Skip to main content
. Author manuscript; available in PMC: 2018 Oct 1.
Published in final edited form as: Neurobiol Dis. 2017 Jul 1;106:124–132. doi: 10.1016/j.nbd.2017.06.015

Table 1. Summary of support vector machine classification model.

Results are based on single- and multi-cluster functional connectivity mean z-score values in a training cohort of 11 cKO and 11 control mice, and evaluated in an independent testing cohort of 7 cKO and 7 control mice. AUC: receiver operating characteristic area under the curve representing sensitivity and specificity in the training cohort; Prediction: 10-fold cross validation classification accuracy in testing cohort. Common slashes separate adjacent regions that comprise a common single-cluster combination of voxels. Individual clusters within multi-cluster combinations are separated by addition signs (+).

Functional connectivity cluster(s) AUC Prediction
1. Somatosensory cortex 0.86 71.4
2. Sensory-motor thalamus 0.91 78.6
3. Superior colliculus 0.91 71.4
4. Pons 0.95 78.6
5. Vermis/cerebellar nuclei 0.91 71.4
6. Anisiform lobule 0.91 92.9
7. Thalamus 0.91 85.7
8. Somatosensory cortex + posterior parietal assoc. 0.83 64.3
9. Somatosensory cortex + sensory-motor thalamus 0.82 78.6
10. Somatosensory cortex + vermis/cerebellar nuclei 0.82 92.9
11. Somatosensory cortex + sensory-motor thalamus + vermis + vermis/cerebellar nuclei + anisiform lobule 0.75 92.9
12. Somatosensory cortex + thalamus + superior colliculus + anisiform lobule 0.75 100
13. Somatosensory cortex + sensory-motor thalamus + superior colliculus + anisiform lobule + vermis 0.73 100
14. Somatosensory cortex + hypothalamus/midbrain + geniculate group + anisiform lobule + vermis 0.74 100