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How a fly photoreceptor samples light information in time
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Estimating a fly photoreceptor’s rate of information transfer
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Visual information processing in insect photoreceptors and interneurones is one of their major
research interests. Using intracellular in vivo electrophysiology, information theory and mathematical
modelling, their work has contributed to the elucidation of biophysical mechanisms that govern visual
information sampling and processing in microvillar photoreceptors.
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Abstract A photoreceptor’s information capture is constrained by the structure and function
of its light-sensitive parts. Specifically, in a fly photoreceptor, this limit is set by the number of
its photon sampling units (microvilli), constituting its light sensor (the rhabdomere), and the
speed and recoverability of their phototransduction reactions. In this review, using an insightful
constructionist viewpoint of a fly photoreceptor being an ‘imperfect’ photon counting machine,
we explain how these constraints give rise to adaptive quantal information sampling in time,
which maximises information in responses to salient light changes while antialiasing visual
signals. Interestingly, such sampling innately determines also why photoreceptors extract more
information, and more economically, from naturalistic light contrast changes than Gaussian
white-noise stimuli, and we explicate why this is so. Our main message is that stochasticity in
quantal information sampling is less noise and more processing, representing an ‘evolutionary
adaptation’ to generate a reliable neural estimate of the variable world.
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Abstractfigurelegend Different steps for estimating a fly photoreceptor’s rate of information transfer to naturalistic light
intensity time series. A, naturalistic light intensity patterns can be collected from natural surroundings or from natural
images. These can further include estimated modulation by a fly’s normal saccadic visual behaviours. B, naturalistic light
stimulation can be played back to a fly photoreceptor by a calibrated LED stimulus system during intracellular recording,
or it can be used as light input to a biophysically realistic photoreceptor model. C, voltage responses to repeated stimulus
presentations can be recorded or simulated. D, information sampling dynamics in the recordings and simulations are

J Physiol 595.16

estimated by using mathematic methods of Shannon’s information theory.

Abbreviations GWN, Gaussian white-noise; NS, naturalistic stimulation; R1-R6s, outer photoreceptors; R7 and R8,
inner photoreceptors; TRP/TRPL, transient receptor potential/transient receptor potential like.

Introduction to adaptive quantal information
sampling

A fly photoreceptor collects information about the world
by counting photons within its receptive field (Fig. 1A).
These counts (samples) are its quantum bumps —
small discrete transmembrane ion fluxes, produced by
single microvilli (sampling units, Fig. 1B) in response
to single photons (Hardie & Juusola, 2015). A fruit
fly (Drosophila melanogaster) R1-R6 photoreceptor has
~30,000 microvilli, each of which houses full photo-
transduction reactions. Collectively, the microvilli form
the photoreceptor’s light guide, the rhabdomere, and
their quantum bumps, through stochastic size and timing
variations (Fig. 1A), integrate for each moment (time bin)
its graded macroscopic response (output) to light intensity
changes (input).

Based on information theory (Shannon, 1948),
information in photoreceptor output depends upon the
signal-to-noise ratio of its frequency-domain represen-
tation (Fig. 2). This estimate, which measures the
reproducibility of the underlying quantum bump size and
rate changes (Juusola & Hardie, 20014a), can be inferred
from high-quality intracellular recordings to repeated light
stimulation by signal and noise analyses (Juusola et al.
1994, 2016b; Juusola & Hardie, 20014,b) and reproduced
by stochastic simulations (Song et al. 2012; Song & Juusola,

2014, 2017; Juusola et al. 2015). Equally, this information
is the difference between the output entropy and noise
entropy rates (Shannon, 1948; Juusola & de Polavieja,
2003).

Experiments and simulations about light information
sampling in R1-R6 photoreceptors of different fly species,
which boast different microvilli numbers and quantum
bump speeds (Fig. 2A-C), have demonstrated that
the photoreceptor’s signalling performance (Fig. 2D-F)
increases as a function of quantum bump production
rate. Specifically, the larger, the finer and the more
precise a photoreceptor’s bump rate changes are, the
higher its information transfer rate. This means that
fast flying Calliphora and Coenosia can extract more
visual information from the same natural environment
than a slow flying Drosophila, in which photoreceptors,
respectively, have either fewer or slower microvilli and
thus produce fewer, slower and more variable quantum
bumps.

Visual invariance emerging from adaptive quantal
sampling

Nonetheless, the accurate behaviours of both diurnal
and nocturnal insects (Esch et al. 2001; Gonzalez-Bellido
et al. 2011; Baird et al. 2015; Stiirzl et al. 2016) suggest
that insects perceive the world consistently, requiring
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their visual systems to generate highly invariable neural
representations of natural images and objects over vastly
(logarithmically) varying light conditions. Remarkably,
this invariance is already clearly seen in both locust (Fig. 3A
and B) and fly photoreceptor (Fig. 3C) outputs (Faivre &
Juusola, 2008; Song et al. 2012; Friederich et al. 2016) and
is mechanistically traceable to two central adaptations in
quantal information sampling:

First, after a microvillus generates a quantum bump,
it is briefly rendered refractory (full range: 50-500 ms;
Fig. 3D, inset), during which it cannot respond to
another photon (Song et al. 2012). This progressively
reduces quantum efficiency (Fig. 3D; a photoreceptor’s
photon-to-bump-conversion probability) with increasing
light intensity, ultimately saturating sample (quantum
bump) rate changes (Fig. 3E, continuous line) to a given
contrast stimulus (Song et al. 2012).
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Second, during intense quantum bump production in
bright illumination, the increased Ca’" and Na™ influx
through transient receptor potential (TRP)/transient
receptor potential like (TRPL) channels reduces cationic
driving force (Song et al. 2012) and the average bump
size and duration (Figs 1B and 3E, inset and dotted
line) (Henderson et al. 2000; Juusola & Hardie, 2001a).
Photoreceptor output is further smoothened by quantum
bump jitter (latency distribution; Fig. 24, grey), caused
by stochasticity in the microvillar phototransduction
reactions (Henderson et al. 2000; Juusola & Hardie, 2001 a;
Song et al. 2012).

Consequently, with the average quantum count
(Fig. 3E, continuous line) and bump size (dotted
line) adapting to mean light intensity, the resulting
macroscopic photoreceptor voltage response to a given
natural contrast stimulus scales to look similar at different
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Figure 1. Schematic representation of adaptive quantal light information sampling by a Drosophila
R1-R6 photoreceptor

A, each R1-R6 samples photon influx by ~30,000 microvilli, which together form its photosensitive light guide,
the rhabdomere. Single-photon responses (quantum bumps) from individual microvilli integrate a macroscopic
response. B, top, each microvillus contains full phototransduction reactions, generating one quantum bump
(sample) to an absorbed photon at a time; voltage and Ca?t-dependent feedbacks regulate sample size and speed.
Bottom, stochastic processes simulate bump generation. Molecular participants in microvillar phototransduction
reactions: C, Ca?*-dependent negative feedback to multiple targets; D, DAG; M, metarhodopsin; P, G protein-PLC
complex; T, TRP/TRPL channels (*, activated form). Red and green dotted arrows indicate negative and positive
feedbacks, respectively, as used in the stochastically operating R1-R6 model (Song et al. 2012; Song & Juusola,
2014; Juusola et al. 2015). The gating mechanisms are yet unresolved, but these probably include production of
DAG, InsP3, proton, and physical microvilli contraction (Hardie & Franze, 2012).
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illumination conditions (Faivre & Juusola, 2008; Song
et al. 2012; Friederich et al. 2016) (Fig. 3A-C). These
adapting quantum bump dynamics thus much contribute
to the divisive nonlinearity, associated with amplitude
normalisation in empirical photoreceptor models (French
et al. 1993; van Hateren & Snippe, 2006; Friederich et al.
2016), providing mechanistic insight into descriptive
nonlinear systems identification. [Note: Divisive non-
linearity is an arbitrary but necessary mathematical
operation in empirical (black-box) photoreceptor models to
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compress vast light input changes into their limited output
range. It makes the model output better approximate the real
photoreceptor output.] But while the average light intensity
increasing over a range of magnitudes progressively
reduces the photoreceptor’s quantum efficiency (Fig. 3D),
the macroscopic responses still count in more quantum
bumps (samples) (Fig. 3E). This increase in their sample
rate changes (from the same contrast) is the main reason
why an insect photoreceptor’s signal-to-noise ratio and
information transfer (Fig. 3F) increases with brightening
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Figure 2. Photoreceptors that generate more, faster and more precise samples (quantum bumps) from
the same light stimulus carry more visual information

A-C, macroscopic voltage responses of fruit fly (Drosophila), blowfly (Calliphora) and killer fly (Coenosia) R1-R6
photoreceptors, respectively, to the same repeated naturalistic light intensity time series stimulus (NS) recorded in
vivo and simulated by stochastic models. The number of microvilli (sampling units) and their average quantum bump
waveforms (sample size; green) and latency distributions (sample jitter; grey) from in vivo recordings were used in
the corresponding stochastic models, having no free parameters. The simulated voltage responses (green) to the
NS behaved as their real counterparts (black). D—F, respective signal-to-noise ratios (SNR) and the corresponding
information transfer rates of the simulated responses follow those of the real recordings. Data are from Song et al.

(2012).
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Figure 3. Quantal sampling adapts to provide invariable responses from natural contrast changes

A, intracellularly recorded locust photoreceptor output to the same naturalistic contrast pattern has a similar
waveform at dim (1,500 photons s~'; grey) and bright (1.5 x 10> photons s~; black) stimulation, implying that
the same frequency range is utilised at different illumination. B, this is confirmed by the similar power spectra of
the corresponding average responses, or signals (n = 100 repetitions). The arrow highlights the up-shift in gain
with brightening. C, normalised voltage signals (n = 100 repetitions) of both real and simulated Drosophila R1-R6
photoreceptors to the same naturalistic contrast pattern at dim and bright illuminations indicate comparable
invariance. D—F, with brightening naturalistic stimulation: D, quantum efficiency (photon-to-bump conversion
probability) decreases as more of a R1-R6 photoreceptor’s 30,000 microvilli becomes refractory (insets), incapable
of producing quantum bumps for the next 50-500 ms after their last photon hit. £, however, with more micro-
villi being activated, sample rate increases (continuous line) until progressive reduction in quantum efficiency
D, stabilizes their quantum bump output. Simultaneously, sample size (bump waveform) is attenuated (dashed
line). F, a photoreceptor’s information transfer rate follows the increase in its quantum bump rate. Together,
the adapting quantum bump dynamics ensure that relative changes in voltage responses represent naturalistic
light changes (contrasts) accurately, irrespective of the ambient illumination. Although contrast gain in absolute
terms (voltage/unit contrast) increases with light intensity, the temporal structure of the transmitted signal remains
practically invariable. Data are from Faivre & Juusola (2008) and Song et al. (2012).
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until saturation (Juusola et al. 1994; Juusola & Hardie,
2001a; Faivre & Juusola, 2008; Frederiksen et al. 2008;
Heimonen et al. 2012; Song & Juusola, 2014), when about
half of its microvilli become refractory (Song et al. 2012).
[Note: in dim stimulation, a photoreceptor may count 10
quantum bumps (samples) in time-bin; and 2 in time-bin,.
But in brighter stimulation, time-bin; may have 100 and
time-bin, 20 samples. Thus, the corresponding sample
rate changes would be 8 and 80 samples/time, with the
brightening increasing their difference by 10-fold. The larger
the sample rate changes, the higher the entropy rate. And if
reproducible (having low noise), then the larger sample rate
changes have a higher signal-to-noise ratio and transmit
more information.)

Thus, at the level of sampling, the neural code of insect
photoreceptors inherently emphasises natural contrast
constancy (relative light changes in the environment
remain the same in different illumination conditions)
(Attneave, 1954; Barlow, 1961; van Hateren, 1997) and
efficiently allocates this information as invariable response
waveforms within their limited output range (Atick, 1992;
van Hateren, 1992b). And it does this, unavoidably, at the
expense of coding the absolute light intensity.

Markedly, however, losing photons galore to refractory
microvilli, when the flux of incident photons into distinct
receptive fields in daylight can be 10°~10° photons s~ is
not critical for good vision. As long as a Drosophila R1-R6
photoreceptor counts up ~15,000-150,000 quantum
bumps s~!, its neural estimate of local contrast changes
will be reliable (of very high signal-to-noise ratio), with
each photoreceptor in the eye providing hundreds of bits
of information per second to the brain.

Functional comparisonsin light information processing
and representation between different insect photo-
receptors suggest that perhaps all rhabdomeric photo-
receptors would sample quantal light information
similarly. Yet, by evolving different microvilli numbers
and phototransduction speeds (Fig. 2), photoreceptors
of different species have specialised visual capabilities
for different life-styles and habitats (Wong et al. 1982;
van Hateren, 1992a; Juusola et al. 1994; van Steveninck
& Laughlin, 1996; Anderson & Laughlin, 2000; Juusola
& Hardie, 2001a; Niven et al. 2007; Faivre & Juusola,
2008; Frederiksen et al. 2008; Gonzalez-Bellido et al.
2011; Frolov et al. 2012; Heimonen ef al. 2012; Song
et al. 2012; Song & Juusola, 2014; Song et al. 2016).
Here, the trade-off is that while having more micro-
villi increases photoreceptor output, its bandwidth, and
information transfer rate for representing natural contrast
changes (Song & Juusola, 2014), so does the total
cost for constructing, maintaining and running this
sampling machinery (Laughlin et al. 1998; Song & Juusola,
2014).

Future work is needed to test how these sampling rules
and constraints apply to nocturnal moths, which have high
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microvillus numbers but seemingly noisy macroscopic
responses (Stockl et al. 2016) and possibly inferior
information transfer rates compared to diurnal insects
with fewer microvilli. Moreover, an open question remains
ofhow therefractorylight information sampling dynamics
of microvillar photoreceptors compare mechanistically
with bleaching adaptation of vertebrate ciliary photo-
receptors (Yau & Hardie, 2009).

Antialiasing through quantal adaptive sampling

Interestingly, stochastic quantal information sampling
is not only an elegant light-adaptation strategy but
possibly also an evolutionary solution to the temporal
aliasing problem to provide reliable neural estimates
of the variable world (Juusola et al. 2015). It scatters
high-frequency information into broadband noise rather
than generating the false patterns produced by regular
sampling (Dippe & Wold, 1985). Thus, variable sampling
times and sample sizes (quantum bump jitter and size
differences) prevent distortions or artefacts, such as
harmonic oscillations (Song et al. 2012), in reconstruction
of macroscopic responses from the original (continuous)
light patterns. And because the flies have neural
superposition eyes, which provide eight independent
estimates (outer RI-R6 and inner R7 and R8 photo-
receptors) of local light intensity changes for each image
pixel (Kirschfeld & Franceschini, 1969; Horridge &
Meinertzhagen, 1970), parallel sampling by microvilli
in each photoreceptor and the later synaptic pooling
of their macroscopic outputs would actively cancel
noise.

In support of this view, stochastic modelling implies that
intrinsic noise — caused by the quantum bump variations —
seems to degrade the fly photoreceptor output less than
what was thought before (Lillywhite & Laughlin, 1979;
Laughlin & Lillywhite, 1982), maximally ~5-10% (Song
et al. 2012; Song & Juusola, 2014; Juusola et al. 2015).
The concerted action of many thousands of microvilli in
photon sampling reduces intrinsic noise as their quantum
bumps add up the macroscopic response. Moreover,
global (intracellular calcium and membrane voltage) feed-
backs (Fig. 1B), which carry memory of the past events,
reduce noise by adapting the bump sizes to the ongoing
light stimulation. This accounts for ~10% improvement
in the rate of information transfer, in comparison to
sampling the bumps randomly from the same distribution
(Song et al. 2012). Intrinsic noise is almost certainly
further reduced when the parallel macroscopic responses
of photoreceptors, which view the same point in space,
are pooled in convergent synaptic transmission to inter-
neurons (Zheng et al. 2006).

Here, the key realisation is that integration of variable
samples, which are much briefer than the world structure
they encode in time, increases information and reduces

© 2017 The Authors. Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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noise, improving the robustness, reliability and accuracy
of the resulting neural estimates (see also: Galton,
1907; Heimonen et al. 2006; Padmanabhan & Urban,
2010). Conversely, filtering responses downstream, which
occurs by a voltage-sensitive cell membrane (Hardie,
1991; Weckstrom et al. 1991; Vihisoyrinki ef al. 2006),
can reshape and smoothen photoreceptor output but
not increase its information (data processing theorem)
(Shannon, 1948; Juusola & de Polavieja, 2003; Abou
Tayoun et al. 2011).

Armed with this essential mechanistic knowledge about
fly photoreceptors’ stochastic refractory photon sampling,
we next briefly consider why and how this makes encoding
inefficient for Gaussian white-noise (GWN) stimulation
but sensitised to salient natural world features.
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Gaussian white-noise stimulation does not fully test
photoreceptor performance

In electronic systems, GWN stimulus, which maximises
information within its bandwidth and variance, is
regularly used for testing information transmission
capacity. However, for neural systems, such as photo-
receptors, which employ adaptive quantal information
sampling, GWN fails to test their true signalling
performance (Rieke et al. 1995; Juusola & de Polavieja,
2003; Song & Juusola, 2014).

This disparity has less to do with the used GWN’s
absolute energy, phase distribution or photon content,
but primarily depends upon how a photoreceptor samples
photons (Song & Juusola, 2014). Therefore, a bright
GWN stimulus with a mean intensity that is 100-fold
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Figure 4. Fly photoreceptors encode Gaussian white-noise (GWN) and naturalistic stimuli (NS)

differently, with different efficiencies and costs

Both fast-flying Coenosia and slow-flying Drosophila photoreceptors have 30,000 microvilli, but those of Coenosia
sample light changes and recover from them faster, resulting in higher information capture. A, voltage responses of
a Coenosia R1-R6 photoreceptor (brown) and respective stochastic model simulations (red) to unit-contrast GWN
stimulation with 300 Hz cut-off; light level: ~108 photons s='. B, information transfer of recorded and simulated
Coenosia R1-R6 voltage responses to GWN stimulus and naturalistic stimulation (NS; see Fig. 2); these cells capture
~20% less information from the GWN than NS. C, overall, Coenosia R1-R6s encoded ~30% of information in NS;
performing ~1.7 times more efficiently than with 300 Hz GWN. D, Drosophila R1-R6 voltage output (brown) and
respective stochastic model simulations (red) to the same unit-contrast GWN stimulation as in A. E, information
transfer rates of recorded and simulated Drosophila R1-R6 voltage responses to GWN (D) and NS; these cells
capture ~60% less information from the GWN than NS. Moreover, Drosophila R1-R6s encode both the stimuli
less efficiently than Coenosia R1-R6s. F, Drosophila photoreceptors encoded NS ~2.5 times more efficiently than
300 Hz GWN. In every cell, NS evoked higher information transfer. Here simulated Coenosia photoreceptor output
carries proportionally more information than the average recordings because it is based on the best GWN and NS
recordings. Simulations lack recording noise and muscle activity, which reduce information in recordings, and the
intracellular pupil mechanism. Data are from Song & Juusola (2014).
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higher than the mean intensity of a naturalistic stimulus
would still yield lower information transfer estimates
in a photoreceptor. This is because stochastic photon
sampling by finite refractory microvilli populations makes
a photoreceptor to encode different stimulus statistics
differently, with different efficiencies and costs (Fig. 4).
Specifically, longer dark contrasts, which characterize
naturalistic stimuli, help to recover more refractory
microvilli than equally bright stimuli without these
features, improving neural information while lowering its
metabolic costs (Song & Juusola, 2014). Photoreceptor
output to natural/naturalistic stimulation thus typically
entails larger phasic quantum bump rate changes, while
maintaining a lower mean level of depolarization (costing
less) than corresponding responses to GWN (Juusola & de
Polavieja, 2003; Song & Juusola, 2014). Conversely, GWN
experiments underestimate a photoreceptor’s information
transmission capacity, while often overestimating its
normal energy consumption (Song & Juusola, 2014),
making the subsequent neuro-economics estimates and
their cross-species comparisons unrealistic.

A

#1

O
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For example, at 25°C, a typical Drosophila R1-R6
photoreceptor would sample 282 bits s~! from
200 Hz band-limited GWN, costing 1.31 x 10’ ATP
molecules bit~!'. However, from a rich naturalistic contrast
stimulus of equal mean brightness, the same photo-
receptor would sample 455 bits s~! with the price of
1.15 x 107 ATP molecules bit ™! (Song & Juusola, 2014).

Adaptive quantal sampling enhances salient stimuli

Importantly, adaptive quantal sampling gives a fly photo-
receptor an innate capacity to enhance stimulus salience.
Adaptation that follows the phototransduction cannot
increase the photoreceptor’s information transfer rate
(Juusola & de Polavieja, 2003). However, if the receptor
adapts during the process of sampling, it can accentuate
quantum bump rate changes to new (surprising) stimuli,
increasing information transfer rate transiently.
Naturalistic stimulation includes longer dark contrasts
that are not present in GWN stimulation. The effect of
short-term adaptation to these events was first quantified

#1  #2 #3 #1 #2

3
. ' . . ' . ' . . . bright
dark

Iy 20 mv

1 sec

20 mV

R, information rate (bits/s)

2
Response sections (#)

n=6

Figure 5. Quantal adaptive sampling innately accentuates salient contrast changes, boosting their

information content

A, upper traces, a bright light stimulus consisting of 3 identical naturalistic intensity sequences, each lasting 1 s
and numbered 1, 2 and 3, followed by a 1 s-long dark period is repeated 1000 times. Lower traces, a typical
Calliphora R1-R6 photoreceptor voltage response to this stimulus. B, the photoreceptor responses for these three
groups are separated and grouped retaining the timing order. Notice that the responses to the first naturalistic
stimulus sequence are slightly larger than the responses to the second and third stimulus sequences. C, the
average information transfer rate of the responses during the three stimulus sequences. Voltage responses to
the 1st stimulus sequence carry more information than those to the 2nd and 3rd sequences. This behaviour was
consistent in all the recordings (n = 6) giving the first second of responses on average 9.5% higher information

transfer rates. Data are from Juusola & de Polavieja (2003).
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by showing how Calliphora R1-R6s’ information transfer
changes during three identical naturalistic stimulus
sequences (Fig. 54; marked 1, 2 and 3) that followed a 1 s
dark period (Juusola & de Polavieja, 2003). In repetitive
stimulation, the responses to the 1st sequence (green)
were always larger (Fig. 5B) and carried more information
(Fig. 5C) than the responses to the 2nd and 3rd sequences.
Thus, the signalling precision of fly photoreceptors was
higher at transitions from dark to bright light and then
reduced with adaptation to a lower voltage response.

Further recordings and photoreceptor model simula-
tions have since demonstrated that the first larger response
to a bright step simply contains more quantum bumps,
and thus has a higher signal-to-noise ratio than sub-
sequent responses, for which fewer microvilli are activated,
with more microvilli becoming refractory (Juusola & de
Polavieja, 2003; Song et al. 2012; Song & Juusola, 2014).
Similarly, the first negative voltage response to a dark
contrast step will be larger (Juusola, 1993) because more
microvilli will be refractory, generating fewer quantum
bumps than the subsequent responses. Accordingly, the
photoreceptors’ information transfer is higher at large
dark-to-bright or bright-to-dark contrast transitions and
decreases afterwards in correlation with the adaptation to
the stimulus (Juusola & de Polavieja, 2003; Zheng et al.
2006, 2009).

Thus, not only does adaptive quantal sampling lead
to robust encoding of natural light changes over the
full dynamic range of environmental light intensities
(Fig. 3) (Faivre & Juusola, 2008; Song et al. 2012, 2016;
Friederich et al. 2016; Juusola et al. 2016a), it also
enhances novel or surprising stimuli, which generate
the largest quantum bump rate changes (increments or
decrements) with respect to the ongoing average (Juusola
& de Polavieja, 2003; Song et al. 2012; Song & Juusola,
2014) (Fig. 5). Remarkably, further analyses have shown
that while accentuating saliency, adaptive quantal photon
sampling also improves the allocation of information in
naturalistic stimulation on the photoreceptors’ limited
bandwidth and amplitude range (van Hateren, 1997;
Zheng et al. 2009; Song et al. 2012; Juusola et al. 20164).
As the output frequency distribution flattens (or whitens)
while its amplitude distribution becomes Gaussian, every
symbol (voltage value) of a message (macroscopic voltage
response) would be transmitted equally often (Shannon,
1948).

Discussion

In this review, we have presented a basic account of how
a fly photoreceptor samples light information in time,
and why this improves vision. For clarity, the focus was
upon stochastic adaptive photon sampling to highlight
its fundamental role in generating reliable macroscopic
responses to environmental light contrast changes. This
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meant that the primary sampling process was considered
in isolation.

While the description given is accurate, the reality
is more complex and in perpetual motion, and we
know that optimal visual information sampling, at
least in Drosophila, further involves elaborate photo-
mechanical adaptations and self-motion (body, head and
eye movements), which prevent retinal images from
fading during fast adaptation (Juusola et al. 2016a). In
fact, during photon sampling, light input intensity is
regulated by two photomechanical processes inside photo-
receptors. Slower screening pigment migration (intra-
cellular pupil, 1-10 s) (Franceschini & Kirschfeld, 1971,
1976) and much faster autonomous microsaccadic photo-
receptor contractions (0.01-1 s) (Hardie & Franze, 2012;
Juusola et al. 2016a) dynamically reduce photon flux
into the rhabdomere, shifting and narrowing its receptive
field (Juusola et al. 2016a). In addition, downstream,
in the photoreceptor axons, asymmetric synaptic and
gap-junctional inputs from the network differentiate
individual R1-R6 outputs (Shaw, 1984; Shaw et al. 1989;
Zheng et al. 2006, 2009; Nikolaev et al. 2009; Rivera-Alba
et al. 2011; Wardill et al. 2012; Dau et al. 2016).

How all these factors contribute to spatiotemporal
encoding of the visual world and perception, providing
Drosophila hyperacute vision, is analysed in detail in
(Juusola et al. 2016a) and is beyond the scope of this review.
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