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Abstract

A clinical consequence of symptomatic Alzheimer's disease (AD) is impaired driving 

performance. However, decline in driving performance may begin in the preclinical stage of AD. 

We used a naturalistic driving methodology to examine differences in driving behavior over one 

year in a small sample of cognitively normal older adults with (n = 10) and without (n = 10) 

preclinical AD. As expected with a small sample size, there were no statistically significant 

differences between the two groups, but older adults with preclinical AD drove less often, were 

less likely to drive at night, and had fewer aggressive behaviors such as hard braking, speeding, 

and sudden acceleration. The sample size required to power a larger study to determine differences 

was calculated.
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Introduction

Approximately 190 million individuals in the United States are licensed to drive. With more 

than 30,000 annual fatalities among drivers of all age due to motor vehicle crashes, driving-

related crashes are a leading cause of injury in older adults in the United States (Federal 

Highway Administration, 2012; National Center for Statistics and Analysis, 2015). Almost 

5,000 older adults are killed and more than 200,000 are injured in crashes annually (Centers 

for Disease Control Prevention, 2011). In the next 40 years, the number of older adults in the 

United States is expected to double, resulting in a dramatic increase in the number of older 

drivers on the road and an additional increase in the number of years they will continue to 
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drive (Administration on Aging, 2015; Insurance Institute for Highway Safety, 2014; 

Mizenko, Tefft, Arnold, & Grabowski, 2014).

Alzheimer's disease (AD) is currently the sixth leading cause of death in the United States. 

By 2050, one million persons will be newly diagnosed and living with symptomatic AD 

every year (Alzheimer's Association, 2016). Preclinical AD is defined as cognitive normality 

with biomarker evidence (e.g., brain imaging and cerebrospinal fluid [CSF] assays) that the 

disease process has begun (Carrillo et al., 2009; Clark et al., 2011; Fagan et al., 2009; Klunk 

et al., 2004). Individuals with preclinical AD eventually progress to symptomatic AD and 

will develop cognitive and functional impairments that affect complex activities such as 

driving (Fagan et al., 2007; Morris et al., 2009; Roe et al., 2016). As a result, preclinical AD 

has become a significant research area for studying the course of cognitive and functional 

decline, as well as a prime target for therapeutic intervention (Sperling et al., 2011; Sperling, 

Karlawish, & Johnson, 2013; Vos et al., 2013).

Standardized road tests and driving simulators are currently the mainstays of driving 

evaluation. Yet, limitations with these assessment methods include high equipment cost, 

difficulty replicating test conditions, observer bias, the confound of anxiety, and 

questionable generalizability to real-world driving behavior (Davis & Ohman, 2016; De 

Winter, Van Leuween, & Happee, 2012). Therefore, trends in driving research are shifting to 

examine naturalistic driving behaviors using GPS (Eby, Silverstein, Molnar, LeBlanc, & 

Adler, 2012; Molnar et al., 2014; Molnar & Eby, 2008). These in-vehicle devices gather 

driving data on a day-to-day basis from the actual environments that drivers access and 

navigate (Guo, Brake, Edwards, Blythe, & Fairchild, 2010). Studies by Eby et al. (2012) and 

Uc, Rizzo, Anderson, Shi, and Dawson (2004) used instrumented vehicles to examine 

difference in driving behaviors and errors among persons with AD and healthy controls. 

However, little is known about the driving behaviors of participants with and without 

preclinical AD in naturalistic settings. Our prior work adapted and modified a commercial, 

off-the-shelf, in-vehicle device for capturing daily driving behavior (Babulal et al., 2016a; 

Babulal et al., 2016b). The objective of this pilot study was to obtain driving behavior data in 

a small sample of older adults with and without preclinical AD for use in conducting power 

analyses to determine the sample size for a larger study. We also examined the level of 

agreement between objective and self-reported data on driving behavior.

Method

Participants

Participants in this pilot study were enrolled in a longitudinal study assessing preclinical AD 

and driving performance (R01-AG043434) at Washington University School of Medicine in 

St. Louis. All participants were enrolled in longitudinal studies of aging and dementia at the 

Knight Alzheimer's Disease Research Center of Washington University, were cognitively 

normal (Clinical Dementia Rating [CDR] = 0; Morris, 1993), were 65 years or older, had a 

valid driver's license, drove at least once per week, met minimal visual acuity for state 

requirements, and had in vivo imaging of cerebral beta-amyloid (Aβ42) using positron 

emission tomography (PET) with the amyloid tracer Pittsburgh compound B (PiB). 
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Washington University Human Research Protection Office approved study protocols, 

documents, and questionnaires (no. 201412024).

AD biomarkers and clinical data measured closest to the driving behavior collection period 

were used. Amyloid imaging was used to assign participants to study groups. The mean 

cortical binding potential (MCBP) reflects fibrillar amyloid, a pathological hallmark of AD. 

MCBP is the average PiB retention in the prefrontal cortex, precuneus, lateral temporal 

cortex, and gyrus rectus, using the cerebellum as the reference. Higher levels of MCBP 

reflect greater burden (amyloid plaques) indicative of AD. Prior studies support use of a 

MCBP cutoff of ≥0.18 indicating preclinical AD (biomarker positive) that is present in 

∼30% of older adults aged 65 or older (Roe et al., 2013; Roe et al., 2008; Vos et al., 2013). 

Participants were selected for inclusion if they endorsed “yes” on Question 15 of the Driving 

Habits Questionnaire (DHQ) indicating that they were always the driver when in the car 

(Owsley, Stalvey, Wells, & Sloane, 1999). Participants were contacted every three months to 

determine whether anyone else drove their vehicle. If someone else drove the vehicle, the 

trip was identified and excluded. Eligible participants with a MCBP of ≥0.18 were identified 

and randomized. These participants were contacted for recruitment until 10 participants 

were enrolled. We then identified participants with MCBP less than 0.18 and used frequency 

matching to pair them based on age with the previously enrolled. Similarly, this list of 

participants was contacted for recruitment until 10 participants were enrolled. All 

participants were unaware of their amyloid status.

Outcome Measures

Driving behavior was evaluated using a commercial GPS data logger that plugged into a 

vehicle's on-board diagnostics–II (OBD-II) port and sampled data every 30 seconds (G2 

Tracking Device™, Model 850: Azuga Inc, San Jose, California). Each 30-s sample was a 

single breadcrumb, containing vehicle speed, latitude, longitude, date, and time. Raw data 

and trips could be reviewed using Google Maps application programming interface (API). In 

our research program, we labeled this process as the driving real-world in-vehicle evaluation 
system (DRIVES). The methodology and creation of a driving profile using the DRIVES 

chip has been published (Babulal et al., 2016a; Babulal et al., 2016b). Data on driving 

behavior were collected from July 1, 2015, to June 30, 2016, for each participant across the 

continental United States. Nonspatial and spatial variables were computed in R and ArcGIS 

(Environmental Systems Research Institute, Redlands, CA), respectively. Variables obtained 

from the DRIVES chip included number of trips, average miles per trip, total days with 

driving, number of unique destinations (outside of home/work), number of trips with hard 

braking, sudden acceleration, speeding, aggression, and night driving and daylight driving. 

Participants also completed the DHQ, a widely used self-report measure of their driving 

behavior over the past year (Owsley et al., 1999).

Statistical Analysis

Differences between the AD biomarker groups were examined using t tests. Power analyses 

to determine the number of participants needed to show a significant difference between the 

groups were conducted using the means and standard deviations of each group on each 

variable from the DRIVES chip: An alpha/significance level of .05 and power of 0.80%, β 
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= .20) were used. Power analyses were conducted assuming equal sample sizes in the 

preclinical and cognitively normal (biomarker negative) groups. A p value less than .05 was 

considered statistically significant between variables. Pearson's correlations examined the 

extent to which objective data (DRIVES) captured over the year were associated with self-

reported responses (DHQ). An r coefficient greater than .5 was considered to be moderately 

strong (Cohen, 1988). All statistical analyses were performed in SPSS Version 23 (Chicago, 

IL).

Results

Participants in our sample were cognitively normal, well educated, predominately 

Caucasian, and ranged in age from 66.4 to 80.8 years (Table 1). With the exception of 

MCBP, there were no group differences among demographic variables; however, participants 

in the PiB+ group were slightly older, had less education compared with the PiB– group, and 

as expected, had higher MCBP. We examined group differences across 10 metrics derived 

from the DRIVES chip, and determined estimated sample sizes needed for each group to 

power a larger study (Table 2). There were no statistically significant differences between 

the groups on any of the metrics. However, means and standard deviations indicated some 

key differences in driving behavior that trended in expected directions. As shown in Figure 

1, participants with preclinical AD took fewer trips overall, but drove more miles per trip on 

average, and they had fewer trips with aggressive behaviors. In addition, participants with 

pre-clinical AD drove less at night and had fewer trips with hard braking, speeding, and 

sudden acceleration compared with participants without preclinical AD. There were strong 

(r > .50), statistically significant correlations between the DRIVES Chip and DHQ on total 

miles driven and mean driving area/space (Table 3), and perfect agreement on whether 

participants drove at night. There were no statistically significant relationships between 

participant report and the DRIVES chip on number of days driven each week or number of 

speeding occasions. Finally, there was considerable variability on the sample size required 

for a larger study across the different DRIVES variables; however, the majority of the 

variables are estimated to require fewer than 150 participants to show significant differences 

between the groups.

Discussion

This pilot study sought to characterize driving behaviors among 10 older adults with and 10 

older adults without preclinical AD over a 1-year period using a naturalistic driving 

methodology, and to use this information to determine the number of participants needed to 

power a larger study. As expected given the small sample size, differences between the two 

groups were not significant on the variables from the DRIVES chip. However, the results are 

consistent with the direction of differences found when comparing cognitively normal 

persons with those with mild symptomatic AD. Older adults with mild AD have been found 

to drive fewer miles overall and not take as many trips (Eby et al., 2012), but may drive more 

per trip due to challenges with navigation and getting lost (Uc et al., 2004), and were found 

to be more cautious in their driving, thus not engaging in active and aggressive behaviors 

such as speeding or sudden acceleration (Cox, Quillian, Thorndike, Kovatchev, & Hanna, 

Babulal et al. Page 4

J Appl Gerontol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1998). Continued longitudinal follow-up will be instrumental in delineating group 

differences and the impact of preclinical and symptomatic AD on daily driving behavior.

When we examined the associations between self-reported driving behavior on the DHQ and 

objective data captured by the DRIVES chip, there was stronger agreement for global 

driving behavior but less so for trip-specific daily driving behaviors. There was strong 

agreement between both measures on whether participants drove at night, number of days 

driven per week, and number of trips/miles per week. However, self-report on driving 

behaviors such as speeding or driving area/space was weak and underreported on the DHQ. 

Given that self-reported data are influenced by both memory and perception, perfect 

correlations were not expected. However, our findings indicate that the data captured with 

the DRIVES chip correspond reasonably well with self-reported driving data.

Small samples have been cited as a consistent and significant barrier in driving research due 

to the expense and feasibility of many driving studies (Hird, Egeto, Fischer, Naglie, & 

Schweizer, 2016). Given this obstacle, it is important to take into account study design, cost, 

and overall participant burden, especially in the AD population. Although some granting 

agencies and institutes require sample size justification, power calculations are fundamental 

considerations for most study designs and are extremely beneficial in conserving resources, 

time, and reducing participant burden (Aberson, 2011; Murphy, Myors, & Wolach, 2014). 

Computed sample sizes needed to find significant difference might require up to 300 

participants (150 per group). However, some for the DRIVES variables (e.g., hard braking, 

aggression, and trips driven at night) may be more sensitive in predicting driving problems 

in a preclinical cohort. Persons with AD who still drive tend to self-regulate their driving by 

avoiding inclement weather, speeding, high traffic, congested roads, night driving, and 

single, short trips (Davis & Ohman, 2016; Eby et al., 2012). These self-regulatory practices 

may start in preclinical AD and be identifiable during naturalistic driving. Other factors that 

may affect driving and self-regulation include vision problems, comorbidities, anxiety, and 

change mobility needs (Chapman, Sargent-Cox, Horswill, & Anstey, 2014; Meng & Siren, 

2012; Siren & Haustein, 2016; Weeks, Stadnyk, Begley, & MacDonald, 2015). It is 

important to consider each factor in future naturalistic driving studies.

There were some limitations including a small sample size for this pilot. The DRIVES chip 

can only function in vehicles built in 1996 or newer. PET PiB testing may not be available in 

clinics and hospitals, nor is it covered by insurance. Although every effort was made to 

exclude trips not made by the participant, recall and self-report are limited and another 

driver may have made a small percentage of trips. However, this is not expected to affect the 

volume of data collected over the year for each participant. Finally, although all participants 

were cognitively normal (CDR = 0) and performed well on the mini-mental state 

examination (MMSE), robust neuropsychological testing may be more sensitive in detecting 

impairments in cognitive functioning.

Conclusion

Driving is an important activity that affords the ability to maintain independence, work 

outside the home, manage health, and participate in communities. Decline in driving 
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performance among older drivers is becoming an increasing area of public and research 

interest especially with a projected increase in AD and as older adults continue to drive 

much longer. Naturalistic methodologies such as the DRIVES chip offer an affordable, 

objective, and data-driven alternative to examine driving behavior over time to identify 

changes and decline. We have demonstrated the feasibility, acceptability, and utility of the 

DRIVES chip in this pilot study. Larger studies, together with longer longitudinal follow-up 

periods (e.g., five years), are needed to determine group differences between those with and 

without preclinical AD. Naturalistic driving such as the DRIVES chip has real potential to 

provide correlates of driving safety, assist with fitness to drive decisions, and strategically 

map out safer and more efficient driving routes. Finally, identifying older adults who are 

moving toward driving retirement could assist with timely mobility counseling or suggest 

interventions to improve confidence and extend driving for those that are still safe.
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Figure 1. 
Box plots with distributions of scores, medians, and interquartile ranges for the total number 

of trips, mean miles per trip, and number of trips with any aggressive behaviors captured 

with the DRIVES chip during the 1-year pilot study.

Note. DRIVES = driving real-world in-vehicle evaluation system; PiB = Pittsburgh 

compound B.
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Table 1

Participant Demographics.

PiB-(n = 10) PiB+ (n = 10) Total (N = 20)

Age, M (SD), years 72.4 (3.7) 73.9 (4.1) 73.1 (3.9)

Women, n (%) 4 (40.0) 3 (30.0) 7 (35.0)

African American, n (%) 1 (10.0) 1 (10.0) 2 (10.0)

Education, M (SD), y 16.8 (1.7) 15.8 (2.7) 16.3 (2.3)

APOE4+, n (%) 3 (30.0) 4 (40.0) 7 (35.0)

MMSE, M (SD) 29.2 (1.3) 29.1 (1.0) 29.1 (1.1)

MCBP for PET PiB, M (SD)* 0.21 (0.5) 0.44 (0.3) 0.25 (0.3)

Note. APOE4 = apolipoprotein E ε4; MMSE = mini-mental state examination (0-30 with 30 = perfect score); MCBP = mean cortical binding 
potential; PiB = Pittsburgh compound B.

*
p < .05.
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Table 2

Means, Standard Deviations, and Number of Participants Needed in Each Group to Show Significant 

Differences on Naturalistic Driving Outcomes Derived From DRIVES Chip.

Naturalistic driving outcomes PiB– M (SD) PiB+ M (SD) p value Sample size needed for each group (α, β)

Total number of trips 1,457.7 (507.5) 1,194.8 (498.5) .26 97

Average miles per trip 6.18 (2.91) 7.97 (5.0) .34 137

Total days driven 281.8 (51.0) 271.9 (54.8) .68 744

Number of unique destinations 216.4 (78.4) 189.9 (85.4) .47 250

Total trips with hard braking 170.6 (122.0) 104.6 (64.6) .15 58

Total trips with sudden acceleration 139.8 (129.3) 82.0 (91.6) .26 99

Total trips with speeding 77.5 (157.8) 50.8 (62.9) .63 15

Total trips with aggression 314.9 (208.0) 200.9 (135.4) .16 68

Total trips at night 81.0 (45.9) 50.5 (54.6) .19 73

Total trip in daylight 1,224.8 (438.4) 988.4 (466.7) .26 97

Note. α = .5; β = .20. PiB- = No preclinical Alzheimer's disease as determined by PET Pittsburgh compound B imaging; PiB+ = Evidence of 
preclinical Alzheimer's disease as determined by PET Pittsburgh compound B imaging.
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