 PPV and NPV 0.76. The 

unthresholded discrimination map showing the global spatial pattern by which the two 

groups differ based on the 3-back versus 0-back classifier is displayed in Figure 2C; the 

largest discriminating clusters were located in the lingual gyrus and the cerebellum on the 

left.

For each classifier, Pearson correlation analyses between GPC predictive probabilities and 

age, IQ, task accuracy and reaction time, age of onset, BPRS total score and medication dose 

were not significant (r<0.28; p>0.14).

Discussion

We demonstrate the potential translational utility of task-based fMRI in aiding diagnosis and 

prognosis in BD. The approach highlighted here provides proof of concept for the 

development of new tools for the categorization of individuals where there is general 

agreement that clinical data alone are insufficient.

In this study we show that patients diagnosed with BD, show sufficient consistency in their 

neurofunctional patterns for them to be reliably differentiated from healthy individuals with 

an accuracy of 83.4%. Using structural MRI data alone, we have previously achieved 

classification accuracies of 69–78% in differentiating patients with BD from healthy 

individuals based on whole-brain gray or white matter classifiers (Rocha-Rego et al., 2014). 

Others who have also used structural MRI data have reported similar or lower accuracies 

(Schnack et al., 2014). It would therefore appear that task-based fMRI data may improve 

classification accuracy in BD as they may be more sensitive to disease-related pathology. 

Additionally, it is encouraging that the clusters that contribute to the correct classification of 

patients compared to controls, show biological plausibility. The conventional fMRI analysis 
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of this same dataset, as well as results from independent samples (Cremaschi et al., 2013; 

Fusar-Poli et al., 2012), have consistently identified decreased prefrontal activation in 

patients with BD in the 3-back vs 0-back contrast compared to healthy controls. This is 

consistent with the clusters contributing to successful classification of patients from controls 

which implicate the prefrontal cortex, particularly lateral and frontopolar regions, and the 

dorsal parietal cortex, both key functional nodes of the working memory network (Niendam 

et al., 2012). Nevertheless, it could be argued that differentiating patients with established 

BD from healthy controls is of marginal clinical interest as real-life diagnostic assessments 

deal with more complex issues than separating people that have been ill for some time from 

those who are not ill at all (Wolfers et al., 2015). The value of testing classifiers for patients 

versus controls based on different imaging modalities is threefold. First, it serves to identify 

the type of data, or combinations of data, derived from neuroimaging applications that would 

be adapted for clinical practice. Once this is achieved, one could test the best-performing 

classifiers on different clinical groups that are prodromal or have atypical or comorbid 

presentations. Second, examining the relationship between the multivariate neuroimaging 

signature and the clinical or demographic features of a disorder can lead to mechanistic 

insights regarding etiology and progression. Third, the availability of objective brain 

imaging tests can improve the social perception of psychiatry. At the level of individual 

patients, objective tests would provide re-assurance that clinical assessment and diagnostic 

assignment are not purely based on subjective judgment. At the societal level, it would help 

integrate psychiatry into mainstream medicine.

To our knowledge this is the first study to employ neuroimaging to address core issues of 

clinical uncertainty. We provide preliminary evidence for using neuroimaging classifiers to 

differentiate MDD from BD, especially in individuals who have a family history of BD. 

There are several clinical indicators of increased likelihood of conversion to BD in those 

who present with depression and have a family history of the disorder (Mitchell et al., 2008; 

2011). However, none can be reliably applied to individual patients. In contrast, GPC 

classifiers differentiated patients with BD from relatives with MDD with an accuracy 

ranging from 73 to 77%. The sensitivity of these classifiers were low (53–62%). This is not 

surprizing given the phenomenological overlap between BD and MDD and the dominance 

of depressive psychopathology in both disorders (Judd et al., 2002; Forty et al., 2009). What 

is more important however is that the classifier had very high specificity ranging from 84–

100%. In principle this means that at the level of the individual patient clinicians would be 

able to exclude the possibility of BD, with a very high level of confidence, after a 10-min 

brain scan. This finding requires replication in different samples and settings and in more 

diverse clinical populations in terms of their age and duration of illness. Nevertheless, our 

results suggest that this is an avenue of research worth pursuing in demonstrating the 

translational value of neuroimaging.

Our third classifier, based on the 3-back versus 0-back contrast, differentiated patients with 

BD from their psychiatrically healthy relatives with an accuracy of 81.8%. This classifier 

identified high-risk individuals unlikely to convert to BD with 90.9% specificity. However, 

its sensitivity was 72.7% which suggest that some high-risk individual likely to convent may 

be missed. These results are very encouraging and could potentially inform early 

intervention services, where positive family history is a key criterion of risk and possible 
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service inclusion (Duffy et al., 2015). There are a number of behavioral indicators of 

increased likelihood of conversion to syndromal BD but longitudinal studies suggest that 

they have low predictive value as a significant number of high-risk individuals never convert 

(Tijssen et al., 2010). Correctly identifying those who are in need of treatment is of 

paramount significance both in terms of cost-effectiveness of early intervention services but 

also in terms of preventing unnecessary treatment, concern and self-stigmatization in those 

unlikely to convert to BD. Of the clusters contributing to the correct identification of healthy 

relative, one was in the lingual gyrus, an occipital region involved in visual processing, and 

another in the cerebellum. Intriguingly, the lingual gyrus is closely related to cognitive 

function particularly with increasing age in BD (Fears et al., 2014) and shows dysfunctional 

connectivity during a range of tasks in patients but not their unaffected relatives (Dima et al., 

2013). The volume of the cerebellum has been shown to be increased in healthy relatives of 

patients (Kempton et al., 2009) compared to controls while in BD patients it is known to 

progressively decrease (Moorhead et al., 2007). Therefore clusters contributing to the correct 

categorization of healthy relatives may point us to regions that are particularly important for 

maintaining resilience when preserved or for disease expression when abnormal.

Patients with BD differed from the other groups (MDD relatives, healthy relatives, unrelated 

healthy individuals) in medication status. This raises the issue of whether classification 

might have been based on medication rather than diagnostic status. We cannot address this 

issue directly but we note that correlations between medication variables and GPC predictive 

probabilities were low and not statistically significant. We have previously shown that 

medication status did not have a significant influence on classifier performance when using 

brain structural data to classify patients with BD from controls (Rocha-Rego et al., 2014). 

Patients with BD were on a variety of psychotropic agents with different mechanisms of 

action and it is therefore unlikely that the neural correlates of medication effects would be 

consistent across all participants. This mitigates the possibility that the classifiers could have 

identified uniform medication-related classification rules. In addition, the very low levels of 

psychopathology in patients suggest that it is unlikely that classification rules were derived 

from neural patterns associated with symptomatic expression on the day of the scan. Further 

investigations are, however, needed to confirm the reproducibility of our findings in more 

diverse and larger samples.

In summary, this is the first study to our knowledge that has tested the contribution of 

neuroimaging to problems that arise in the clinical care of BD for which adequate non-

imaging solutions have been elusive. Although in need to replication and refinement, our 

data provide clear direction for the development of translational imaging applications in 

psychiatry.
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Figure 1. Machine Learning Classification
This is a simplified illustration of the Gaussian Process Classifier functions that outlines the 

general principles of multivariate machine learning classification as applied to neuroimaging 

data from two hypothetical groups, referred to as patient and comparison group. During the 

training phase (left panel), the classifier is separately presented with multiple neuroimaging 

datasets of individuals that belong to one or the other group. The algorithm uses these data 

to assign a predictive weight to each voxel as more or less likely to be associated with one or 

the other group. The output of the classifier is a discrimination maps showing regions that 

have the most significant contribution to classification (left panel, bottom left) and values 

regarding the performance of the classifier based on their separating hyperplane (left panel, 

bottom right). During the test phase, a previously unseen dataset is presented to the 

algorithm and is classified based on its probability of belonging to either the patient or 

comparison group.
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Figure 2. Unthresholded discrimination maps for the classifier based on the 3-back >0-back 
contrast
(A). Patients with Bipolar Disorder (BD) versus unrelated healthy individuals. In the 

corresponding discrimination map, positive coefficients (red) indicate clusters with 

predictive value for BD (B). Patients with BD versus relatives with Major Depressive 
Disorder. In the corresponding discrimination map, positive coefficients (red) indicate 

clusters with predictive value for BD (C). Patients with BD versus healthy relatives. In the 

corresponding discrimination map, positive coefficients (red) indicate clusters with 

predictive value for psychiatrically healthy relatives.

Frangou et al. Page 16

Neuroimage. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Frangou et al. Page 17

Table 1

Demographic, Clinical and Task Performance Data

Unrelated Healthy Controls
(n=30)

Healthy Relatives
(n=30)

MDD Relatives
(n=30)

BD Patients
(n=30)

Age (years) 33.4 (11.6) 35.3 (5.6) 32.9 (9.9) 34.7 (7.7)

Male: Female 15:15 14:16 16:14 15:15

Full scale IQ 108.4 (10.9) 110.5 (10.5) 109 (11.4) 107.1 (12.1)

Age of onset (years) n/a n/a 20.1 (9.1) 19.2 (10.8)

HDRSa 0.1 (0.5) 0.1 (0.4) 1.3 (0.9) 3.2 (1.1)

YMRSa 0.1 (0.8) (0) (0) 0.1 (1.3) 1.3 (0.7)

BPRSa 24.4 (0.7) 24.5 (0.6) 25.4 (0.9) 27.1 (2.4)

3-back, % correctb 73.2 (12.4) 88.5 (14.3) 73.4 (17.2) 69.8 (16.7)

3-back, response time [sec]c 0.85 (0.3) 0.79 (0.3) 0.84 (0.5) 0.87 (0.6)

Except for sex, data are presented as mean (standard deviation). Bipolar disorder=BD; BPRS=Brief Psychiatric Rating Scale; IQ=Intelligence 
Quotient; HDRS=Hamilton depression Rating Scale; MDD=Major Depressive Disorder; YMRS=Young Mania Rating Scale; n/a=not applicable; 
there were no group differences in age, sex distribution, IQ and age of onset, P>0.7;

a
Significant effect of group for HDRS, YMRS and BPRS P<0.001; Post-hoc pairwise Bonferroni corrected comparisons showed that patients with 

BD more symptomatic than all other groups, P<0.01;

b
Significant effect of group F=15.8, P<0.01; Post-hoc Bonferroni corrected pairwise comparisons showed healthy relatives outperformed all other 

groups, P<0.02; Significant effect of group F=21.4, P<0.01; Post-hoc Bonferroni corrected pairwise comparisons showed healthy relatives 
outperformed all other groups, P<0.02
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