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Abstract

Despite the common conception of the dorsal premotor cortex (PMd) as a single brain region, its 

diverse connectivity profiles and behavioral heterogeneity argue for a differentiated organization 

of the PMd. A previous study revealed that the right PMd is characterized by a rostro-caudal and a 

ventro-dorsal distinction dividing it into five subregions: rostral, central, caudal, ventral and dorsal. 

The present study assessed whether a similar organization is present in the left hemisphere, by 

capitalizing on a multimodal data-driven approach combining connectivity-based parcellation 

(CBP) based on meta-analytic modeling, resting-state functional connectivity, and probabilistic 

diffusion tractography. The resulting PMd modules were then characterized based on multimodal 

functional connectivity and a quantitative analysis of associated behavioral functions. Analyzing 

the clusters consistent across all modalities revealed an organization of the left PMd that mirrored 

its right counterpart to a large degree. Again, caudal, central and rostral modules reflected a 

cognitive- motor gradient and a premotor eye-field was found in the ventral part of the left PMd. 

In addition, a distinct module linked to abstract cognitive functions was observed in the rostro-
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ventral left PMd across all CBP modalities, implying greater differentiation of higher cognitive 

functions for the left than the right PMd.

Keywords

Precentral gyrus; eye-field; meta-analytic connectivity modeling; probabilistic diffusion 
tractography; fMRI

I. Introduction

The dorsal premotor cortex (PMd) constitutes a transitional region between the primary 

motor and prefrontal cortex (Geyer et al. 2000), encompassing the dorsal portion of the 

precentral gyrus. While the PMd is usually referred to as a single brain region corresponding 

to Brodmann area 6, its diverse connectivity profile and the heterogeneity of functions 

attributed to this region argue for functional and anatomical diversity within it (Boussaoud 

2001; Picard and Strick 2001; Hoshi and Tanji 2007; Abe and Hanakawa 2009; Hanakawa 

2011). Such diversity extends that of the lateral prefrontal cortex, which is organized along 

different axes (including the rostro-caudal; Badre 2008; Badre and D’Esposito 2009; Cieslik 

et al. 2013; Bahlmann et al. 2015)). Consistent with this view, a parcellation of the 

precentral gyrus based on probabilistic diffusion tractography (PDT-CBP) suggested that the 

dorsal part of the precentral gyrus, roughly corresponding to the functional PMd, can be 

further subdivided into a superior and an inferior portion (Schubotz et al. 2010). Thus, 

several lines of evidence converge to suggest that the PMd is not a uniform functional 

region, but rather a functional and/or an anatomical mosaic.

In a previous study, we investigated this issue in the right hemisphere (Genon et al. 2016) 

using connectivity-based parcellation (CBP) based on meta-analytic connectivity modeling 

(MACM-CBP; (Eickhoff et al. 2011)), resting-state functional connectivity (RSFC-CBP; 

(Yeo et al. 2011a)) and probabilistic diffusion tractography (PDT-CBP; (Behrens et al. 

2003b)). Across modalities, we found a convergent subdivision of the right PMd into five 

modules organized along a rostro-caudal axis and a ventro-dorsal axis (Genon et al., 2016). 

Functional characterization of the defined subregions revealed that the rostral-caudal 

organization formed by the rostral, central and caudal subregions reflected a cognitive-motor 

gradient. The rostral subregion was associated with higher-order functions and connected to 

the prefrontal cortex, the central subregion showed a mixed pattern and connections to the 

parietal lobe, while the caudal subregion was related to motor functions and connected to the 

sensorimotor network. In turn, the dorsal subregion was related to both cognitive and motor 

aspects of sequencing and timing while the ventral subregion showed a functional profile 

implicating it as a “premotor eye field” (Genon et al. 2016).

It remains an open question to what extent the organization of the left hemisphere mirrors 

the organization of the right hemisphere. According to previous whole brain parcellations, 

the left hemisphere showed a similar rostro-caudal organization to the right one, reflecting a 

general cognitive-motor gradient (Orban et al. 2015). There is also evidence that the frontal 

eye-fields should be similarly located in the ventral part of the PMd in both hemispheres 

(Amiez and Petrides 2009). However, the left hemisphere is known to be more functionally 
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dominated by language functions (such as speech preparation and execution, e.g. (Kell et al. 

2010)) than the right hemisphere and, in turn, less engaged in visuospatial processes (e.g. 

(De Schotten et al. 2011)) with such functional asymmetry including the PMd (Wager et al. 

2004). Moreover, the left premotor cortex has been demonstrated to have a more pronounced 

engagement in bimanual coordination, motor learning (Hardwick et al., 2014) and mental 

calculations (Hanakawa 2011). Relatedly, eye movements and right hand movement are 

usually executed in unison (Kantak et al. 2012), possibly rendering the functional interaction 

within the left PMd more complex than in the right PMd. Based on these findings, we 

expected the functional organization of the left PMd to be different from the one previously 

demonstrated for the right PMd (Genon et al., 2016). In particular, we predicted that the 

functional segregation of eye-field functions and visuo-spatial integration would be less 

prominent in the left PMd, while language functions would be represented by a specific 

subregion in the left PMd. Supporting this possibility, Glasser at al. (2016) have recently 

proposed a “new” language subregion termed “area 55b” in the inferior portion of both the 

left and right PMd. In our previous study, however, we did not find evidence of such a 

language subregion in the right PMd, highlighting the possibility that this subregion is 

specific to the left hemisphere. Importantly, previous functional studies have, albeit often 

indirectly, already suggested a different organization of the left and right PMd. For example, 

when examining activations of cognitive functions attributed to the PMd with a meta-

analytic approach, Hanakawa (2011) concluded: “The right rostral premotor cortex was 
located 3–6 mm rostral to the left rostral premotor cortex consistently across different task 
sets” In the same line, previous whole-brain parcellations based on RSFC-CBP revealed 

slightly different patterns for the left and right PMd ((Yeo et al. 2011b; Laumann et al. 2015) 

see Supplementary Material). Nevertheless, such asymmetries may be related to peculiarities 

of functional imaging and resting-state modeling. Hence, a multi-modal approach is 

necessary to examine the presence of potentially subtle differences in the neurobiological 

organization of the left PMd.

We here used CBP (Eickhoff et al. 2015) in order to provide a robust picture of the 

organization of the left PMd. First, we investigated evidence for a topographical organization 

that is “modality independent” by employing three different connectivity modalities: 

MACM, RSFC and PDT. MACM is a functional connectivity approach that capitalizes on 

the robust profile of co-activations of the brain voxels across a wide range of task-based 

fMRI and PET studies (Eickhoff et al. 2011). That is, MACM reveals how voxels interact, or 

are organized, to support a behavioral task (in an fMRI or a PET scanner). It thus provides 

clustering of voxels that is more “behaviorally meaningful” than other CBP approaches, but 

it comes with the limitation that the clustering might be driven by epiphenomena and 

peculiarities of task-based neuroimaging experiments such as a dominance of right-hand 

responses. Furthermore, as MACM is based on a meta-analytic approach, it is subject to the 

possibility of a publication bias (Rothstein et al. 2006). In turn, RSFC provides a clustering 

that is driven by the behaviorally unconstrained functional connectivity pattern of the voxels 

(Foster et al. 2016). Notably, the effect of noise and non-neuronal signals in RSFC is still an 

open issue (e.g. (Birn 2012; Murphy et al. 2013)) and therefore spurious correlations may 

influence the clustering patterns of voxels based on RSFC. Importantly, as both MACM and 

RSFC are correlative approaches, functional connectivity profiles may be indirect (e.g. 
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driven by a third region). PDT suffers less from these limitations as it estimates structural 

connectivity based on diffusion data (Behrens et al. 2003b). Therefore, PDT brings into 

account the structural constraints of brain networks. However, despite substantial 

developments in PDT methods over the last years, the pattern revealed by this approach is 

still sensitive to technical limitations such as gyral bias and questionable validity in 

estimating long-distance connection (Van Essen et al. 2013). In summary, RSFC-CBP 

reveals an unconstrained functional organization of the voxels, MACM-CBP reveals a 

behavior-driven organization of the voxels, and PDT-CBP reveals a structural organization of 

the voxels. Each connectivity approach has its own advantages and limitations, rendering 

them complementary and making their integration a powerful tool for characterizing brain 

organization. This issue is particularly relevant when addressing the organization of a brain 

region as complex as the left PMd (cfr. Figure S1).

By capitalizing on the complementarity of these connectivity modalities, the present study 

investigated subdivisions of the left PMd in a data-driven and multimodal manner. In 

addition, the current work capitalized on several recent developments in the field as 

compared to earlier work. First, MACM-CBP was performed on a higher number of 

available experiments in the Brainmap database. Second, RSFC-CBP and PDT-CBP were 

performed on a large, publicly available dataset of healthy adult subjects (enhanced NKI/

Rockland sample). Finally, RSFC-CBP benefited from recent developments in signal 

denoising (Salimi-Khorshidi et al. 2014). Potentially even more important, however, is the 

fact that the current work represents the first multi-modal CBP that employs the same 

analysis pipeline across modalities, rendering the actual parcellation algorithms constant. As 

we found a good convergence across modalities for the right PMd, we expected a similar 

convergence for the left one given the aforementioned improvements. The next step of the 

current work was then to functionally characterize the identified modules forming the left 

PMd mosaic with multimodal functional connectivity and functional behavioral profiling 

(e.g.(Clos et al. 2013; Genon et al. 2016)). In summary, our approach aimed to provide the 

first robust modular map of the left PMd based on multi-modal CBP combined with a 

detailed characterization of the behavioral functions and connectivity of the identified 

modules.

II. Methods

2.1. PMd Volume of interest (VOI)

We used the same functional approach to the definition of a PMd VOI as previously 

described in detail for the right side (Genon et al., 2016). In short, we first merged PMd 

activation sites from multiple meta-analyses on functions attributed to the PMd such as 

action observation (Caspers et al. 2010), motor learning (Hardwick et al. 2013), movement 

perception (Grosbras et al. 2012), sustained attention (Langner and Eickhoff 2013), and 

working memory (Rottschy et al. 2012). The ensuing PMd VOI was symmetrized and 

exclusively masked with the cytoarchitectonic maps of primary sensorimotor areas (BA4a, 

4p 3 a, 3b, 1, 2) as provided by using the SPM Anatomy Toolbox (Eickhoff et al. 2005). This 

procedure ensured that the PMd VOI did not overlap with primary sensorimotor cortex at the 

caudal border. Rostrally, however, the PMd VOI was not restricted to Area 6 but rather 
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covered the full extent of functionally defined PMd. This procedure resulted in a left PMd 

VOI of 4039 voxels.

2.2. Connectivity computation

We used MACM applied to the peaks of activation studies available in Brainmap database 

(https://www.brainmap.org/) as a robust measure of task-based functional connectivity while 

RSFC and PDT were computed respectively on the resting-state (RS) and diffusion-

weighted imaging (DWI) data of 124 healthy adults (84 females; mean age 46.56 ± 17.56) 

from the open-access enhanced “Rockland” sample (http://fcon_1000.projects.nitrc.org/indi/

enhanced).

2.2.1. Meta-analytic connectivity modeling (MACM)—MACM was used to identify 

the task-based functional connectivity profile of all left PMd VOI voxels as previously 

described (Clos et al. 2013; Genon et al. 2016). For each voxel within the left PMd all 

experiments that activated this voxel or its immediate vicinity were identified and whole-

brain co-activation patterns computed using the BrainMap database. To this end, we first 

calculated the Euclidean distances between a given seed voxel and the individual foci of all 

experiments and then used a multi-filter approach including the closest 20 to 200 

experiments in steps of two (i.e., retrieving the 20, 22, 24, 26,…, 200 experiments reporting 

activation closest to the seed voxel) to generate robust co-activation maps (Cieslik et al. 

2013; Clos et al. 2013; Genon et al. 2016). The brain-wide co-activation profile for each 

seed voxel given each of the 91 filter sizes was then computed by a meta-analysis over the 

associated experiments. This meta-analysis was performed using the revised ALE algorithm 

(Eickhoff et al. 2012). To take into account the complete brain-wide pattern of co-activation 

likelihood of each seed voxel, no height threshold was set. The brain-wide co-activation 

profiles for all left PMd VOI voxels were combined into a NS × NB connectivity matrix. NS 

is the number of seed voxels (4039) and NB the number of target voxels in the reference 

brain volume at 4×4×4mm resolution (26459 grey-matter voxels). Altogether, 91 individual 

connectivity matrices were computed, each representing the connectivity of the seed voxels 

for a given filter size.

2.2.2. Resting state functional connectivity (RSFC)—Resting-state data (TR 1.4 s) 

was cleaned for physiological and movement artifacts by applying FIX (FMRIB’s ICA-

based Xnoiseifier, version 1.061; (Salimi-Khorshidi et al. 2014)) implemented in FSL 

version 5.0.9 (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). FIX uses independent component 

analysis and automatically classifies noise components by using a large number of distinct 

spatial and temporal features via pattern classification. We utilized the training dataset 

provided with FIX and recommended settings for noise and movement regression (Griffanti 

et al. 2014). Further image processing was performed using SPM8 (Wellcome Trust Centre 

for Neuroimaging, London, http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Following 

deletion of the first four scans preprocessing of the EPI images included affine registration to 

the mean EPI and normalization to MNI space using the unified segmentation approach 

before band-pass filtering for frequencies between 0.01–0.08 Hz. Linear (Pearson) 

correlations between the time series of each seed left PMd voxel and all other grey-matter 

voxels (at 4×4×4mm3 resolution) were computed. The correlation coefficients were Fisher-Z 
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transformed and defined a per-subject connectivity matrix in the same form as the (per filter) 

connectivity matrices obtained from the MACM computation.

Of note, one recent study (published after the time of our analyses) suggested that FIX 

should be optimally combined with global signal regression (Burgess et al. 2016). Therefore, 

we also performed Fix combined with linear global signal regression (GSR). However, 

addition of GSR did not impact on the subsequent RSFC-CBP parcellation as illustrated in 

Figure S5 in Supplementary Material. Furthermore, a high-quality dataset of RS fMRI data 

acquired in healthy young adults has been made available by the Human Connectome 

Project (HCP; http://www.humanconnectome.org/data/) after the time of our analysis. 

Therefore, we also performed RSFC-CBP on a sample from this dataset (324 young healthy 

adults, 164 females; mean age: 28.22 ± 3.88). This additional analysis yielded a similar 

parcellation pattern than the one obtained from the enhanced NKI sample as illustrated in 

Figure S6.

2.2.3. Probabilistic Diffusion Tractography (PDT)—Using FSL (http://

www.fmrib.ox.ac.uk/fsl) the diffusion scans were first corrected for eddy current distortions 

and motion, followed by brain extraction based on the average b0 image and finally the 

estimation of a multi-fiber model using BEDPOSTX (which infers the existence of crossing 

fibers and estimates the contribution of each crossing fiber to the diffusion-weighted signal; 

cf. Behrens et al., 2007). In addition, linear and nonlinear transforms between diffusion and 

MNI-152 space were estimated using the FLIRT and FNIRT tools. Probabilistic Diffusion 

Tractography was then ran using Probtrackx (Behrens et al. 2003a; Behrens et al. 2007), 

generating 5000 streamline samples for every seed voxel based on the distributions of voxel-

wise principal diffusion directions (using a curvature threshold of .2 and a step-length of .5 

mm). Recording for every seed-voxel the streamline-count at every voxel within the white-

matter at a resolution of 3×3×3 mm then defined a per-subject connectivity matrix in the 

same form as the (per subject) RSFC connectivity matrices and the (per filter) connectivity 

matrices obtained for MACM.

2.3. k-means clustering

For all the three connectivity modalities, the parcellation was performed by the same 

pipeline (for minor adjustments cf. Supplementary Material) using k-means clustering as 

implemented in the yael package (https://gforge.inria.fr/projects/yael). Given that we 

previously found a robust parcellation of the right PMd VOI into 5 clusters (Genon et al. 

2016), we here investigated potential subdivisions obtained up to 7 clusters, i.e., the 2-cluster 

solution, 3-cluster solution, and so on, up to the 7-cluster solution, That is, we a-priori 
assumed that meaningful organizations of the left PMd can be observed at low resolution 

and high resolution but not at very high resolution (i.e. not in subdivision into more than 7 

subregions). For each parcellation, the best solutions from 500 replications with a randomly 

placed initial centroid were computed. Importantly, for each k, k-means clustering is 

performed at the individual level (i.e. filter level for MACM-CBP, and subject level for 

RSFC-CBP and PDT-CBP) and the different parcellations are then combined into a single 

parcellation for each modality by computing the most frequent cluster assignment for each 

PMd VOI voxel across subjects/filter sizes.
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2.4. Cluster validity criteria

Assuming that parcellations at a coarse scale (into 2–3 subregions) should represent the 

more stable primary patterns such as a rostro-caudal organization, we first considered these 

before moving to finer parcellations with a particular focus on those close to the granularity 

of the solution obtained for the right side, i.e., k = 4 – 6. Importantly, however, at these finer 

scales, only some solutions should be expected to represent stable and hence supposedly 

meaningful subdivisions, necessitating an objective choice of the solution most supported by 

the data (Eickhoff et al., 2015). Here we employed four different cluster-validity metrics 

employed individually to all three modalities. In line with our parcellation of the right PMd 

VOI (Genon et al, 2016), we examined percentage of deviants and silhouette value. Of note, 

variation of information across filter sizes, which was investigated in our MACM-CBP of 

the right PMd VOI is a MACM-CBP specific metric, therefore it was not used in the current 

multimodal procedure. Rather, in the current multimodal CBP study, we additionally 

examined hierarchy index and change in inter/intra cluster distance (Clos et al. 2013). Thus, 

we examined four different criteria: a topological criterion (hierarchy index), a consistency 

criterion (percentage of deviants) and two cluster separation criteria (change in inter/intra 

cluster distance and silhouette value).

Hierarchy index—The topological criterion was the percentage of voxels not related to the 

dominant parent cluster compared to the previous (k – 1) solution, i.e., the hierarchy-index 

(Kahnt et al., 2012). It corresponds to the percentage of lost voxels when only voxels 

consistent across the entire hierarchy are considered for the final clustering. For example, 

voxels assigned to cluster X in the 4-cluster solution that were assigned to cluster A (at k=3) 

would be excluded if the majority of cluster X voxels actually stemmed from cluster B (at 

k=3). A large fraction of such voxels indicates a hierarchically unstable solution (Clos et al. 

2013).

Percentage of deviants—The percentage of deviants or “misclassified voxels”, i.e. the 

average percentage of voxels for each filter size/subject that were assigned to a different 

cluster compared to the most frequent (mode) assignment of these voxels across filter sizes/

subjects, was used as a consistency criterion. A significant difference in percentage of 

deviants between a given cluster solution and the previous (k-1) one was tested using a two-

sample t-test. Optimal solutions are those k parcellations where the percentage of deviants 

(presumably reflecting noise and local variance) is not significantly increased compared to 

the previous (k-1) solution, while the subsequent (k+1) solution leads to a significantly 

higher percentage of deviants.

Change in inter/intra cluster distance—The inter/intra cluster ratio (Chang et al. 

2012), that is, the ratio between the average distance of a voxel to its cluster centre and the 

average distance between the cluster centers, was used as cluster separation criterion. Since 

the higher the distance ratio, the better is the separation, a significant increased ratio 

compared to the previous k-1 solution would indicate a better separation of the obtained 

clusters. However, because of the monotonous increase usually observed with this ratio, we 

used the first derivative to evaluate the change in this ratio across solutions. A local optimum 

is reached when there is a significant increase in the change from the previous k-1 to the 
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current k solution while the subsequent k+1 solution does not show a significantly larger 

increase.

Silhouette value—The silhouette value ranges from −1 to 1 and assesses, for each voxel, 

how similar the voxel is to others within the same cluster, versus, how similar this voxel is to 

voxels in other clusters regarding connectivity profile. A significant difference in the 

silhouette value between a given cluster solution and the previous one was tested with a two-

sample t-test. Cluster solutions were considered favorable if they show a significantly higher 

silhouette value, as compared to the previous (k-1) solution.

2.5. Identification and characterization of multimodal modules within the left PMd

To identify anatomical modules reflected by consistent subregion across the three 

modalities, we first identified the best solution for each of these and then performed a 

(spatial) minimum-statistic conjunction across the ensuing clusters (i.e. conjunctions of each 

cluster of each modality with all other clusters of all other modalities) to arrive at a final, 

multi-modal parcellation of the left PMd VOI. In order to only retain modules that reflect 

meaningful overlaps between the uni-modal clusters but not, e.g., stripe-like fringe area 

resulting from a slight displacement of the cluster border between modalities, we 

additionally employed a module-size criterion of 150 continuous voxels. That is, following 

the identification of the best solution per modality and the parcellation of the left PMd VOI 

based on each aspect of brain connectivity, we computed the intersection between all 

possible combinations of the ensuing MACM-CBP, RS-CBP and PDT-CBP clusters. We 

then retained only those intersections between clusters from different modalities, which 

yielded at least 150 continuous voxels, as our final, multi-modal modules. These modules 

were subsequently characterized by their multi-modal functional interaction patterns and the 

behavioral tasks engaging them in functional neuroimaging studies.

2.5.1. Functional connectivity of multimodal modules

Specific task-related functional connectivity (MACM): For each obtained PMd module, 

an ALE meta-analysis was performed across all BrainMap experiments featuring at least one 

focus of activation within each of the derived modules using the same approach as described 

above. In contrast to the MACM underlying CBP, where ALE maps were not thresholded to 

retain the complete pattern of co-activation likelihoods, we here performed statistical 

inference to identify brain regions showing significant co-activations (correcting the cluster-

level family-wise error rate (cFWE at p < .05, using a cluster-forming threshold at voxel 

level of p < .001).

To compare the brain-wide co-activation pattern between modules, we performed meta-

analytic contrasts as previously described (Eickhoff et al., 2011, Genon et al., 2016). Finally, 

we identified the specific co-activation pattern for each module, that is, brain regions that 

were significantly more co-activated with a given module than with any of the other ones. 

This was achieved by performing a minimum-statistic conjunction across the results of the 

four contrasts between a given module and the remaining others.
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Specific resting-state functional connectivity: To compute the significant RSFC of each 

multimodally defined module, the time series of a given module was represented (per 

subject) by the first eigenvariate of the resting-state time courses of all voxels attributed to 

this module. Linear (Pearson) correlations between the time series of each module and all 

other grey-matter voxels were computed and transformed into Fisher’s z-scores. These 

Fisher’s z-scores were entered into a flexible factorial model as implemented in SPM8 to 

test for consistency across subjects (main effect) as well as for significant differences 

between the modules (again correcting the cluster-level family-wise error rate (FWE at p < .

05, using a cluster-forming threshold at voxel level of p < .001). As for MACM, we 

identified the specific connectivity pattern of each module by performing a minimum-

statistic conjunction across the results of the four contrasts between a given module and the 

remaining others.

In order to identify the robust, modality-independent, (specific) functional connectivity 

pattern for each module (cf. Amft et al., 2014), we finally combined MACM and RSFC 

results for each module using a minimum-statistic conjunction.

2.5.2. Behavioral functional characterization of multimodal modules—As in 

previous work (e.g. (Clos et al. 2013; Genon et al. 2016)), functional characterization of the 

left PMd modules was performed using the “behavioral domain” (BD) and “paradigm class” 

(PC) meta-data within the BrainMap database (Laird et al. 2009) for those experiments that 

activate the respective module. BDs include the main categories cognition, action, 
perception, emotion, interoception, as well as their subcategories. In turn, PCs categorize the 

specific task employed. To robustly characterize the individual functional profile of each left 

PMd module, we combined quantitative “forward inference” and “reverse inference”. In 

forward inference, a module’s functional profile is assessed by identifying taxonomic labels 

for which the probability of finding activation in the respective module is significantly 

higher than finding activation for that label across the whole database by chance (p < .05 

corrected for multiple comparisons using Bonferroni’s method (Clos et al. 2013; Rottschy et 

al. 2013). That is, we tested whether the conditional probability of activation in a particular 

region given a particular label [P(Activation|Task)] was higher than the baseline probability 

of activating this particular region [P(Activation)]. In reverse inference, a module’s 

functional profile was determined by identifying the most likely BDs and PCs given 

activation in a particular module, i.e., the likelihood P(Task|Activation). This likelihood can 

be derived from P(Activation|Task) as well as P(Task) and P(Activation) using Bayes’ rule. 

Significance (at p < .05 corrected) was then assessed by means of a chi-squared test. In sum, 

forward inference assesses the probability of activation given a behavioral label, whereas 

reverse inference tests the probability of each behavioral label given an activation. For the 

sake of robustness, only behavioral labels that were significantly associated to the modules 

across both, forward and reverse inferences, were taken into account.
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III. Results

3.1. Multimodal parcellation

We first examined how each of the three CBP modalities divided the left PMd VOI at lower 

and higher scales. Then we investigated how the different cluster-solutions were supported 

by the data (using various cluster-stability criteria) within each CBP modality and combined 

the supported parcellations to finally identify multi-modal modules. Importantly, we 

compared the derived multimodal modules with the three subregions defined within the 

superior part of Area 6 (Sigl et al. 2016) by independent mapping modality 

(cytoarchitecture) and with the different subregions found in by the recent multimodal 

mapping of the cerebral cortex (Glasser et al. 2016).

3.1.1. Rostro-caudal organization of the left PMd at lower scales (k = 2–3)—All 

three modalities first subdivided the left PMd VOI along the rostro-caudal axis at lower 

scales. At k = 2, all modalities differentiated a caudal part on the precentral gyrus from a 

rostral part. Of note, while the borders defining subregions based on functional data (i.e. 

MACM-CBP and RSFC-CBP) did not meet macroanatomical landmarks, the border 

between the rostral and the caudal subregions defined by PDT-CBP was found close to the 

precentral sulcus. At k = 3, all three modalities differentiated a caudal subregion mainly 

covering the precentral gyrus, a central region centered on the precentral sulcus and a rostral 

subregion anterior to the precentral sulcus (Figure 1).

As expected, these coarse parcellations tended to be more stable than finer parcellations in 

the subject-based modalities (i.e., RSFC-CBP and PDT-CBP, see Figure S4). In other words, 

the rostro-caudal organization into three subregions appeared as a more stable feature than 

further subdivisions within the left PMd VOI.

3.1.2. Ventro-dorsal organization of the left PMd at higher scales (k = 4–6)—
Subsequent splitting of the PMd VOI highlighted differences as well as similarities between 

modalities (Figure 2).

All CBPs further subdivided the intermediate subregion (from k=3) along the ventro-dorsal 

axis at k=4. MACM and RSFC-CBPs both revealed that a “central” subregion, located at the 

intersection of the superior frontal and precentral gyri, can be distinguished from a more 

ventral and a more dorsal one as previously observed for the right PMd VOI (Genon et al., 

2016). In contrast, PDT-CBP distinguished a superior part, roughly corresponding to the 

superior frontal sulcus portion of the left PMd VOI.

At k=5, divergence between modalities increased. Both RSFC-CBP and PDT-CBP 

subdivided the rostral subregion into two modules along the ventro-dorsal axis disentangling 

a rostral module located in the superior sulcus either from a more rostroventral subregion 

(PDT-CBP) or from the cortex both rostro-ventral and rostro-dorsal to it (RSFC-CBP). In 

contrast, MACM-CBP subdivided the central cluster into a surface subregion and a deeper 

subregion, in the fundus of superior frontal sulcus, where it meets the precentral gyrus.
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At k = 6, all CBPs further subdivided the superior rostral subregion along the ventro-dorsal 

axis. Both, RSFC-CBP and PDT-CBP isolated the extreme dorsal part. In turn, MACM-CBP 

distinguished the rostral module located on the superior frontal sulcus from the more rostro-

ventral and rostro-dorsal subregions, in line with the subdivision revealed by RSFC-CBP at 

the previous clustering step (k = 5).

Overall, for the 6 cluster solutions we identified across all three CBPs two rostral 

subregions: a rostral one located in the superior frontal sulcus (consistently with our 

previous CBPs of the right PMd VOI) and a rostro-ventral one, a central subregion located in 

the posterior superior frontal sulcus, where it meets the precentral gyrus, a ventral subregion 

and a caudal one adjacent to primary motor area.

3.1.3. Selection of cluster solutions and cross-modal identification of modules 
within the left PMd—We next examined how the parcellations were supported by the data 

for the higher scales (k = 4–6) independently for each CBP modality (MACM, RSFC and 

PDT; see Supplementary Material for illustration and a detailed description of the results of 

the cluster stability assessment).

MACM-CBP: whereas the percentage of deviants and the silhouette value were not 

informative for choosing a cluster solution at higher scale (see Supplementary Material), the 

two other criteria promoted the k = 6 parcellation over other.

RSFC-CBP: whereas the intra/inter distance ratio, the percentage of deviants and the 

silhouette value were not informative for choosing a cluster solution at higher scale, the 

hierarchy index promoted the k = 4 and the k = 6 parcellations over the 5k parcellation.

PDT-CBP: whereas the percentage of the intra/inter distance ratio was not informative for 

choosing a cluster solution at higher scale, the silhouette value promoted the k = 5 

parcellationat higher scale. Nevertheless, the two other criteria promoted the k = 6 

parcellation over other k parcellations.

Thus, both within MACM-CBP and PDT-CBP, k = 6 can be regarded as the most stable 

solution. Of note the 6k was also supported by examination of the percentage of voxels not 

with parents for RSFC-CBP (despite the 4k was also supported). Thus, the 6k appeared as a 

data-supported cluster solution within each modality. Importantly, MACM-CBP and PDT-

CBP modalities that similarly promoted the 6k are based on different data sets. Therefore, in 

the sake of cross-modality validity, we focused on the k = 6 solution to identify multimodal 

modules.

To identify modules consistent across the three topological organizations and infer the 

multimodal organization of the left PMd, we performed conjunction analyses between all 

possible combination of MACM, RSFC and PDT clusters. This procedure revealed 5 

modules (Figure 3): a caudal one (green, 400 voxels), a central one (blue, 333 voxels), a 

rostral one (red, 241 voxels), a ventral one (yellow, 158 voxels) and a rostro-ventral one 

(pink, 260 voxels). The volumes are available through ANIMA (http://anima.fz-juelich.de/, 

(Reid et al. 2016)). These five modules were consistent with the corresponding five 

subregions revealed by each CBP modality independently, while the surface subregion 
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revealed by MACM-CBP alone and the dorsal subregion revealed by RSFC-CBP and PDT-

CBP were not evidenced by the conjunction across CBP modalities.

3.1.4. Comparison with cytoarchitecture-based mapping and multimodal 
cortex parcellation—Recent cytoarchitecture-based mapping of the superior part of Area 

6 has revealed three distinct areas: a caudal one (6d1), a deep anterior one (6d3) and a more 

dorsal anterior one (6d2) (Sigl et al. 2016). The comparison of our two multimodal modules 

located in the superior part of Area 6, i.e., the caudal and the central one, with the caudal and 

deep anterior anatomical areas showed that our caudal and central modules are consistent in 

their spatial pattern with these anatomical areas (this comparison is illustrated in Figure S7 

in the Supplementary Material). Thus, the comparison of our resulting modules with ex-vivo 

microstructure-based mapping suggests that our conjunction of overlapping clusters across 

CBP modalities retains topographically valid patterns.

Recently, Glasser et al. (2016) proposed a surface-based multimodal parcellation of the 

cerebral cortex. In order to reliably relate our multimodal left PMd volumes to the 

multimodal surface parcels of Glasser et al., we performed a two-fold comparison (see 

Figure S8). We transposed the surface parcellation map of Glasser et al. to volume in MNI 

space and displayed our volumes on the volume map (Figure S8 A), but we also mapped our 

volumes to surface with the Connectome workbench (http://www.humanconnectome.org/

software/connectome-workbench.html) and displayed the yielded surface modules on the 

surface parcellation map of Glasser et al. (Figure S8 B). Both comparisons showed that our 

left PMd caudal module mirrors a caudal PMd subregion identified by Glasser et al. In 

contrast, both comparisons showed that our rostral and central modules have not been 

distinguished in Glasser et al.’s parcellation as they are both part of a single parcel located 

within the posterior part of the superior frontal sulcus in this map. Both comparisons 

similarly suggest that our rostro-ventral module belongs to a larger, rather prefrontal, parcel. 

In turn, volume definition of area 55b from Glasser et al. suggests that this region 

corresponds to our ventral module while surface mapping of our ventral module shows that 

it overlaps with both Area 55b and the area superior to this latter.

3.2. Functional characterization of left PMd modules

3.2.1. Multimodal functional connectivity—The specific cross-modal functional 

connectivity patterns of each module are illustrated in Figure 4 and detailed in Table 1. For 

reader’s information, the task-based functional connectivity (MACM) and resting-state 

functional connectivity (RSFC) are illustrated separately in Figure S9 and Figure S10, 

respectively, in Supplementary Material. Furthermore, the corresponding maps are available 

in ANIMA (http://anima.fz-juelich.de/).

The caudal module was specifically coupled with bilateral primary sensorimotor areas, 

secondary somatosensory cortex and cerebellum. The central module compared to all other 

modules was stronger connected with bilateral superior parietal cortex/IPS, but it also with 

the right supramarginal and inferior frontal gyri. In contrast, the rostral module was 

specifically coupled with bilateral middle frontal cortex, precuneus and inferior parietal 

cortex. In turn, the ventral module was functionally stronger connected with bilateral 
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superior temporal cortex and pre-SMA, as well as left Broca’s Area, left temporal pole and 

right cerebellum. Finally, the rostro-ventral cortex was specifically connected with bilateral 

inferior frontal, left lateral orbitofrontal, dorsomedial prefrontal and inferior parietal 

cortices.

3.2.2. Behavioral association: Behavioral domains and paradigm classes—
Functional characterization across behavioral domains and paradigm classes of the 

BrainMap database are summarized in Figure 5. This functional characterization revealed 

that the caudal module was mainly associated with motor-related functions while the rostral 

module was mainly associated with executive cognitive- and visuospatial-related functions. 

The central subregion, in turn, showed a mixed behavioral profile including motor and 

visuospatial functions and paradigms, but also related to working memory and attention. In 

contrast, the ventral module was mainly associated with speech and also eyes-related 

functions. Finally, the rostro-ventral module was associated with functions and paradigms 

requiring abstraction abilities, namely long term explicit memory, scene imagination and 

deception.

IV. Discussion

In this study, we addressed the heterogeneity of the left PMd using a multimodal 

connectivity-based parcellation (CBP) approach combining meta-analytic connectivity 

modeling (MACM), resting-state functional connectivity (RSFC), and probabilistic diffusion 

tractography (PDT). At the coarser level – that is, when dividing the PMd into two and then 

three subregions based on the respective connectivity profiles of its individual voxels – all 

three modalities congruently revealed that the left PMd is organized along the rostro-caudal 

axis. At finer levels, when searching for further subdivisions, some divergence, as well as 

similarities, were observed across modalities. By crossing modalities and identifying voxels 

that are kept clustered together across parcellation modalities, we showed that five modules 

could be robustly distinguished within the left PMd. The five PMd subregions identified by 

the conjunction analyses corresponded to independent parcels within each CBP modality, 

suggesting that none of them could be considered as a conjunction artifact across modalities. 

In other words, all the five subregions identified by the conjunction analysis showed 

correspondence with the topographical organization revealed independently by the different 

modalities, thus truly reflecting convergence on the organization of the left PMd. These five 

subregions included a caudal module, a central module, a rostral module, a ventral module, 

and a rostro-ventral module.

4.1. Topographical similarities and differences between right and left PMd

The main modules identified in the right and left PMd multimodal CBP are illustrated in 

Figure 6.

The convergent organization across modalities found in the left PMd showed 

correspondence with the topographical organization previously highlighted in the right 

hemisphere, in which corresponding caudal, central, rostral and ventral subregions were also 

identified by different CBP modalities. In line with the rostro-caudal clusters identified in 

the right PMd, the left rostral subregion was mainly anterior to the precentral sulcus, the 
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central subregion was found at the level of the precentral sulcus and the caudal subregion 

was located on the precentral gyrus. In addition, in line with the ventral right PMd 

subregion, the ventral left PMd subregion was located on the ventral part of the middle 

portion of the precentral gyrus, bordering the ventral PMd. Nevertheless, while in our 

previous study of the PMd in the right hemisphere, different CBP modalities all isolated a 

dorsal subregion located on the superior frontal sulcus adjacent to pre-SMA, such a dorsal 

region was hardly distinguished from other subregions in the left PMd. In particular, 

MACM-CBP maintained the extreme dorsal voxels functionally linked to, on the one hand, 

the rostro-ventral subregions, and on the other hand, the ventral subregion. These findings 

suggest that the voxels on the dorsal part of the superior frontal gyrus of the PMd may not 

form a coherent functional module in the left PMd. In turn, all our CBP modalities and the 

subsequent conjunction analysis in the left PMd isolated a rostro-ventral module located 

anteriorly to the precentral sulcus on the ventral part of the middle frontal gyrus that was not 

evidenced in the right PMd.

4.2. Evidence for hemispheric asymmetry of the right and left PMd

In order to further examine whether asymmetry of the right and left PMd were truly 

supported by the data and could not be driven by methodological artifacts, we performed 

additional parcellation whose results are reported and described in Supplementary Material. 

First, to ensure that the method differences did not account for the differences in 

organization found in the two independent parcellations of the left and right PMd, CBP of 

the right PMd was performed with exactly the same methods and dataset as used for the left 

PMd. The 5-cluster parcellations found in the right PMd did not mirror the 5-cluster 

parcellation found in the left PMd (neither in Genon et al.’s original study nor with the 

improved method in Supplemental Material). In particular, whereas the ventral part of the 

left PMd was already subdivided into two subregions with a substantial rostro-ventral 

subregion in the left PMd, this rostro-ventral subregion was not evidenced in any of the right 

PMd parcellations (see Supplementary discussion III.2 and Figure S11). Second, we 

investigated whether a rostro-ventral subregion could be evidenced in the right PMd when 

further splitting this region into six clusters. However, this further subdivivsion revealed an 

inconsistent pattern across modalities (see Supplementary discussion III.2 and Figure S12), 

thus not supporting the hypothesis of a robust rostro-caudal subdivision in the inferior part 

of the right PMd. Third, in order to further investigate the hemispheric specificity hypothesis 

of the right dorsal PMd subregion and the left rostro-ventral PMd subregion, we examined 

how the PMd subregions could be clustered together across both hemispheres according to 

their behavior-related functional similarity. That is, we performed MACM-CBP on a 

bilateral PMd VOIs. The main findings (which are described and illustrated in 

Supplementary Material, Figure S13) confirmed that the right dorsal PMd subregion and the 

left rostro-ventral PMd subregion did not show respective homotopic subregions in the 

opposite hemisphere. Thus, altogether, these additional findings support the hypothesis of 

different topographical organizations in the right and left PMd. The functional 

characterization of each left PMd module and their (lack of) correspondence to the right 

PMd subregions are further discussed below.
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4.3. A Rostro-caudal organization mapping cognitive-motor gradient in the left PMd

At lower resolution (k = 2–3), all CBP modalities highlighted a rostro-caudal organization, 

which could also be found at higher resolution (k = 5–6) as three rostro-caudally organized 

modules on the superior part of the PMd: rostral, central and caudal. The ensuing functional 

characterization indicated a gradient from cognitive to motor functions with the rostral part 

being mainly connected to inferior parietal and lateral prefrontal cortex and associated with 

higher cognitive and visuospatial functions; the central part being associated with the top-

down control network (Vossel et al. 2014) and being engaged in a wide range of behavioral 

functions from action execution to working memory; and the caudal part being functionally 

integrated in a sensorimotor network and associated with sensorimotor functions. The 

identified modules and their functional characterization bear similarities with the subregions 

described in non-human primates. The rostral module indeed mirrors area F7 (Matelli et al. 

1985, 1991), a region predominantly receiving prefrontal inputs (Boussaoud et al. 1995; 

Rizzolatti and Luppino 2001) and supporting cognitive functions such as spatial attention or 

memory (Boussaoud 2001; Lebedev and Wise 2001; Nakayama et al. 2016). Similarly, the 

central module likely corresponds to F2vr (for a review see Abe and Hanakawa 2009), a 

subregion receiving inputs from dorsolateral prefrontal cortex (DLPFC) and medial IPS 

(Luppino et al. 2003), and assumed to support the integration of visuospatial and 

somatosensory/motor functions to complete a motor plan (for a review see Abe and 

Hanakawa 2009). The caudal module mirrors F2 itself, a subregion connected to M1 and the 

spinal cord (for reviews see Geyer et al. 2000; Abe and Hanakawa 2009). Furthermore, our 

multimodal characterization along the rostro-caudal axis is consistent with previous 

parcellations of the frontal lobe showing a cognitive-motor gradient mapping a rostro-caudal 

organization of the frontal cortex (e.g. (Koechlin and Summerfield 2007; Bellec et al. 2010; 

Yeo et al. 2011c; Orban et al. 2015; Glasser et al. 2016) as well as with our previous 

parcellation of the right PMd (Genon et al. 2016), thus confirming that the rostro-caudal 

organization of the PMd is a primary principle of organization within the frontal cortex.

4.4. The left premotor eye-field 55b

On the ventral part of the middle frontal gyrus, our multimodal parcellation of the left PMd 

identified a ventral module that shows correspondence with the ventral subregion previously 

observed in the right PMd. Functional characterization of the left PMd ventral module 

showed a behavioral pattern dominated by visual and language-related functions. 

Accordingly, functional connectivity across MACM and RSFC showed that the ventral left 

PMd is functionally coupled with Broca’s area and TE areas assigned to the ventral 

processing stream supporting object recognition (Gross 1994). When examining the 

functional profile of the left PMd ventral module and its spatial correspondence with the 

right PMd premotor eye-field, it appeared that the left PMd ventral module conceptually 

overlapped with the left premotor eye-field. In support of this view, a recent meta-analysis 

has identified a premotor eye-field located in our left PMd ventral module (Cieslik et al. 

2016) as illustrated in Figure S14 (Supplementary Material). Nevertheless, the left premotor 

ventral module appeared additionally related to language functions and overlaps with Area 

55b, a language-related area recently suggested by Glasser et al. (2016). However, 

behavioral functional characterization of the volume definition of Area 55b across the 

BrainMap database (reported in Supplementary Material) revealed that this subregion is also 
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associated with simple eye movements and shows a similar profile to our ventral cluster (see 

Figure S15). Thus, the current evidence converges to suggest that the ventral subregion of 

the left PMd consists jointly of premotor eye-field and Area 55b. Such a mixed behavioral 

profile could reflect the integration/coordination of visual identification (visual screening) 

processes with word production (speech execution) processes in the ventral PMd, although 

future studies are needed to empirically confirm this hypothesis.

4.5. Abstraction in the rostro-ventral left PMd

At finer levels of parcellation, all CBP modalities isolated a rostro-ventral module located 

anteriorly to the precentral sulcus on the ventral part of the middle frontal gyrus, which was 

accordingly delineated by our conjunction analysis. Importantly, previous whole-brain 

parcellations have already suggested a finer subdivision of the inferior part of the PMd in the 

left hemisphere when compared to right hemisphere ((Yeo et al. 2011b; Laumann et al. 

2015), see Supplementary Material). The subsequent characterization of our delineated 

rostro-ventral module highlighted a conspicuous functional pattern that was both clearly 

distinct from other left PMd modules and any module on the right hemisphere. In particular, 

this region showed specific functional connectivity with the ventrolateral and dorsomedial 

prefrontal cortex, as well as with inferior parietal lobule. Accordingly, this module was 

integrated within a broader, rather prefrontal subregion in the parcellation of Glasser et al. 

(2016). In the present study, activity in the rostro-ventral left PMd was associated with tasks 

related to explicit longterm memory, object/scenes imagination, and deception paradigms. 

This pattern of functional interaction with higher associative regions and engagement in 

abstract behavioral functions suggests that this region, at the transition between left 

prefrontal cortex and left ventral PMd, may be involved in deriving mental abstractions from 

one’s current ongoing situation/environment. Such abstraction involves reference to a 

different time frame (required for long-term memory retrieval), a different spatial frame 

(required for scenes imagination), and a different mental frame (required for deception). In 

line with whole-brain parcellation, there was no clear evidence for such rostro-ventral 

subregion in our right PMd parcellation suggesting that the right and left PMd are differently 

functionally characterized. To further confirm this hypothesis, we mirrored this module in 

the right hemisphere and examined its behavioral functional characterization (the results are 

reported in Supplementary Material, Figure S16). In this right hemisphere VOI, we did not 

find any significant relationship with the abstract functions evidenced in the left rostro-

ventral module. Instead, this rostro-ventral part of the right PMd showed a similar behavioral 

characterization to the more superior rostral right PMd subregion. Therefore, we suggest that 

abstract functions are more predominantly represented in the posterior part of prefrontal 

cortex/anterior part of premotor cortex in the left hemisphere than in the right hemisphere.

4.6. Conclusion

In conclusion, for the first time, we described a parcellation, using a multimodal approach, 

of the left premotor cortex into five robust modules. The reliability of this approach was 

demonstrated by comparing the defined modules with previous coarser parcellations and the 

behavioral relevance of our modules was evidenced by robust functional characterization. 

The caudal, central and rostral left PMd modules confirmed the rostro-caudal organization 

reflecting a cognitive-motor gradient previously highlighted in the right PMd (Genon et al. 
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2016) and the frontal lobes as a whole (Yeo et al. 2011a; Glasser et al. 2016). Furthermore, 

our analysis suggested a left inferior PMd subregion involved in eye-field functions and thus 

mirroring a right premotor eye-field (Genon et al. 2016), but also engaged in language 

functions and overlapping with Area 55b (Glasser et al., 2016). Finally, our multimodal 

parcellation also revealed a specific module in the rostro-ventral subregion supporting 

abstract cognitive functions, not evidenced in the corresponding PMd region in the right 

hemisphere.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rendering of the two subregions (k2, upper row) and three subregions (k3, lower row) of the 

left PMd yielded by the three CBP modalities.
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Figure 2. 
Rendering of the subregions yielded by the three CBP modalities at high resolution (k > 3). 

Please note that for MACM-CBP the deeper cluster (blue) in the superior frontal sulcus is 

not fully illustrated in the rendering (k = 5 and k = 6). The orange frame denotes the three 6k 

parcellations that were combined for defining the multimodal modules.
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Figure 3. 
The five left PMd modules identified by multimodal CBP: red, rostral subregion; pink, 

rostro-ventral subregion; blue, central subregion; green, caudal subregion; yellow, ventral 

subregion. The five volumes are available in MNI space in the ANIMA database (http://

anima.fz-juelich.de/).
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Figure 4. 
Specific functional connectivity of the five left PMd modules: green, caudal; blue, central; 

red, rostral; yellow, ventral; violet, rostro-ventral. The left multimodal PMd modules and the 

right PMd clusters (previously identified in Genon et al., 2016) are illustrated as white blobs.
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Figure 5. 
Functional decoding across behavioral domains and paradigm classes of the BrainMap 

database of the five multimodal modules of the left PMd.
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Figure 6. 
Schematized PMd topography revealed by right (Genon et al., 2016) and left PMd 

parcellations.
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