
Perceptual learning in clear displays optimizes
perceptual expertise: Learning the limiting process
Barbara Anne Dosher†‡ and Zhong-Lin Lu§

†Memory, Attention, and Perception (MAP) Laboratory, Department of Cognitive Sciences and Institute of Mathematical Behavioral Sciences, University of
California, Irvine, CA 92697-5100; and §Laboratory of Brain Processes (LOBES), Departments of Psychology and Biomedical Engineering and Neuroscience
Graduate Program, University of Southern California, Los Angeles, CA 90089-1061

Communicated by Richard M. Shiffrin, Indiana University, Bloomington, IN, February 24, 2005 (received for review August 25, 2004)

Human operators develop expertise in perceptual tasks by practice
or perceptual learning. For noisy displays, practice improves per-
formance by learned external-noise filtering. For clear displays,
practice improves performance by improved amplification or en-
hancement of the stimulus. Can these two mechanisms of percep-
tual improvement be trained separately? In an orientation task, we
found that training with clear displays generalized to performance
in noisy displays, but we did not find the reverse to be true. In noisy
displays, the noise in the stimulus limits performance. In clear
displays, performance is limited by noisiness of internal represen-
tations and processes. Our results suggest that training in one
display condition optimizes the limiting factor(s) in performance in
that condition and that noise filtering is also improved by exposure
to the stimulus in clear displays. The asymmetric pattern of transfer
implies the existence of two independent mechanisms of percep-
tual learning, which may reflect channel reweighting in adult
visual system. These results also suggest that training operators
with clear stimuli may suffice to improve performance in a range
of clear and noisy environments by simultaneous learning by two
mechanisms.

training procedures � noisy displays � observer models

Perceptual learning (1–4) can improve the performance of
observers significantly, creating perceptual expertise (5, 6).

Practice on a stimulus and task often results in very substantial
improvements reflected in improved accuracy or in an ability to
perform at a given threshold accuracy level with a more difficult
(e.g., lower contrast) stimulus. Also, perceptual learning accrued
by practice often exhibits specificities to stimulus characteristics
such as retinal position (2, 7), orientation (8, 9), or scale (10, 11),
demonstrating perceptual rather than strategic knowledge. Refs.
1 and 12 proposed the possible existence of three independent
mechanisms of perceptual learning and empirically documented
the existence of two of the mechanisms: external-noise filtering
and stimulus amplification. The mechanisms are characterized
and tested by a perceptual template model (PTM) of the human
observer with titrated external-noise manipulations (12–14). The
two mechanisms are important in different environments: ex-
ternal-noise filtering or exclusion in noisy environments and
stimulus amplification in clear environments. Perceptual learn-
ing in these two mechanisms reflects the improvements in
different kinds of limitations: improvements in the quality of the
information in the stimulus by external-noise filtering and im-
provements in the intrinsic limitations in the processing of the
human observer by stimulus enhancement.

In these investigations of perceptual learning in visual tasks (1,
12, 15), training in high and low noise have always been
intermixed, so that the two documented mechanisms have often
occurred together as mixtures (for exception, see ref. 16).
Single-mechanism models have provided one explanation for
simultaneous learning (15). However, improvements in perfor-
mance for noisy stimuli and improvements in performance for
clear stimuli in these designs could reflect improvements in quite
distinct mechanisms; yet, because each mechanism receives an

approximately equal amount of training in any interval because
of the intermixed noise-training schedule, both are learned
together. Here, we address the question of whether these two
mechanisms can be trained independently. In other words, is
specific practice or training in each noise condition necessary to
optimize performance in that condition?

In this experiment, the training with clear and noisy stimuli is
separated in time, and transfer to the other noise context is
measured. This training protocol is designed to reveal the
consequences of independent training of the two mechanisms,
corresponding to clear and noisy stimuli. Training in a simple
object orientation identification task exhibited an asymmetric
pattern of transfer after training with low-noise or high-noise
exemplars. Training with low-noise exemplars transferred to
high-noise performance, whereas training with high-noise ex-
emplars [in which target objects were embedded in white exter-
nal noise (12, 17)] did not transfer to low-noise performance.
Low-noise conditions required direct practice, independent of
the experience in high-noise conditions. When external noise
dominates any internal sources of noise or inefficiencies, only the
external-noise-limited processes are improved. The internal
noise or inefficiencies that are important in performance with
clear stimuli cannot be trained in high noise, a result that is
incompatible with single-mechanism theories. However, expe-
rience with clear stimuli trains amplification but also provides
the experience with the stimulus that allows filtering to be
trained. Training yielded improvements only in the limiting
process(es). This result has practical as well as theoretical
implications.

Materials and Methods
Observers performed a perceptual task in which they discrimi-
nated between two orientations (�8° from vertical) of a briefly
presented Gabor stimulus 8° in the lower-right periphery (Fig. 1).
The Gabor is a sine wave of 1.6 cycles per degree that is
windowed by a Gaussian with of � � 0.6° with peak contrast c
(background luminance of 19.5 cd�m2). In the high-noise con-
dition, the Gabor was combined with a random-noise mask (2 �
2°, Gaussian distributed pixel noise of � � 0.33 � 19.5 cd�m2).
A central task in which a target S or 5 appeared simultaneous
with the Gabor encouraged fixation (2, 12). Improvements in
contrast threshold c were measured at two criteria (70.7%
correct or 1.087 d� and 79.3% correct or 1.634 d�) with adaptive
staircase methods (18) in which maximum Gabor contrast c was
reduced by 10% after either two or three correct responses,
respectively, and increased by 10% after each error. This task
paradigm has shown substantial joint learning in both high and
low noise in studies using intermixed training protocols (1, 12).
Two pretest measurements in each noise condition were fol-
lowed by successive blocks of practice�training in the high- or
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low-noise conditions. Each measurement (block) corresponds to
180 trials of practice. Error bars were generated by Monte Carlo
bootstrap methods on individual trials.

Results
For the observers trained first in low noise (low3high) (Fig.
2), initial training (Left) showed substantial improvements in
low-noise displays, described as a linear function of log10
contrast threshold versus log10 practice blocks, evaluated by
regression analysis (see Table 1 for statistics). This pattern of
improvement is generally consistent with a power-law function
of practice (19, 20), with slopes of �0.12 log units for two
observers. The third observer (C.M.), with a slope of �0.65,
has unusually high initial thresholds for both low- and high-
noise conditions but exhibited the same pattern. Subsequent
performance in high noise (Fig. 2 Right) benefited noticeably
from training in low noise. The transfer effect (estimated
improvement between pretest thresholds and transfer in a
two-intercept regression) averaged 0.51 (log units) of contrast
threshold. Indeed, training in low noise was so effective that
additional improvement from additional high-noise training
was negligible (F �1) for two of the observers and modest for
a third observer. Training with low-noise displays improved
performance in both low- and high-noise environments.

For the observers trained first in high noise (high3low) (Fig.
3), initial training (Left) resulted in performance improvements,
with slopes of �0.24 to �0.64 log units per log practice block.
Training in high-noise displays did not reliably transfer to
low-noise performance. The baseline pretest measurements fall
on or near (F � 1) the improvement line extrapolated from
subsequent low-noise practice improvements. Subsequent train-
ing in low noise (Right) results in additional learning, with
magnitudes (average, �0.12 log units) typical of initial low-noise
training. We speculate that high-noise experience did not alter
substantially the rate of learning in subsequent low-noise train-
ing (discounting unusual observer C.M.), but the current exper-
iment does not provide a strong test of this hypothesis. The
specificity of high-noise training here is unusually strong because

the target stimuli and tasks are identical except for the noise
context; other examples of specificity in the literature (21, 22)
typically involve different stimuli or tasks.

Fits of an observer model (PTM) (12) to the thresholds estimated
from the two criterion thresholds over training blocks (mean, r2 �
0.95; range, 0.93–0.97) led to similar conclusions. This procedure
provides stronger tests that estimate the transfer as the number of
equivalent training blocks (see Appendix). The model (1, 12)
characterizes performance improvements in terms of the following
two mechanisms: improved external noise filtering and stimulus
amplification, with separate power law improvements in these two
mechanisms. Transfer from training in high noise to subsequent
low-noise performance was negligible (F �1), estimated as 0–2
blocks of effective training from the 22 blocks of high-noise
practice. Transfer from training in low noise to subsequent high-
noise performance was substantial (all P � 0.01), estimated as
15–25 blocks of training from the 22 blocks of low-noise practice.
Thus, this analysis directly estimates essentially no transfer from
high-noise training to low-noise performance, and substantial (I.C.)
to essentially full transfer (C.M. and J.C.) from low-noise training
to high-noise performance.

In summary, initial training in either high or low noise
exhibited improved performance, well approximated by a power
function (19, 20) on contrast thresholds. Despite the existence of
individual differences often exhibited in perceptual learning
data, the overall pattern was quite consistent. Training in
low-noise displays transferred, either completely or substan-
tially, to high-noise displays. Indeed, low-noise training of high-
noise performance was so effective for some subjects that little
or no subsequent improvements occurred in the noisy condition
with additional practice. In contrast, training with high-noise
displays did not consistently improve subsequent performance in
low-noise tests. This experiment was not designed to compare
learning rates in low noise in the two groups explicitly, but we
speculate that pretraining with high-noise displays had little
effect on the learning rate. This asymmetry in transfer-result
pattern appears to be robust because we have subsequently
observed a similar pattern in a motion-perception task.

Discussion
This deceptively simple pattern of asymmetric transfer of train-
ing between clear and noisy conditions has wide-ranging con-
sequences for models of the observer, perceptual learning, and
perceptual expertise. The pattern rules out a single-mechanism
account of perceptual learning. Two distinct mechanisms of
perceptual learning (and attention), one mechanism that is
effective only in low-noise displays and another mechanism that
is effective only in high-noise displays, have been observed in
numerous studies (16, 23, 24). The fact that one mechanism
could be observed without the other mechanism implies that the
two mechanisms are independent. This study further documents
independence in a situation in which both mechanisms are
generally expressed. Whether two independent mechanisms
appear together in a particular situation depends on whether the
training protocol trains both mechanisms simultaneously or is
effective only in training one or the other. In this study, the
high-noise training protocol impacted only the external-noise-
filtering mechanism, whereas the low-noise training protocol
impacted both external-noise filtering and stimulus-enhance-
ment mechanisms.

Visual perception is always limited both by the quality of the
information in the stimulus and by limitations in the processing
of the human observer (14, 17). In high-noise conditions, the
external noise in the stimulus is the important limiting factor in
performance (14, 17). Learned optimization of performance for
noisy tests works to reduce, or filter, the impact of external noise,
equivalent to training the perceptual template. In high-noise
displays, amplification of the stimulus would amplify signal and

Fig. 1. Task display and sample stimuli. Observers identify the orientation (�
of � 8°) of a Gabor patch with a digit�letter (5�S) task at fixation. (A) Layout
of the stimulus display, with Gabor patches in the lower right quadrant and
digit�letter task at fixation. (B) Sample Gabor patches in clear and noisy
displays, in which the Gabor patch is combined with white, random Gaussian
pixel noise. Observers identified the tilt (top left or right of vertical) of the
Gabor patch.
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external noise alike, and reduction of nonlimiting internal noise
would similarly be of no benefit. However, training in clear
displays requires the system to work to reduce internal limita-
tions (or equivalently amplify the stimulus) but also provides
good information about the nature of the target stimulus or the
perceptual template. Although an optimized template is far
more critical in noisy displays, template tuning may nonetheless
occur in low-noise training by optimization of information about
the stimulus,¶ or possibly by repetitive task-relevant exposure to
the signal stimuli (25, 26). Training the template in (low-
contrast) low-noise displays may be sufficient to optimize the
filtering of external noise substantially, especially when the
external noise is white.

The human visual system represents the visual stimulus by
activity in an ensemble of basic visual channels tuned to various
scales and orientations. External noise may be excluded by
focusing on the representations that most closely match the
target (signal) stimulus, whereas minimizing input from repre-
sentations that convey noise but not signal. In white noise, an
ideal observer will use a template or templates approximately

matched to the signal(s). In comparing performance at the
beginning and the end of training, the pattern of performance
changes is a natural consequence of optimization of weighting of
the basic channels to reduce or eliminate inputs from irrelevant
channels in favor of the small subset of channels best matched to
the target stimuli (1). Low-noise training under some circum-
stances simultaneously trains both mechanisms. This study sug-
gests that training in clear (low-noise) displays may suffice to
optimize performance in a range of clear and noisy task envi-
ronments. Here, white noise was used, and thus, the noise
spectrum is flat. In situations in which noise is nonwhite, the
noise environment cannot be known in advance. Training in
clear displays should remain useful, but training in the nonwhite
noise environment may also be necessary to further optimize
performance for the particular qualities of the external noise.

From a practical perspective, perceptual expertise in certain
tasks may be needed in noisy as well as in clear operating
environments. Noisy stimuli occur in both natural viewing
because of crowding or camouflage (27) and alternative sensor
environments, such as night-vision, radar, and medical imaging
displays (28, 29). Is specific practice or training in each given
environment necessary to optimize performance? Our results
indicate that training in clear displays of performance-relevant
stimuli may have unique advantages.¶Petrov, A. P., Dosher, B. & Lu, Z.-L. (2003) J. Vision 3, 670a (abstr.).

Fig. 2. Threshold training improvements and transfer for three observers trained first in low noise (low3high). The log10 contrast threshold is shown, averaged
over two adaptive staircases (75% accuracy), versus log10 practice block for the initial training in low noise (Left) and the posttransfer training in high noise (Right),
which includes two pretraining baseline threshold measures. Error bars indicate 95% confidence intervals for each threshold, and the 95% confidence region
around the regression lines are shaded in gray. Filled circles to the left of the vertical line were collected in pretesting or in phase 1, and points to the right of
the vertical line were collected in phase 2 or posttesting.
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Appendix
The PTM (1, 12, 13) predicts the performance accuracy of the
observer, d�, based on the fundamental signal-to-noise (both
internal and external) relations:

d� � S�Ntotal �
��c�2�

�	Next
2� � Nadd

2 
Nmult
2 ((�c�2� � Next

2� )]
,

where c is the contrast of the target (signal) stimulus, Next
2 is the

power of the external noise in the stimulus, Nadd
2 is equivalent

additive internal noise (the amount of internal noise necessary
to account for limitations in performance associated with ab-
solute threshold), Nmult

2 is equivalent multiplicative internal noise
(reflecting noise that increases with the base contrast of the
stimulus), � is a scaling factor representing the strength of the

Table 1. Learning slopes for first and second training phases and transfer index

Training�transfer statistics

Low3high noise High3low noise

CM IC JC CD KL RW

Phase 1 slope �0.65 �0.12 �0.12 �0.34 �0.24 �0.64
Phase 1 intercept �0.73 �1.58 �1.49 �0.66 �0.62 �0.31
r2 0.81** 0.31** 0.36** 0.73** 0.63** 0.79**
Phase 2 slope 0.05 �0.30 0.03 �0.15 �0.14 �0.07
Phase 2 intercept �0.85 �0.63 �0.96 �1.55 �1.54 �1.54
r2 0.04ns 0.40** 0.03ns 0.43** 0.45** 0.16ns

Transfer index 0.91* 0.10ns 0.52** �0.16ns 0.03ns 0.31ns

Learning slopes from regressions of (log10) contrast threshold on (log10) practice block, including the two pretest blocks in the first
stage and excluding the two pretest blocks in the second stage. Transfer is tested as a nested F on regressions with and without an
independent intercept for the pretest stimuli in the second stage, with df � 1,21. P � .1; *, P � .05; **, P � .01; ns, nonsignificant.

Fig. 3. Threshold training improvements and transfer for three observers trained first in high noise (high3low). The log10 contrast threshold is shown, averaged
over two adaptive staircases (75% accuracy), versus log10 practice block for the initial training in high noise (Left) and the pretest baseline (two points) and the
posttransfer training in low noise (Right). Error bars indicate 95% confidence intervals for each threshold, and the 95% confidence region around the regression
lines are shaded in gray. Filled circles to the left of the vertical line were collected in pretesting or in phase 1, and points to the right of the vertical line were
collected in phase 2 or posttesting.
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response of the perceptual template to the signal stimulus, and
� incorporates nonlinearity in transduction (�F��). Rearranging
the contrast threshold required to achieve a particular accuracy
level di is as follows:

ci
2� �

1
�2�

��1 � Nmult
2 )Next

2� 
Nadd
2 )

� 1
di

2 � Nmult
2 � .

Independent mechanisms (i) filter external noise Next
2 (Af Next

2 , Af
� 1) or (ii) reduce internal additive noise Nadd

2 (Aa Nadd
2 , Aa � 1).

These independent mechanisms of improvement may be trained
independently. Here, we assume a power-law improvement in
each mechanism with training (Af(t) � 1.0t�� f and Aa(t) �
1.0t�� a). Values of practice, t, are counted here in blocks of trials.
To assess transfer between the initial phase of learning and the
second phase of learning, the number of blocks for observations
after the first two (pretest) values was set at t � t 
 t*, where t*
is an estimated parameter that captures the extent of transfer in
units of practice blocks. If t* is estimated at 0, then there is no

transfer. Increasing values of t* indicate larger amounts of
transfer, and when t* is estimated at or near the number of
training blocks in the first phase, then transfer is estimated as
essentially full.

The PTM was fit to the 3:1 (d� � 1.6337) and 2:1 (d� � 1.0061)
staircase contrast threshold data from the high-noise and low-
noise conditions. The ratio of thresholds for the two staircases
was 1.2–1.3 for all six observers, which is significantly smaller
(P � 0.001) than the contrast threshold ratio of 1.623 predicted
by a linear amplifier model (LAM) (15, 30) (P � 0.001), a
reduced form of the PTM with Nmult

2 � 0 and � � 1, associated
with a single-mechanism form of learning (30). This result is
consistent with a wide range of prior results that also require the
full PTM with two independent mechanisms of learning. Sta-
tistical comparisons occur by using nested F tests on nested
models with eliminated or constrained parameters.
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