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Abstract

With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned 

and represented and archived digitally. While digital pathology has substantial implications for 

telepathology, second opinions, and education there are also huge research opportunities in image 

computing with this new source of “big data”. It is well known that there is fundamental 

prognostic data embedded in pathology images. The ability to mine “sub-visual” image features 

from digital pathology slide images, features that may not be visually discernible by a pathologist, 

offers the opportunity for better quantitative modeling of disease appearance and hence possibly 

improved prediction of disease aggressiveness and patient outcome. However the compelling 

opportunities in precision medicine offered by big digital pathology data come with their own set 

of computational challenges. Image analysis and computer assisted detection and diagnosis tools 

previously developed in the context of radiographic images are woefully inadequate to deal with 

the data density in high resolution digitized whole slide images. Additionally there has been recent 

substantial interest in combining and fusing radiologic imaging and proteomics and genomics 

based measurements with features extracted from digital pathology images for better prognostic 

prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful 

tools for combining disease specific features that manifest across multiple different length scales.

The purpose of this review is to discuss developments in computational image analysis tools for 

predictive modeling of digital pathology images from a detection, segmentation, feature extraction, 

and tissue classification perspective. We discuss the emergence of new handcrafted feature 

approaches for improved predictive modeling of tissue appearance and also review the emergence 

of deep learning schemes for both object detection and tissue classification. We also briefly review 

some of the state of the art in fusion of radiology and pathology images and also combining digital 

pathology derived image measurements with molecular “omics” features for better predictive 

modeling. The review ends with a brief discussion of some of the technical and computational 

challenges to be overcome and reflects on future opportunities for the quantitation of 

histopathology.
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1. Introduction

Contrary to popular belief, the first forays into the use of digital image processing and 

computerized image analysis was not in face recognition or face detection, but rather for the 

analysis of cell and microscopy images. Over 50 years ago JM Prewitt and her colleagues 

wrote some of the very first papers on the use of computerized image analysis of cell images 

(Mendelsohn et al., 1965a, 1965b). Interestingly her most famous work, the Prewitt edge 

operator (Prewitt, 1970), was initially showcased in a 1965 paper (Mendelsohn et al., 1965a) 

on the morphological analysis of cells and chromosomes.

Over the last decade the advent and subsequent proliferation of whole slide digital slide 

scanners has resulted in a substantial amount of clinical and research interest in digital 

pathology, the process of digitization of tissue slides. Digitization of tissue glass slides 

facilitates telepathology, i.e. using telecommunication technology to facilitate the transfer of 

image-rich pathology data between distant locations for the purposes of research, diagnosis, 

and education. Telepathology can now be enabled more easily and seamlessly between 

multiple different remote sites and more critically connecting top academic centers with 

pathology labs in low resource settings. This is particularly convenient for solicitation of 

“second opinions” on challenging cases or the ability to do remote pathology consults 

without the need to physically ship slides around. Digital pathology also has the potential to 

help improve clinical workflows, reducing the need for storing glass slides on site and 

reducing the risk of physical slides getting broken or lost.

Additionally access to large digital repositories of tissue slides is a huge potential 

educational resource for medical students and pathology residents. Further in conjunction 

with smart analytics like content based image retrieval algorithms (Qi et al., 2014), students 

could be trained to identify and recognize pathology slides in a dynamic fashion.

Apart from education of medical students and residents, and clinical adoption, digital 

pathology has been transformative for computational imaging research. With digital slide 

archives such as the The Cancer Genome Atlas (TCGA), several thousands of slides are now 
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freely available online and has resulted in a very large number of digital pathology image 

analysis related publications. A search for “digital pathology” and “image analysis” on 

Pubmed revealed over 1500 articles just in the last decade. While a number of these are 

application papers focusing on the use of computational image analysis tools to address 

specific targeted problems in digital pathology (e.g. quantifying specific biomarkers), a 

number of recent papers are focused on developing new algorithmic approaches, specifically 

for whole slide images.

The purpose of this review is to provide the reader with an update on the state of the art in 

terms of image analysis and machine learning tools being tailored specifically for digital 

pathology images. Specifically we seek to discuss how while early attempts at detection and 

segmentation of digital pathology images were rooted in traditional computer vision 

methods or tools hitherto developed for use in conjunction with radiographic images, there 

has been an evolution in the approaches in order to address the specific challenges 

associated with image analysis and classification of whole slide pathology images. 

Additionally we discuss recent advances in handcrafted and unsupervised feature analysis 

approaches for use in tissue classification, disease grading and in precision medicine. We 

also discuss new exciting directions involving multimodal imaging where digital pathology 

serves as a “bridge” for mapping disease extent from surgically excised tissue specimens on 

to radiologic in vivo imaging (Ward et al., 2012) and emerging research areas involving 

fusion of computer extracted tissue biomarkers with genomic and proteomic measurements 

for improved prediction of disease aggressiveness and patient outcome (Savage and Yuan, 

2016). The review ends with a brief discussion of some of the regulatory and technical 

hurdles that need to be overcome prior to wide-spread dissemination and adoption of digital 

pathology, events which would no doubt further bolster active research in histopathology 

image computing.

2. Segmentation and detection of histologic primitives

The recent advent of digital whole slide scanners has allowed for the development of 

quantitative histomorphometry (QH) analysis approaches which can now enable a detailed 

spatial interrogation (e.g. capturing nuclear orientation, texture, shape, architecture) of the 

entire tumor morphologic landscape and its most invasive elements from a standard 

hematoxylin and eosin (H&E) slide. However a pre-requisite to identifying these QH 

features is the need to detect and segment histologic primitives (e.g. nuclei, glands). Irshad 

et al. (2014) has compiled a resource in covering the extensive collection of nuclear 

segmentation papers for histologic analysis over the past 20 years. Fatakdawala et al. (2010) 

and Glotsos et al. (2004) used an active contour model to segment individual nuclei from 

H&E stained microscopic images. The approaches were based on the idea that the nuclei 

were differentially stained from the benign stroma and were associated with a prior shape. 

Xu et al. (2011) applied the idea of active contours to segment out individual glands from 

prostate cancer histopathology images. Sirinukunwattana et al. introduced a new stochastic 

model for glandular structures in histology images. The approach treats each glandular 

structure in an image as a polygon made of a random number of vertices, where the vertices 

represent approximate locations of epithelial nuclei. The approach was successfully 

employed for detection and extraction of glandular structures in histology images of normal 
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colon tissue (Sirinukunwattana et al., 2015). Results pertaining to the approach are shown in 

the top row of Fig. 1.

Work by Beck et al. (2011) has implicated stromal features in the prognosis of cancers. 

Consequently there is now interest in automated algorithms for determining epithelial and 

stromal tissue regions, in turn to help identify tumor infiltrating lymphocytes and also 

stromal specific features. Linder et al. (2012) employed a texture approach for segmentation 

of epithelium and stromal tissue partitions from tissue microarray (TMA) images. The 

authors showed that the use of local binary patterns (LBPs) could enable differentiation of 

stroma and epithelium with an area under the ROC curve of 0.995.

A more recent class of approaches are the so called “Deep Learning” based techniques. 

Deep learning paradigms represent end-to-end unsupervised feature generation methods that 

take advantage of large amounts of training data in conjunction with multi-layered neural 

network architectures. Histopathology images, given their data complexity and density are 

ideally suited for interrogation via deep learning approaches since they attempt to use deep 

architectures to learn complex features from data in an unsupervised manner. Additionally 

these approaches make less of a demand on the understanding the nuances of domain 

complexity.

Sirinukunwattana et al. recently showed the use of locality sensitive deep learning to 

automatically detect and classify individual nuclei in routine colon cancer histology images 

(Sirinukunwattana et al., 2016). Fig. 1 shows the results of nuclei detection and classification 

on a whole-slide image. Detected epithelial, inflammatory and fibroblast nuclei are 

represented as red, green, and yellow dots, respectively. The left, middle and right panels 

show the nuclear detection results overlaid on the image at 1, 5, and 20, respectively. The 

blue rectangle in the Fig. 1, left panel contains the region shown in the center panel, and the 

blue rectangle in the center panel contains the region shown in the right panel.

An area of substantial interest has been in the use of deep learning approaches for 

identifying and quantifying the number mitoses on cancer pathology images, a laborious and 

time consuming task for pathologists. In fact interest in this area has spawned a number of 

challenges for mitosis detection from routine H&E stained tissue images (Veta et al., 2015).

Deep learning approaches have however been criticized for their (a) dependency on large 

amounts of training data and (b) the lack of intuition associated with the deep learning 

generated image features. Wang et al. sought to address these challenges by presenting a 

convergent approach (Wang et al., 2014) to combine domain inspired features with deep 

learning features to detect mitoses. They showed that this integrated approach yielded 

superior detection accuracy compared to deep learning or hand-crafted feature based 

strategies alone.

3. Tissue classification, grading and precision medicine

For a number of diseases such as cancer, it has been long recognized that the underlying 

differences in the molecular expressions of the disease tend to manifest as tissue architecture 

and nuclear morphologic alterations.
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Consequently there has been substantial interest in the digital pathology image analysis 

community to develop algorithms and feature approaches for automated tissue classification, 

disease grading and also developing histologic image based companion diagnostic tests for 

predicting disease outcome and precision medicine. Precision Medicine refers to the 

tailoring of medical treatment to the individual characteristics of each patient and a number 

of recent scientific papers (Lewis et al., 2014; Veta et al., 2012) appear to suggest that for a 

number of diseases, computer extracted image features from surgical and biopsy tissue 

specimens can help predict the level of disease aggressiveness and hence the escalation or 

more critically de-escalation of therapy. A critical component of these predictors is the 

image features mined from the tissue pathology images.

Work on quantitative feature modeling for tissue classification in the context of digital 

pathology can be classified into two general categories – handcrafted features and 

unsupervised feature based approaches. Broadly speaking, handcrafted features refer to 

those which can be connected to specific measurable attributes in the image and have some 

degree of interpretability. Unsupervised feature approaches such as deep learning based 

methods are less intuitive and rely on filter responses solicited from large numbers of 

training exemplars to characterize and model image appearance.

Handcrafted features can also in turn be thought to comprise domain agnostic and domain 

inspired features (Fig. 2). Domain agnostic features are those which though they may have 

intuitive meaning could nonetheless be applied for image characterization across a number 

of disease and tissue types. Examples include nuclear and gland shape and size, tissue 

texture and architecture. For instance Jafari-Khouzani and Soltanian-Zadeh (2003) used a 

series of wavelet and tissue texture features for automated Gleason grading of prostate 

pathology images. They showed that these texture features could allow for machine based 

separation of low and high Gleason grade prostate pathology images. Veta et al. (2012) 

showed that nuclear shape and texture features from tissue microarray images of male breast 

cancer were prognostic of survival. More recently there has been substantial interest in the 

use of graph based approaches (e.g. Voronoi and Delaunay tessellations, Minimum Spanning 

Trees) to characterize the spatial arrangement of nuclei and glands in tissue images and use 

features (e.g. statistics of edge lengths) from these graph representations for disease grading 

(Simon et al., 1998). Using a combination of nuclear architecture, shape and texture, 

Basavanhally et al. (2013) showed that these features could be used for accurate breast 

cancer grading. A variant of the global graph based approaches are the cell cluster graphs 

(CCG) which involved connecting clusters of proximal nodes or vertices with graph edges. 

These CCG features of local nuclear architecture were shown to be prognostic of disease 

progression in p16 + oropharyngeal cancers (Lewis et al., 2014).

Domain Inspired features unlike domain agnostic features represent a class of hand-crafted 

features that are typically specific to a particular domain or in some cases to a particular 

disease or organ site. An example of this class of feature is the co-occurring gland angularity 

feature presented by Lee et al. (2014) which involved computing the entropy of gland 

directions within local neighborhoods on tissue sections. The main finding of this paper was 

that glands tended to be more chaotically arranged in aggressive versus low to intermediate 

risk prostate cancer. Consequently the entropy associated with these “gland angularity 
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features” (GAF) was found to be higher in aggressive and lower in indolent disease. For a 

cohort (n = 40) of grade and stage matched tumors, these gland tensor features were found to 

better predict biochemical recurrence in prostate cancer patients within 5 years of surgery, 

accurately predicting BCR over 75% of the time, while outperforming the Kattan 

nomogram, a popular tool for predicting BCR based off clinico-pathologic variables such as 

PSA, Gleason score, stage, etc.

In Yuan (2015) presented a new spatial modeling approach to identify new prognostic 

features reflecting the architectural appearance of tumor infiltrating lymphocytes in triple 

negative breast cancers. Automated image analysis approaches were used to identify intra-

tumoral lymphocytes (ITLs), adjacent-tumor lymphocytes (ATLs) and distal-tumor 

lymphocytes (DTL). The ratio (ITLR) of ITLs to the total number of cancer cells was then 

calculated and found to be an independent prognostic predictor of disease-specific survival 

in two triple negative breast cancer cohorts.

More recently there has been interest in using deep learning based approaches for directly 

performing outcome prediction and disease grading. Bychkov et al. (2016) employed deep 

learning for outcome prediction in patients with colorectal cancer patients based off analysis 

of TMA images. CNN features extracted from the epithelial compartment only resulted in a 

prognostic discrimination comparable to that of visually determined histologic grade. 

Ertosun and Rubin (2015) employed a similar approach for automated grading of gliomas 

from digital pathology images.

Clearly there are strengths and weaknesses for both categories of features – handcrafted and 

unsupervised. Handcrafted features tend to provide more transparency and hence might be 

more intuitive to the end user – the pathologist or clinician as the case might be. On the 

other hand domain inspired features might be more challenging to develop since they 

involve more fundamentally understanding the nature of the disease and its manifestation 

within the tissue. The unsupervised feature generation based approach of deep learning 

strategies on the other hand means that they can be applied quickly and seamlessly to any 

domain or problem, but on the other hand suffer from the lack of feature interpretability. 

However there are efforts underway to be able to find ways to relate transformed feature 

spaces (such as might be obtained via deep learning) to handcrafted attributes (Ginsburg et 

al., 2016). As proposed by Wang et al. (2014), perhaps finding ways to converge two 

families of feature modeling techniques might provide the ideal blend of generalizability and 

interpretability for disease characterization and modeling in digital pathology.

4. Digital pathology as a bridge between radiology and “omics”

It is clear that molecular changes in gene expression solicit a structural and vascular change 

in phenotype that is in turn observable on the imaging modality under consideration. For 

instance, tumor morphology in standard H&E tissue specimens reflects the sum of all 

molecular pathways in tumor cells. By the same token radiographic imaging modalities such 

as MRI and CT are ultimately capturing structural and functional attributes reflective of the 

biological pathways and cellular morphology characterizing the disease. Historically the 

concept and importance of radiologypathology fusion has been around and recognized. 
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Certainly for prostate cancer imaging, crude attempts at radiology-pathology fusion were 

attempted in the early 1990s with some limited success in terms of discovering radiographic 

correlates of histopathologic features of the disease (Schnall et al., 1991).

Recently there has been a recognition of the importance of carefully and spatially aligning in 
vivo radiographic imaging and ex vivo histology in order to spatially map the extent of 

pathology onto the corresponding imaging (Ward et al., 2012). This radiology-pathology co-

registration could also enable identification of radiologic image markers correlated with 

tissue histomorphometric changes and thereby better disease characterization. In fact 

including tissue stained biomarkers as part of this radiologypathology co-registration, could 

enable spatially resolved radiogenomics studies, or the identification of radiologic imaging 

markers correlated with expressions of specific molecular and genetic biomarkers 

(Lenkinski et al., 2008). Digital pathology thus could serve as the “bridge” or conduit that 

could enable the discovery of radiographic imaging biomarkers associated with molecular 

pathways implicated in disease severity or progression.

A critical aspect of this radiology-pathology fusion is the ability to carefully and spatially 

co-register ex vivo pathology specimens with radiographic imaging. This is non-trivial for a 

number of reasons, not least because of the way the tissue sections tend to created and 

deformations induced during the process. Another issue is carefully establishing slice 

correspondences between the radiologic and pathologic data. One of the approaches to 

overcome the aforementioned issues is via 3D histologic reconstruction of the individual 2D 

digitized slides. This then allows for a 3d-3d co-registration between the radiologic imaging 

and ex vivo pathology. Another approach described by Ward et al. (2012) involving 

registration of in vivo prostate MRI scans to digital histopathologic images by using image-

guided specimen slicing based on strand-shaped fiducial markers relating specimen imaging 

to histopathologic examination. Non-rigid registration of the MRI and the histopathology 

yielded a mean target registration error of 1.1 mm. The approach is illustrated in Fig. 3.

Another area where digital pathology is serving as a bridge between different length scales is 

in the recent interest to combine histomorphometry with molecular “omics” measurements 

for better disease characterization. Savage and Yuan (2016) recently presented FusionGP, a 

new tool for selecting informative features from heterogeneous data types and predicting 

treatment response and prognosis. Specifically they showed the ability of FusionGP in a 

cohort of 119 estrogen receptor (ER) negative and 345 ER positive breast cancers to predict 

two important clinical outcomes: death and chemoinsensitivity by combining gene 

expression, copy number alteration and digital pathology image data.

5. Future directions and opportunities

The digitization of tissue glass slides is clearly opening up exciting opportunities as well as 

challenges to the world of computational imaging scientists. It is clear that while 

computational imaging can clearly play a role in better quantitative characterization of 

disease and precision medicine, there still remain a number of substantial technical and 

computational challenges that need to be overcome before computer assisted image analysis 

of digital pathology can become part of the routine clinical diagnostic workflow.
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On the technical side, one of the main challenges in the computational interpretation of 

digital slide images has to do with color variations in the tissue induced by differences in 

slide preparation, staining, and even whole slide scanners. Clearly decision support 

algorithms that aim to work on digital pathology images will have to contend with and be 

resilient to these variations. A second technical challenge has to with the fact that most 

whole slide digital scanners are only able to generate 2D planar images of the slides. 

Pathologists however routinely take advantage of depth information which is available on 

most microscopes. This dept or z-axis information is useful for a number of tasks such as in 

confirming the presence of mitotic figures. However some whole slide scanner 

manufacturers are already beginning to recognize the importance of accommodating the z-

stack and we can anticipate 3d whole slide scanners soon. The availability of a new 

dimension to accompany the dense planar data will no doubt further put pressure on the 

algorithmic scientists to develop more intelligent and efficient approaches for detecting, 

segmenting, analyzing, and interrogating 3d stacks of digitized slide images. This issue of 

computational complexity will become further exacerbated with the spread and availability 

of multi-spectral imaging cameras for investigation of multiple different tissue analytes, 

where each tissue section could be imaged at multiple different wavelengths and hence 

comprise hundreds of accompanying images. Approaches like deep learning which attempt 

to perform unsupervised feature analysis and discovery will clearly need to be operating at 

much higher levels of computational efficiency and in conjunction with high performance 

computing and GPU clusters (Jeong et al., 2010) to deal with the ongoing data deluge.

Despite the aforementioned challenges, the opportunities opened up by computational 

imaging of digital pathology are tantalizing. In spite of the reluctance thus far by the 

regulatory agencies to grant approval to whole slide scanned images for use for primary 

diagnosis, it is clear that the use of computer aided analysis with digital pathology will be 

part of clinical decision making in the near future. Apart from substantially aiding the 

pathologists in decision making, the use of computational imaging tools could enable the 

creation of digital imaging based companion diagnostic assays that could allow for improved 

disease risk characterization (Lewis et al., 2014; Veta et al., 2012). Unlike expensive 

molecular based assays that involve destroying the tissue and invariably capture genomic or 

proteomic measurements from a small part of the tumor, these digital imaging based 

companion diagnostic tests could be offered for a fraction of the price, could enable 

characterization of disease heterogeneity across the entire landscape of the tissue section, 

and would not need physical shipping of the tissue samples.

For the biomedical image computing, machine learning, and bioinformatics scientists, the 

aforementioned challenges will present new and exciting opportunities for developing new 

feature analysis and machine learning opportunities. Clearly though, the image computing 

community will need to work closely with the pathology community and potentially whole 

slide imaging and microscopy vendors to be able to develop new and innovative solutions to 

many of the critical image analysis challenges in digital pathology.

One very interesting image computing research area that digital pathology opens up is the 

ability to combine traditional handcrafted feature approaches with deep learning 

methodologies, thereby taking advantage of domain knowledge while also enabling the 

Madabhushi and Lee Page 8

Med Image Anal. Author manuscript; available in PMC 2017 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classifier to discover new features. Another exciting research avenue will be in the 

development of new data fusion algorithms for combining radiologic, histologic, and 

molecular measurements for improved disease characterization.

Computational imaging advances for digital pathology will finally begin to make pathology 

more quantitative, a field that has thus far significantly lagged behind radiology in this 

regard. By all indications, this transformation from qualitative to quantitative pathology is in 

the not too distant future.
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Fig. 1. 
Results of nuclear detection using the locally constrained deep learning approach proposed 

by Sirinukunwattana et al. (2016).
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Fig. 2. 
Examples of domain agnostic and domain inspired handcrafted features for disease 

characterization and outcome prediction. An example of domain agnostic cell cluster graph 

features (b) to capture the spatial architecture of nuclei in p16 + oropharyngeal cancers (a). 

These CCG features were shown to predict progression (Lewis et al., 2014) in these cancers 

more accurately than T-stage and lymph node status (c).
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Fig. 3. 
Image-guided specimen slicing process. The first step is to select a desired slicing plane 

orientation and location from the 3D in vivo image. By using image-based registration, this 

plane is transformed to the space of the ex vivo specimen image. Corresponding fiducial 

markers are localized on the ex vivo image (by using software) and on the physical specimen 

(by using a tracked stylus), and a landmark transform aligning these fiducial markers 

transforms the slicing plane into the space of the tracker. The tracked stylus is used to direct 

the insertion of three slicing plane–defining pins into the specimen, which align the 

specimen in a slotted forceps for slicing. This permits the establishment of a correspondence 

between stained histologic slices and in vivo imaging planes, which are registered by using a 

non-rigid registration. Reproduced from (Ward et al., 2012).
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