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Abstract

Extreme heat events will become more frequent under anthropogenic climate change, espe-

cially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the

effects of extreme weather events and hence facilitate the persistence of some components

of the biodiversity. We investigate the microclimatic moderation provided by two important

microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.

Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the

Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these

microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-lit-

ter microhabitats significantly buffered against high temperatures and low relative humidity,

compared to ground-below-canopy sensors. There was no significant difference between

grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation

was reduced, day temperatures were 1–5˚C cooler, night temperatures were 0.5–3˚C

warmer, and maximum temperatures were up to 14.4˚C lower, compared to ground-below-

canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an

average rate of 0.24˚C temperature per 1˚C increase of ambient temperature in the ground-

below-canopy microhabitat. The average daily variation in temperature was determined by

the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining

67%), the amount of canopy cover and the area of the vegetation fragment (together ex-

plaining almost 10% of the variation). Greater canopy cover increased the amount of microcli-

matic moderation provided, especially in the leaf-litter. Our study highlights the importance of

microhabitats in moderating macroclimatic conditions. However, this moderating effect is cur-

rently not considered in species distribution modelling under anthropogenic climate change

nor in the management of vegetation. This shortcoming will have to be addressed to obtain

realistic forecasts of future species distributions and to achieve effective management of

biodiversity.
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Introduction

Anthropogenic climate change poses a severe risk to the survival of many species [1,2]. Consid-

erable range shifts of species [3,4] and entire ecosystems [5,6] are already being observed and

it seems unlikely that many species will be able to either migrate or adapt quickly enough in

response to changes in regional climate [4,5], especially those with traits conferring high sensi-

tivity and low adaptive capacity to climate change [2]. Mediterranean landscapes are considered

especially vulnerable to climate change and have been highly disturbed and fragmented by

human activities [7,8,9]. However, most currently available climate data are at spatial scales too

large to be relevant for organisms occupying complex habitats, resulting in much uncertainty

about likely effects of climate change on the future distributions of species [10,11,12].

Macroclimatic patterns are locally modified by abiotic and biotic factors [13,14], sometimes

producing microclimates buffered or decoupled from regional conditions [15,16]. Decoupling

is an extreme form of buffering and involves the isolation of local environmental conditions

from macroclimatic patterns [15]. For example, cold air may converge in valleys, creating cooler

microclimates [15,17]. Aspect and slope influence the amount solar insolation and hence the

microclimate of a location [13,18]. Furthermore, higher water-saturation in the air caused by

moisture in the soil or proximity to streams and other water bodies can produce cooler micro-

climates during warm, and warmer microclimates during cool, periods [13,14,16]. Vegetation

can reflect some solar radiation and reduce wind speeds, creating various microhabitats that

have unique, often buffered, microclimates [19,20]. Similarly, some animals create burrows

with unique microclimates [21,22].

The local modification of climate by abiotic and biotic factors produces a complex patch-

work of microhabitats available to organisms. Species distributions are significantly affected by

this fine-scale interplay of abiotic and biotic factors [16,23,24]. For example, the occurrence of

smaller plants and arthropods is often dependent on shelter provided by plants [23,24]. Micro-

climatic conditions may also impact animal behavior as animals seek out more favorable

microhabitats [25,26,27], the phenology of plants with earlier germination and senescence

reported on warmer slopes in temperate climates [28,29], and the survival of both animals and

plants with organisms being dependent on certain microclimatic conditions during certain

stages of their life cycle [30,31]. Even anthropogenic microhabitats (such as waste items) can

create microhabitats affecting the survival of insects [32]. Hence, the various microhabitats

created by biotic and abiotic factors are crucial for sustaining biodiversity in most landscapes.

Because some of these microhabitats have the ability to maintain a more consistent and

favorable climate compared to regional conditions, they are believed to play potentially impor-

tant roles in facilitating persistence of biota under anthropogenic climate change [12,15,33]

and during extreme weather events [20,34,35]. Microhabitats, such as tree hollows and leaf lit-

ter, have been shown to reduce the effects of extreme climate events and hence constitute

important refuges [20,34,35]. In addition, microrefugia, habitats maintaining conditions that

are more favorable for target species than regional climates over long (several generations)

time periods [12,36], are increasingly considered important for in situ survival of species

under climate change [15,16,37].

Forests and woodlands provide important microhabitats that can considerably moderate

regional weather events and buffer climatic trends [12,38]. Canopy cover [14,39] and micro-

habitats, such as tree hollows and epiphytes [26,35], can maintain highly moderated microcli-

mates. However, most of our climatic data are derived from meteorological stations collecting

data under standard conditions (i.e., in open areas without interference by vegetation or other

structures beyond a Stephenson screen), meaning that we cannot currently quantify the effects

of canopy cover on microclimate [40].
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In this paper we quantify the effects of canopy cover and microhabitat type on microclimate

(temperature and relative humidity) in a fragmented woodland landscape in South Australia

during summer. This is important because the number of days with extreme (> 35˚C) heat in

this state is predicted to almost triple by 2070 using regional projections under the A1F1 emis-

sion scenario, which assume extreme warming of 1.74–4.64˚C globally [41,42]. Specifically, we

aim to 1) document how microclimate differs in three different microhabitats; 2) identify the

biotic and abiotic factors that drive the observed differences in microclimate; and 3) determine

if the amount of temperature buffering afforded by the microhabitats increases with severity of

heat. We predicted that the amount of microclimatic moderation would be related to topogra-

phy [13,15], canopy cover [19] and the type of microhabitat [35], and that the amount of tem-

perature buffering would increase with heat [34].

Materials and methods

Study site

The Fleurieu Peninsula is located on the south coast of Australia and has a low relief (Fig 1)

with Mediterranean climate (mean annual precipitation, MAP = c. 500–1000 mm.yr-1; [43,

44]). It reaches to 412 m in altitude and constitutes the southernmost extension of the Mount

Lofty Ranges [43,44]. The peninsula has a high concentration of species diversity, endemism

and threatened species [45] and is part of the Adelaide-Kangaroo Island area, one of Australia’s

centers of plant diversity and endemism [46]. Vegetation is mostly composed of eucalypt-

dominated woodlands, with grassy woodlands at lower (< 200 m) and sclerophyll woodlands

at higher elevations [44,47]. European settlement from 1840 had severe impacts, with near-

complete removal of native vegetation, the introduction of non-native species, and an increase

in erosion and fire frequency [43].

Sampling design

We sampled from 3 microhabitats at 14 sites across seven conservation parks (Table 1; Fig 1).

Each site was sampled in two ways: (1) a circular plot with a radius of 11.28 m (area = c. 400 m2)

was established and surveyed from 9–11 November 2015, and (2) three microhabitats (ground-

below-canopy, leaf-litter, grass-tree) were selected per site and each microhabitat was equipped

with up to four microsensors (Maxim ibuttons, DS1923) at the center of the plot to measure

temperature and relative humidity (accuracy: ±0.5˚C, ±5% RH), starting on 11 November 2015.

Ground-below-canopy microhabitat: two sensors were placed below the canopy 50 cm above

the ground on bamboo sticks on the inside of inverted, white plastic cups, which were attached

with and covered with white duct tape on the upper half (S1 Fig). Leaf-litter and grass-tree

microhabitat: the remaining two sensors for each site were placed inside metal tea strainers,

which were also covered with white duct tape on the upper half and left uncovered in the lower

half (S1 Fig). One sensors was placed in the leaf-litter (leaf-litter microhabitat) with the upper

(duct tape covered) side facing upwards. When the grass tree (grass-tree microhabitat), Xan-
thorrhoea semiplana F.Muell. (Xanthorrhoeaceae), was present, another sensor was placed

inside the closed cavity (see Fig 2) of this species. In addition, some microsensors were vandal-

ised (moved out of position by humans or wildlife, recording inaccurate measurements). As a

result, not every site recorded measurements for all three microhabitats (Table 1). Although we

applied similar radiation shielding for all sensors and hence obtained comparable data, results

would likely differ, in a consistent manner, if different radiation shielding had been used [48].

The location of each sampling site was marked directly above the ground-below-canopy sensors

(plot centre) using a Garmin GPSmap 62s, allowing 10 minutes for equilibration of satellite

readings and ensuring that a maximum accuracy of ± 3 m was reached.
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Vegetation

Vegetation was sampled to quantify its structural characteristics. However, we also recorded

the identity and abundance of each species in each plot using a modified Braun-Blanquet scale

[49] and detailed results are in S1 File. Species that could not be identified in the field were

treated as morphospecies and collected for identification using literature [50,51,52] and the

public reference collections of the State Herbarium of South Australia. In each plot the canopy

and understorey cover of the plot were estimated visually with reference to a canopy cover

chart as the average of five estimates from five locations within the plot; the center and 5 m

from the center in each major direction (north, south, east and west). The maximum height of

the vegetation was estimated visually with the aid of a 2 m pole in the same five locations in

each plot.

Remotely-sensed data

Remotely-sensed data was collected to derive relevant topographic and macroclimatic vari-

ables that may affect microclimate. The Geosciences Australia SRTM-derived 1-second DEM

version 1.0 (http://www.ga.gov.au/elvis/) was used as the input layer for all analyses, which

were implemented in ArcGIS 10.2. Solar radiation was calculated using the Solar Radiation

Toolbox with the following settings; time configuration: 1 December 2015–29 February 2016,

Fig 1. Location of the study sites on the Fleurieu Peninsula. The small inset map illustrates the location of the Fleurieu Peninsula in

Australia.

https://doi.org/10.1371/journal.pone.0183106.g001
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latitude: -35.5 decimal degrees, day interval: 14, hour interval: 1. This returned the potential

solar radiation watt hours per square meter (WH/m2) for the entire study area. Slope (degrees)

and aspect were derived using the ArcGIS toolbox.

The site locations were imported into Google Earth and used to compute the approximate

shortest distances to the edge of the vegetation fragment using the ruler tool. The polygon tool

was used to trace each vegetation fragment and the resulting polygon was imported into Arc-
Map 10.1 to calculate the approximate area of each fragment. Bioclimatic variables 1 (annual

mean temperature), 12 (annual mean precipitation) and 17 (precipitation of driest quarter)

were obtained from relevant WorldClim layers (www.worldclim.org) for the 1970–2000 time

period, which provide global macroclimatic data at about 1 km2 resolution [53]. Many of these

bioclimatic variables were strongly collinear (|r|> 0.767; p< 7.4 × 10−4) and only mean annual

precipitation (MAP) was retained for modelling of climatic parameters (see below). In addition,

elevation (r = 0.904; p = 3.9 × 10−6; with MAP), distance to the edge (r = 0.770; p = 7.9 × 10−4;

with solar radiation) were removed because of strong correlations.

Microclimatic data

Data (hourly temperature and relative humidity measurements; see S2 and S3 Files for raw

data) for the three summer months (1 December 2015 to 29 February 2016) was used to calcu-

late daily minimum and maximum temperature and humidity following the protocol of the

Australian Bureau of Metereology (BOM); minimum temperature being the lowest recorded

temperature in the 24 hours to 9 am, and maximum temperature the highest in the 24 hours

from 9 am. We calculated the average temperature/humidity as the average of the hourly tem-

perature/humidity measurements from 12.00 am to 11.59 pm for each day. These values were

averaged for the entire summer. We also calculated the variation (i.e., standard deviation) in

temperature and humidity and obtained averages over the whole three months as indicators of

microclimate variability and hence the microclimatic moderation provided (less variation in

temperature/humidity implies more moderation). After assessing for collinearity to avoid

Table 1. Locations of study sites with types of microhabitats surveyed, species richness and percentage canopy cover of fourteen 400m2 plots.

Park name Site Code Microhabitat type Easting Northing Species Richness Canopy Cover

Talisker CP TAE BC, LL, GT 242827 6054892 10 27

TAI LL, GT 242453 6054690 6 30

Deep Creek CP DAE BC, LL 247992 6051870 19 24

DAI BC, GT 248365 6051950 12 27

DBI BC, GT 250887 6052305 20 31

DCI BC, LL, GT 250047 6056733 12 30

Eric Bonython CP EBE BC, LL, GT 258459 6057075 12 44

EBI BC, LL, GT 258459 6056998 12 48

Newland Head CP NHE BC 273824 6054380 17 33

NHI BC, LL 274088 6054418 13 30

Goolwa Reserve GRI BC, LL 297840 6068210 14 22

Scott CP SCE BC, LL, GT 294982 6079284 19 16

Cox Scrub CP CSE BC, LL 295407 6087767 18 10

CSI BC, LL 295291 6087657 21 20

Easting and northing refer to UTM co-ordinates within zone 54H and were recorded in the centre of the plot. BC = ground-below-canopy microhabitat (0.5 m

above the ground), GT = in the cavity formed by the senescent leaves of a grass tree, Xanthorrhoea semiplana F.Muell. (Xanthorrhoeaceae); LL = in the

leaf litter; CP = Conservation Park.

https://doi.org/10.1371/journal.pone.0183106.t001
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redundant analyses, we retained average temperature, average humidity, and average variation

in temperature (correlated with average minimum temperature, r = -0.806; p = 8.8 × 10−4;

average maximum temperature, r = 0.830; p = 4.5 × 10−4; average temperature range, r = 0.923;

p = 7.1 × 10−6; average variation in humidity, r = 0.968; p = 6.4 × 10−8).

We then determined the buffering from maximum daytime temperatures provided by the

grass-tree and leaf-litter microhabitats compared to the ground-below-canopy microhabitat,

which recorded the climatic conditions outside these two microhabitats. Each temperature

and humidity record was assigned to either day (after sunrise and before sunset) or night

based on BoM sunrise and sunset data for Victor Harbor (the largest town on the peninsula)

and only daytime records retained. The hour prior to and after sunrise and sunset were re-

moved in order to allow a settling period between the two phases. We subtracted the ground-

below-canopy temperature/humidity from that recorded in the grass-tree and leaf-litter micro-

habitats to obtain the daytime/nighttime temperature/humidity moderation [34].

Fig 2. The grass tree, Xanthorrhoea semiplana F.Muell. (Xanthorrhoeaceae). The senescent leaves (brown colour) usually form a closed cavity, in which

microsensors were placed. Red scale bar is approximately 1 m in length.

https://doi.org/10.1371/journal.pone.0183106.g002
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Analyses

To identify the biotic and abiotic factors driving differences in microclimate, we used general-

ised linear mixed-effect models (GLMMs) with random intercepts in R.3.3.0 [54] with the

MuMIn [55] and lme4 [56] packages. The following variables were investigated as explanatory

variables; distance to the edge of the fragment, area of the fragment, MAP (bioclimatic variable

12), solar radiation, slope, canopy cover, understorey cover and vegetation height as fixed

effects and microhabitat type as a random effect. The natural logarithm of all fixed effects was

used in the models to allow detection of exponential relationships with the response variables.

We used a backward optimization approach, removing all non-significant (p> 0.05) variables

from an initial model that included all non-correlated variables. Significance was tested using

ANOVAs between the model including and excluding the variable. We used a pseudo-r2-value

[57] to estimate the explanatory power of the model (conditional r2) and the fixed (marginal

r2) and random effects (difference between conditional and marginal r2).

To determine, if the buffering of daytime temperature increased with the severity of heat,

we used linear models with daytime temperature buffering (average for the three months per

site) as the response variable. The average maximum temperature was used as an explanatory

variable in addition to the fixed effects used in the GLMM above. Separate models were con-

structed for grass-tree (n = 8) and leaf-litter (n = 11) microhabitats. In addition, we regressed

the amount of average daytime buffering against the maximum temperature for each day in

each of the grass-tree and leaf-litter microhabitats. Linear regression lines were fitted using the

method of least squares. The slopes of these lines were taken as the average increase of daytime

buffering with increasing heat stress.

Results

Variation among microhabitats

Temperature was higher, and relative humidity lower, during the day than at night (Fig 3).

Temperature and humidity were less variable in the grass-tree and leaf-litter microhabitats com-

pared to ground-below-canopy microhabitat, which manifested in lower temperature/ humidity

ranges, lower maximum temperatures (usually 5–10˚C lower; up to 14.4˚C)/ higher minimum

humidities, less temperature variability and slightly lower mean temperatures (Tables 2 and 3,

Figs 3 and 4). Temperatures in leaf-litter and grass-tree microhabitats were strongly moderated,

especially during the day (Fig 4), Average temperatures were mostly being 1–5˚C cooler during

the day and 0.5–3˚C warmer at night than in the ground-below-canopy microhabitat (Table 2).

The average humidity was lowest (mostly 0–70%) and most variable in the ground-below-can-

opy microhabitat, and highest (mostly 72–90%) and least variable in the leaf-litter microhabitat,

with grass-tree microhabitats displaying intermediate values (Table 3, Fig 4). On average, rela-

tive humidity in the leaf-litter habitat was about 8–25% higher during the day (7–20% in the

grass-tree microhabitat) than ground-below-canopy microhabitat (Table 3).

Drivers of microclimatic variation

Mean annual precipitation (MAP) had a strongly significant (p = 6.9 × 10−4) negative relation-

ship with average temperature and together with vegetation height explained about 36% of the

variation (Table 4). Microhabitat type explained an additional 14%, meaning that the complete

model explained about half of the variation in average temperature. None of the fixed effects

strongly predicted average humidity. Although vegetation height was a significant (p = 0.01)

predictor, it only explained < 6% of the total variation. However, the type of microhabitat

type explained about 70% of the variation in average humidity and the average variation in
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Fig 3. Hourly temperature and relative humidity data for a 48 hour period (from 12am on 31 December 2015 to 12 am on 2

January 2016) for microsensors in the three microhabitats at Scott Conservation Park, site SCE.

https://doi.org/10.1371/journal.pone.0183106.g003
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temperature (Table 4). In addition, canopy cover (p = 1.2 × 10−3) and the area of a vegetation

fragment (p = 0.02) had significant negative relationships with the average variation in temper-

ature, together explaining almost 10% of the total variation (Table 4).

Temperature buffering with increasing heat

The amount of temperature buffering provided by grass-tree and leaf-litter microhabitats was

mostly determined by the maximum temperature of a day, with increasing buffering on hotter

days at a rate of about 0.24˚C (mean; range = 0.02–0.48˚C) of average daily buffering per

degree of maximum temperature (Fig 5, Table 5). For the leaf-litter microhabitat, canopy

cover was another significant predictor of buffering. These variables explained >63% of the

variation in buffering among sites.

Discussion

Similar to other studies [19,38,39], we found that vegetation cover can reduce surface temp-

eratures. Although canopy cover played a smaller role than the type of microhabitat in

Table 2. Average, mean daily variation and mean daytime and nighttime moderation (italics: day;

night) of temperature (˚C, with standard deviation) for three microhabitats (ground-below-canopy,

under grass-tree, in leaf-litter) of 14 study sites on the Fleurieu Peninsula, South Australia.

Site Ground-below-

canopy

(mean, variation,

range)

Grass-tree

(mean, variation, range)

Leaf-litter

(mean, variation, range)

CSE 20.3 (±4.2), 7.0 (±2.5),

0.5–51.0

19.5 (±3.1), 4.1 (±1.7), 6.7–36.6

(-4.8±2.5; 3.6±1.6)

CSI 20.4 (±4.2), 6.1 (±2.3),

3.5–48.0

DAE 19.9 (±4.2), 4.7 (±1.9),

6.6–45.6

19.6 (±4.1), 3.7 (±1.9), 7.6–46.1

(-1.1±1.2; 0.4±0.9)

DAI 19.1 (±4.0), 4.0 (±2.4),

7.1–43.6

18.5 (±3.0), 2.4 (±1.2), 9.6–36.1

(-2.0±2.0; 0.9±1.3)

18.0 (±2.6), 2.1 (±1.1), 9.6–33.1

(-2.7±2.3; 0.5±1.5)

DBI 20.6 (±3.7), 4.6 (±1.6),

8.6–44.6

20.7 (±2.6), 3.5 (±1.1), 12.6–38.1

(-1.8±1.9; 2.2±1.5)

DCI 19.0 (±3.9), 4.7 (±2.0),

6.6–43.6

18.0 (±3.5), 3.1 (±1.7), 8.1–38.5

(-2.7±1.9; 0.6±0.8)

18.1 (±2.5), 2.2 (±1.3), 11.1–35.6

(-3.4±2.2; 3.0±1.6)

GRI 21.3 (±3.1), 6.2 (±1.9),

6.6–50.1

21.1 (±3.9), 2.7 (±1.0), 13.1–36.1

(-3.2±2.0; 1.0±1.3)

EBE 19.6 (±4.1), 5.0 (±2.0),

7.8–44.6

18.4 (±3.1), 2.5 (±1.3), 10.0–35.1

(-3.2±2.0; 1.0±1.3)

18.8 (±2.8), 2.7 (±1.2), 10.5–36.0

(-2.8±2.1; 1.3±1.3)

EBI 20.0 (±4.0), 5.4 (±2.0),

7.1–45.1

19.8 (±3.5), 3.7 (±1.6), 9.6–39.1

(-1.6±1.5; 1.4±0.8)

19.3 (±2.8), 3.5 (±1.4), 9.6–39.1

(-2.5±2.1; 1.1±1.4)

NHE 20.5 (±3.3), 4.5 (±2.1),

8.1–45.6

NHI 21.4 (±3.5), 5.3 (±1.9),

9.6–45.1

21.1 (±2.7), 3.3 (±1.5), 13.1–40.1

(-2.1±1.7; 1.7±1.5)

SCE 20.3 (±3.9), 5.6 (±2.2),

4.6–45.6

17.9 (±2.5), 2.5 (±1.0), 6.6–27.6

(-5.2±3.2; 0.7±0.9)

19.1 (±2.6), 2.6 (±1.2), 9.6–33.1

(-3.8±2.1; 1.7±1.5)

TAE 19.5 (±4.7), 4.7 (±1.8),

7.1–47.6

18.5 (±3.5), 2.7 (±1.1), 9.1–34.6

(-2.5±1.8; 0.6±1.2)

19.4 (±2.9), 3.8 (±1.4), 9.6–42.6

(-1.0±2.4; 0.7±1.9)

TAI 19.3 (±4.6), 3.3 (±1.7), 8.6–40.1

(-1.2±1.2; 0.8±0.8)

20.5 (±3.8), 4.1 (±1.9), 9.6–46.1 (0.5

±2.3; 1.6±1.9)

See Table 1 for study site codes. Blank cells imply that no data is available.

https://doi.org/10.1371/journal.pone.0183106.t002
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moderating temperatures (Table 4), higher canopy cover significantly increased buffering of

external temperatures in the leaf-litter (Table 5). Similarly, other studies found that maximum

soil temperature can be up to 10˚C higher in inter-canopy spaces (compared with under the

canopy) in semi-arid woodlands [58]. This further highlights the need to better understand the

temperature buffering provided by forests and woodlands [40]. The relationship between can-

opy cover and temperature buffering should be further investigated to determine its nature, as

it is often assumed to be linear [59].

Microhabitats, including leaf litter, cavities formed by senescent grass tree leaves, tree hol-

lows and epiphytes [20,34], have the capacity to considerably buffer hot temperatures. In this

study, grass-tree and leaf-litter microhabitats maintained average daytime temperatures up to

5.2˚C cooler and average daytime relative humidity up to 28% higher, compared to conditions

in the ground-below canopy habitat, during the 2015/16 summer in the Fleurieu Peninsula of

South Australia. These habitats are therefore able to maintain environmental conditions closer

to the optimum requirements of vertebrates [20,60,61] during extreme heat events and are

therefore likely to constitute important refuges for wildlife [26,27,62].

The capacity to buffer hot temperatures increased with increasing external temperatures. A

similar trend has been observed under canopy cover [39] and for tree hollows [34]. This trend

Table 3. Average, mean variation and mean daytime and nighttime moderation (italics: day; night) of

percentage relative humidity (with standard deviation) for three microhabitats (ground-below-canopy,

under grass-tree, in leaf-litter) of 14 study sites on the Fleurieu Peninsula, South Australia

Site Ground-below-canopy

(mean, variation,

range)

Grass-tree

(mean, variation, range)

Leaf-litter

(mean, variation, range)

CSE 66.3 (±12.2), 24.0

(±6.5), 7.2–100.0

82.2 (±13.7), 6.6 (±4.5), 31.7–100.0

(28.0±9.6; -0.6±9.7)

CSI 66.1 (±13.6), 19.0

(±5.8), 7.9–99.9

DAE 68.1 (±17.1), 15.3

(±6.3), 6.2–100.0

72.2 (±20.4), 9.4 (±6.8), 10.2–100.0

(8.1±10.8; -1.18±5.5)

DAI 70.9 (±16.3), 13.2

(±6.3), 8.0–100.0

75.3 (±14.6), 6.9 (±3.9), 20.9–100.0

(9.0±6.8; -2.1±8.7)

89.9 (±10.4), 2.4 (±2.9), 46.2–100.0

(25.0±11.0; 10.7±12.2)

DBI 66.9 (±15.1), 15.2

(±5.4), 9.9–100.0

68.9 (±16.1), 7.1 (±3.3), 15.4–100.0

(7.2±9.0; -5.0±10.2)

DCI 71.8 (±15.5), 15.7

(±6.5), 8.4–100.0

78.0 (±20.4), 6.9 (±6.3), 15.5–100.0

(12.9±11.7; -2.8±10.4)

90.5 (±12.1), 4.4 (±4.7), 19.3–100.0

(25.1±15.0; 10.0±12.0)

GRI 65.2 (±11.1), 18.3

(±5.2), 5.9–99.9

81.3 (±14.9), 3.5 (±2.7), 36.9–100.0

(25.7±11.1; 2.8±12.4)

EBE 69.7 (±16.6), 15.4

(±6.4), 8.2–100.0

88.3 (±16.2), 4.9 (±4.7), 27.0–100.0

(20.3±9.3; 4.3±9.5)

85.3 (±14.7), 4.4 (±4.2), 28.1–100.0

(22.2±9.0; 6.3±9.7)

EBI 68.5 (±16.8), 16.9

(±6.7), 0.0–100.0

69.8 (±17.0), 11.0 (±5.4), 11.7–

100.0 (5.9±5.2; -5.0±5.3)

82.6 (±17.6), 6.8 (±5.9), 14.2–100.0

(20.8±10.5; 4.9±9.8)

NHE 67.8 (±12.4), 15.0

(±6.0), 7.8–100.0

NHI 69.5 (±16.5), 14.7

(±7.0), 6.1–100.0

72.9 (±16.4), 6.6 (±3.5), 21.6–100.0

(9.7±7.2; -5.6±10.6)

SCE 65.8 (±13.2), 16.1

(±5.3), 8.4–99.1

77.5 (±8.7), 4.0 (±2.2), 46.3–99.4

(20.7±8.6; -0.9±5.2)

81.9 (±15.2), 3.8 (±2.8), 37.4–100.0

(23.5±10.3; 5.9±9.7)

TAE 66.2 (±19.6), 15.4

(±6.6), 7.8–100.0

75.5 (±18.3), 7.9 (±5.4), 22.8–100.0

(13.7±9.1; 3.4±9.5)

81.6 (±14.8), 8.1 (±5.7), 22.8–100.0

(20.3±11.7; 8.8±14.8)

TAI 68.8 (±20.4), 9.6 (±5.9), 11.4–100.0

(6.0±6.0; -1.9±6.1)

82.1 (±15.9), 6.5 (±5.6), 24.5–100.0

(21.4±12.6; 8.5±13.2)

See Table 1 for study site codes. Blank cells imply that no data is available.

https://doi.org/10.1371/journal.pone.0183106.t003
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is linked to greater stability of microclimates in microhabitats (compared to external condi-

tions). Such stability has also been observed in other microhabitats [21,26,63]. The capacity to

retain cooler, moister and more stable microclimates is important considering the forecasted

increase in temperatures and associated extreme events, particularly in South Australia and

Mediterranean ecosystems in general [7,8,41]. While the presence of suitable microhabitats

that are ‘heat-resistant’ provides some hope for the survival of wildlife under anthropogenic

climate change, we also need to consider the continued persistence of the plant species provid-

ing these microhabitats. This is unlikely to be the case for all species, as major vegetation

changes are predicted, and indeed already occurring, for Mediterranean regions under anthro-

pogenic climate change [6,7,64].

While fine-scale variation in topography is increasingly considered important for predict-

ing the likely impacts of future climate change [10,11], biotic factors are generally not consid-

ered (but see [14,24]). This may be due to the unavailability of fine-scale vegetation data [11],

but also due to our limited understanding of the impact that vegetation has in locally moderat-

ing the prevalent climate, as most climate stations are set up under standard conditions in

cleared areas [40]. However, this study clearly demonstrates the important impact of vegeta-

tion on local climates and hence the environmental conditions experienced by wildlife.

A significant impact of fragment area on microclimate has been previously reported [65].

While our finding that larger fragments reduce the amount of daily variation in temperature

should be confirmed on a larger scale (with more fragments), it would have important implica-

tions for the design of nature reserves (e.g. conservation parks). Several processes could, inde-

pendently or interactively, explain the observed patterns. Firstly, vegetation acts as a wind

break, affecting wind speed and boundary layer mixing, and this could result in a more stable

temperature regime. [66]. Furthermore, smaller fragments potentially have different edge

structures, which could result in in higher temperature variability [65]. Finally, this phenome-

non could be caused by the stabilizing effect vegetation exerts on climates. For example, the

clearing of woody vegetation in Western Australia [67] and the Amazon basin [68] is believed

to have resulted in local reduction of rainfall and increased temperatures.

Fig 4. Box plots showing the median (centre lines of boxes), first and third quartiles (lower and upper box boundaries,

respectively) and highest and lowest values of daytime a) temperature and b) relative humidity for the three microhabitats

in six sites over three summer months from 1 December 2015 to 29 February 2016. Micohabitat codes: BC = ground-below-

canopy microhabitat (0.5 m above the ground), GT = in the cavity formed by the senescent leaves of a grass tree, Xanthorrhoea

semiplana F.Muell. (Xanthorrhoeaceae); LL = in the leaf litter. See Table 1 for site codes.

https://doi.org/10.1371/journal.pone.0183106.g004

Table 4. Best generalised linear mixed-effect models (GLMMs) explaining average temperature, average humidity, and average variation in tem-

perature with microhabitat type as the only random effect, showing only significant fixed effects.

Av. Temperature (˚C) Av. Humidity (%) Av. Variation in Temperature (˚C)

Slope Chi p-value Slope Chi p-value Slope Chi p-value

log(MAP) -2.85 7.96 4.8 × 10−3

log(Height) -0.68 5.38 0.02 6.56 4.13 0.01

log(Canopy) -0.13 10.57 1.5 × 10−3

log(Area) -1.17 5.42 0.02

Marginal r2 0.359 0.056 0.095

Conditional r2 0.497 0.762 0.794

MAP = mean annual precipitation (mm), Height = vegetation height (mm), Canopy = canopy cover (%), Area = fragment area (m2). Significance of variables

was tested at the 5% level using ANOVA of the model including and not including the respective term. Conditional and marginal r2 are pseudo-r2-values

[57], with the conditional r2 estimating the explanatory power of the entire model and the marginal r2 that of the fixed effects.

https://doi.org/10.1371/journal.pone.0183106.t004
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Fig 5. Average daytime temperature buffering (compared to the ground-below-canopy microhabitat in the same location) provided by eight

grass-tree (symbols, dashed trendlines) and eleven leaf-litter (shapes, dotted trendlines) microhabitats over 92 days during the 2015/2016

summer in vegetation fragments in the Fleurieu Peninsula. Regression lines were fitted using the method of least squares, assuming a linear

relationship. There was no significant difference between the means of the slopes in the two microhabitats (t = 0.894; d.f. = 17; p = 0.192).

https://doi.org/10.1371/journal.pone.0183106.g005

Table 5. Best linear models explaining average daytime temperature buffering (compared to the ground-below-canopy microhabitat in the same

location) for grass-tree and leaf-litter microhabitats, including only significant variables.

Grass-tree Leaf-litter

t-value p-value Coeff. t-value p-value Coeff.

Log(Max Temp) 3.87 6.1 × 10−3 10.765 4.22 2.0 × 10−3 7.19

Log(Canopy) 2.46 0.039 1.14

Intercept -40.995 -32.51

Adjusted r2 0.637 0.735

F-value 15.01 1,7 8.16 2,8

p-value 6.1 × 10−3 2.0 × 10−3

Max Temp = average maximum temperature, Canopy = canopy cover. Significance of variables in linear models was tested at the 5% level using ANOVA of

the model including and not including the respective term. Subscripts beside the F-value give the degrees of freedom in the numerator and denominator.

https://doi.org/10.1371/journal.pone.0183106.t005
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Our findings therefore have important implications for landscape and biodiversity manage-

ment. In order to maintain habitat suitable for wildlife, canopy cover and microhabitat diver-

sity need to be maintained. Fire has the potential to destroy microhabitats [69,70], suggesting

the frequency of its use in the management of Mediterranean ecosystems needs to be carefully

considered. Furthermore, maximizing canopy cover and the availability of microhabitats at

a landscape scale could help to effectively protect wildlife in a warming climate with more

extreme temperature events. Finally, evidence is building that bigger vegetation fragments are

better at moderating macroclimatic conditions. This may contribute to the SLOSS debate

(whether a Single Large Or Several Small reserves are better for protecting biodiversity [71]) in

conservation science, as it suggests that larger reserves may be better in retaining more stable

microclimates.

Supporting information

S1 Fig. Set up and shielding of microsensors. a) Microsensor as placed in ground-below-

canopy microhabitat at about 50 cm height on a bamboo stick in an inverted white plastic cup

covered with white duct tape; b) Set up of microsensors placed in leaf-litter and grass-tree

microhabitats: placed inside metal tea strainers covered with white duct tape on the upper half;

c) and d) Placement of microsensors in leaf-litter and grass-tree microhabitats, respectively–

the tea strainer was attached to white thread for easy retrieval and the red arrow indicates

entrance point of into microhabitat.

(TIF)

S1 File. Plant abundances for each study site. Abundance was determined using a modified

Braun-Blanquet scale (5 =>75% cover; 4 = 50–74% cover; 3 = 25–49% cover; 2 = 10–25%

cover; 1 = 10% cover) for a single circular plot with a radius of 11.28 m (area = c. 400 m2). See

text of manuscript for site codes.

(XLSX)

S2 File. Temperature raw data for all study sites. See manuscript for site codes.

BC = ground-below-canopy microhabitat (0.5 m above the ground), GT = in the cavity formed

by the senescent leaves of a grass tree; LL = in the leaf litter.

(XLSX)

S3 File. Relative humidity raw data for all study sites. See manuscript for site codes.

BC = ground-below-canopy microhabitat (0.5 m above the ground), GT = in the cavity formed

by the senescent leaves of a grass tree; LL = in the leaf litter.

(XLSX)
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