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Abstract

We present a large-scale molecular phylogeny that includes 320 of the 761 recognized valid
species of the cone snails (Conus), one of the most diverse groups of marine molluscs, based on
three mitochondrial genes (COIl, 16S rDNA and 12S rDNA). This is the first phylogeny of the
taxon to employ concatenated sequences of several genes, and it includes more than twice as many
species as the last published molecular phylogeny of the entire group nearly a decade ago. Most of
the numerous molecular phylogenies published during the last 15 years are limited to rather small
fractions of its species diversity. Bayesian and maximum likelihood analyses are mostly congruent
and confirm the presence of three previously reported highly divergent lineages among cone
snails, and one identified here using molecular data. About 85 % of the species cluster in the
single Large Major Clade; the others are divided between the Small Major Clade (~ 12%), the
Conus californicus lineage (one species), and a newly defined clade (~ 3%). We also define
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several subclades within the Large and Small major clades, but most of their relationships remain
poorly supported. To illustrate the usefulness of molecular phylogenies in addressing specific
evolutionary questions, we analyse the evolution of the diet, the biogeography and the toxins of
cone snails. All cone snails whose feeding biology is known inject venom into large prey animals
and swallow them whole. Predation on polychaete worms is inferred as the ancestral state, and diet
shifts to molluscs and fishes occurred rarely. The ancestor of cone snails probably originated from
the Indo-Pacific; rather few colonisations of other biogeographic provinces have probably
occurred. A new classification of the Conidae, based on the molecular phylogeny, is published in
an accompanying paper.

Graphical abstract
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1. Introduction

A molecular phylogeny of a taxon is a hypothesis of its evolutionary patterns and processes,
and a framework for clarifying its classification. A strongly supported molecular-based
phylogenetic tree can help determine diversification rates, divergence times, ancestral
distributions, and community compositions, and it can provide evidence relevant to
taxonomic hypotheses. However, many taxa of considerable evolutionary and practical
importance have very incomplete species-level molecular phylogenies, based on few species
with appropriate genes sequenced, not representative of the diversity of the group, or largely
unresolved. The gastropod family Conidae, commonly known as cone snails, includes the
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widely distributed, mainly tropical genus Conus, a relatively young genus (appearance in
Early Eocene) generally considered to be the most diverse of marine animals (Kohn, 1990),
with 761 valid Recent species currently (21t January 2014) recognized in the World
Register of Marine Species (WoRMS, 2013) and new species usually being described each
year. It is also the most rapidly diversifying marine molluscan genus (Kohn, 1990; Stanley,
1975) and is ecologically important especially in coral reef environments where up to 36
species, specialized predators on worms, other molluscs, and fishes, co-occur on a single
reef (Kohn, 2001). These latter attributes all likely relate to their extremely diverse peptide
venoms that are used to capture prey and that also make the Conidae a most promising
source for neurobiologic and therapeutic applications (Biass et al., 2009; Lluisma et al.,
2012; Olivera, 2006). Molecular geneticists, evolutionary biologists, pharmacologists, and
toxicologists thus all require a robust phylogeny and taxonomy for this group. New drug
discovery is particularly likely to benefit from a clear phylogenetic context that permits
targeting divergent lineages and thus potential novel toxins (Biggs et al., 2010; Olivera,
2006).

Since the first published molecular phylogenies for Conus (Duda and Palumbi, 1999a;
Monje et al., 1999), many others have appeared, either for the cone snails and their relatives
(Puillandre et al., 2011a, 2008), or subgroups (Bandyopadhyay et al., 2008; Biggs et al.,
2010; Cunha et al., 2008, 2005; Duda and Kohn, 2005; Duda and Palumbi, 2004, 1999b;
Duda and Rolan, 2005; Duda et al., 2008, 2001; Espino et al., 2008; Espiritu et al., 2001;
Kauferstein et al., 2011, 2004; Kraus et al., 2012, 2011; Nam et al., 2009; Pereira et al.,
2010; Puillandre et al., 2010; Williams and Duda, 2008). The most comprehensive includes
138 species, ca. 20% of the known diversity of cone snails (Duda and Kohn, 2005).
Ancestral states of morphological, ecological, and developmental traits have been inferred
from some of these (Cunha et al., 2005; Duda and Palumbi, 2004, 1999a; Duda et al., 2001;
Kohn, 2012) and lineages of toxins with unknown functions identified (Puillandre et al.,
2010). However, these authors generally agree that available phylogenies are not complete
enough to robustly test hypotheses about how natural history attributes relate to factors that
could explain the evolutionary history of the cone snails.

Cone snails experienced several episodes of enhanced diversification since their origination
(Duda and Kohn, 2005; Kohn, 1990; Williams and Duda, 2008) and exhibit the highest rate
of diversification of any marine gastropod or bivalve group (Stanley, 1979), a remarkable
radiation that was likely driven by ecological speciation (Stanley, 2008). Currently they
occur mostly throughout tropical regions of our world's oceans, although the overwhelming
majority of species, both fossil and recent ones, are restricted to single marine biogeographic
provinces (e.g., Indo-Pacific, East Pacific, West Atlantic, East Atlantic and South Africa)
(Duda and Kohn, 2005). Results from previous molecular phylogenetic analysis suggest that
three major lineages arose shortly after the origination of the group: one with extant species
mostly occurring in the present-day Indo-Pacific, another with most extant species found in
the present-day East Pacific and West Atlantic, and a third that today consists of a single
species that is restricted to the East Pacific (Duda and Kohn, 2005). Based on the geographic
distributions of species in these clades, there has apparently been very little interchange of
lineages among the major marine biogeographic provinces (Duda and Kohn, 2005; Duda and
Lessios, 2009). Nonetheless, this work included analyses of sequence data from only one-
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fifth of the recognized cone snail species and the authors caution that their results are
preliminary and the patterns that they observed may change with more complete taxonomic
coverage (Duda and Kohn, 2005). Here we examine the biogeography of this group with a
much more exhaustive taxonomic and geographic coverage than available previously.

While most cone snail species are vermivorous (i.e., feed on a variety of worms, including
mostly polychaetes but also hemichordates), others are either piscivorous or molluscivorous,
with few species exhibiting more than one feeding mode. In addition, diets tend to be
species-specific, especially in areas where multiple species co-occur (Kohn and Nybakken,
1975; Kohn, 1968, 1959). A previous investigation of the evolution of diets of cone snails
reports that major shifts in diet were relatively rare (Duda et al., 2001), although piscivory
originated at least twice (Duda and Palumbi, 2004). However, as with all past molecular
phylogenetic studies of this group, these studies relied on limited taxonomic coverage.
Analyses of a much larger dataset may provide additional insights of the evolution of diet
that were not available previously.

We propose here a molecular phylogeny of the Conidae sensu Bouchet et a/. (2011), based
on three mitochondrial genes (COl, 12S, 16S) sequenced for 329 species (>40% of the
known species diversity), and including representatives from the main lineages defined in
previous DNA studies: C. californicus, the Small Major Clade and the Large Major Clade
(Duda and Kohn, 2005). Tucker and Tenorio (2009) classified the Small Major Clade as the
Family Conilithidae — it included C. californicus — and the Large Major Clade as the family
Conidae (see Table 1 for a comparison of the recent classifications of cone snails and related
species). We then analyse the evolution of three character sets: diet category, biogeographic
province and toxin diversity. Previous molecular phylogenetic studies analysed the main
evolutionary diet shifts (from worms to fishes or molluscs) (Duda and Kohn, 2005; Duda
and Palumbi, 2004; Duda et al., 2001), but never on such a large dataset. Disentangling the
evolution of these traits throughout this hyperdiverse taxon should help to generate and
critically examine hypotheses of the factors that promoted its exceptional ecological and
evolutionary diversification.

2. Material and Methods

2.1. Sampling

The analysed dataset is the result of a joint effort from several museums and laboratories.
The Museum National d'Histoire Naturelle (MNHN), Paris provided 493 specimens
collected during several recent expeditions in the Indo-Pacific (details are provided in the
appendix A); 88 specimens were collected during the CONCO project in New Caledonia
and South Africa, and processed in the University of Frankfurt; 319 specimens were
collected and processed by CPM, TFD and BMO or their lab groups. Additionally,
sequences from 1207 vouchers were downloaded from GenBank and added to the datasets.
Specimens were morphologically identified by the authors and by Eric Monnier, Loic
Limpalaér and Manuel Tenorio; for the GenBank sequences, we followed the identifications
provided by the respective authors.
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Nine vouchers from GenBank were only identified at the genus level (as “ Conus sp.”). For
various reasons, the voucher specimens were not available for all the non-GenBank
specimens, but in some cases digital images of shells were available (unpublished data) for
confirmation of identifications. In most cases, the morphological identification was double-
or triple-checked by several taxonomic specialists of the group. We followed the cone snail
taxonomy provided in the World Register of Marine Species (WoRMS, version of 141 May
2013) in applying species hames to the vouchers: only species names considered as valid in
WORMS were applied. All other species-level names that could have been attributed to the
specimens were considered as subspecies, form or variety names, or as synonyms. In total,
the 2107 specimens were attributed to 320 species names, representing >40% of the total
number of cone snail species considered as valid in WoRMS (Table 2). Additionally, we
recognize nine morphospecies as potentially corresponding to undescribed species
(numbered from a to i). In total, 1740 COI, 928 16S and 599 12S sequences were analyzed,
of which 1523 are newly published (Appendix A).

Outgroups were chosen according to Puillandre ef a/. (2011a). To test the monophyly of the
Conidae, representatives from closely related groups in the superfamily Conoidea were
included: Benthofascis lozoueti (Conorbidae), Bathytoma neocaledonica, Borsonia sp.,
Genota mitriformis and Microdrillia cf. optima (Borsoniidae), Clathurella nigrotincta and
Etrema cf. tenera (Clathurellidae), Mitromorpha metula and Lovellona atramentosa
(Mitromorphidae), Anticlinura sp. and Benthomangelia cf. trophonoidea (Mangeliidae) and
Eucyclotoma cymatodes and Thatcheria mirabilis (Raphitomidae). Less closely related
genera were used as more distant outgroups: Turris babylonia (Turridae), and 7erebra textilis
(Terebridae). The non-conoidean Harpa kajiyamai (Harpidae) is the most distant outgroup.

2.2. DNA Extraction and Sequencing

Although all laboratories mentioned above utilized the same primer pairs [1251/12S3
(Simon et al., 1991), 16Sar/16Sbr (Palumbi, 1996) and LCO1490/HCO2198 (Folmer et al.,
1994)] and all amplification products were sequenced in both directions, our laboratories
used a variety of DNA extraction protocols, amplification conditions and sequencing
approaches to obtain sequences of regions of the mitochondrial 12S, 16S and COI genes. For
brevity, only methodologies employed at the MNHN are described here. DNA was extracted
using 6100 Nucleic Acid Prepstation system (Applied Biosystem), the Epmotion 5075 robot
(Eppendorf) or DNeasy 96 Tissue kit (Qiagen) for smaller specimens, following the
manufacturers' recommendations. All PCR reactions were performed in 25 pl, containing 3
ng of DNA, 1 reaction buffer, 2.5 mM MgCI2, 0.26 mM dNTP, 0.3 mM each primer, 5%
DMSO, and 1.5 units of Qbiogene Q-Bio Tag. Amplification consisted of an initial
denaturation step at 94°C for 4 min, followed by 35 cycles of denaturation at 94°C for 30
sec, annealing at 54°C for 12S gene, 52°C for 16S and 50°C for COl, followed by extension
at 72°C for 1 min. The final extension was at 72°C for 5 min. PCR products were purified
and sequenced by sequencing facilities (Genoscope and Eurofins). All genes were sequenced
in both directions for increased accuracy. Specimens and sequences were deposited in
GenBank (Table 2, Appendix A).
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2.3. Phylogenetic Analyses

Sequences were manually (COI gene) or automatically aligned using Muscle 3.8.31 (Edgar,
2004) (16S and 12S genes). Preliminary analyses were performed for each gene separately
using the Neighbor-Joining algorithm (with a K2P model) implemented in MEGA 4
(Tamura et al., 2007) to remove obviously misidentified or contaminated sequences from the
dataset. One voucher (GU227112.1 and GU226998.1) identified as Conus sp. in GenBank
actually corresponded to a member of the Raphitomidae, and eight others were obviously
misidentified or contaminated (the sequence clustered with a non-phylogenetically related
species: AF126172.1 was identified as C. monachus but clustered with C. radiatus,
AF174157.1 was identified as C. circumactus but clustered with C. parius, AF036532.1 was
identified as C. diistans but clustered with C. bandanus, AF174169.1 was identified as C.
frigidus but clustered with C. sanguinolentus, AJ717598.1 was identified as C. magus but
clustered with C. furvus, AF174184.1 was identified as C. muriculatus but clustered with C.
striatellus, AB044276.1 was identified as C. praecellens but clustered with C. boholensis and
AY726487.1 was identified as C. ventricosus but clustered with C. venulatus). Additionally,
the unique sequence labelled as C. centurio (AY382002.1) was also removed from the
dataset, as it also corresponded to a misidentified specimen (M. Tenorio, pers. com.).
Finally, 28 short COI sequences from GenBank (< 200bp) were also removed from the
dataset; all corresponded to species represented by several other specimens in the final
dataset. Because COI is generally more variable than 16S and 12S gene regions, COl is
usually more valuable for specimen identification and distinction of closely related species.
It was thus used to assign unidentified specimens from GenBank and to point at species-
level issues. We analysed the COI dataset with ABGD (Puillandre et al., 2012b). This
method relies on genetic distances only and seeks to identify in the distribution of genetic
distances a gap that would correspond to a threshold between intra-specific and inter-specific
distances. The defaults parameters provided on the web version of ABGD (version of
March, 2014) were applied.

Each gene was analysed independently to check for incongruency between trees. The best
model of evolution was selected for each gene and for each codon position of the COI gene
using Modelgenerator V.85 (Keane et al., 2006) under the Hierarchical Likelihood Ratio
Tests (with four discrete gamma categories): GTR+I+G was always identified as the best
model, with | = 0.98, 0.85, 0.66, 0.58 and 0.49 and a = 0.66, 0.25, 0.24, 0.34 and 0.16 for
the COI (first, second and third position of the codon), 16S and 12S genes respectively.
Maximum Likelihood analyses (ML) were performed using RAXML 7.0.4 (Stamatakis,
2006), with a GAMMAI model for each gene. Three partitions were defined for the COI
gene, corresponding to each position of the codon. RaxML analyses were performed on the
Cipres Science Gateway (http://www.phylo.org/portal2/) using the RAXML-HPC2 on TG
Tool. Accuracy of the results was assessed by bootstrapping (1000 replicates).

After visual inspection of the absence of supported incongruencies between the independent
trees, a concatenated dataset was prepared by including only one representative of each
species name represented in the independent gene datasets. When several specimens were
available for a single named species, the preferred specimen had the highest number of
genes and with, if possible, an available voucher. Three unnamed morphospecies and 16
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species were represented by specimens sequenced for only one gene: they were excluded
from the concatenated dataset. In several cases, specimens of a named species were found
not to be monophyletic (see section 3). In all of these cases, the different specimens
remained closely related and only one was included in the final dataset. Finally, 326
specimens (including 16 outgroups) were included in the concatenated dataset. ML analyses
were performed as described before, with five partitions (three codon positions of the COI
gene, 12S and 16S). Bayesian Analyses (BA) were performed running two parallel analyses
in MrBayes (Huelsenbeck et al., 2001), consisting each of eight Markov chains of
200,000,000 generations each with a sampling frequency of one tree each thousand
generations. The number of swaps was set to five, and the chain temperature at 0.02.
Similarly to the ML approach, unlinked models (each with six substitution categories, a
gamma-distributed rate variation across sites approximated in four discrete categories and a
proportion of invariable sites) were applied for each partition. Convergence of each analysis
was evaluated using Tracer 1.4.1 (Rambaut and Drummond, 2007), and analyses were
terminated when ESS values were all superior to 200. A consensus tree was then calculated
after omitting the first 25% trees as burn-in.

The COI gene is more variable than 16S or 12S, COI sequences were available for the
largest number of morphospecies, and many of these were represented by several
individuals. For these reasons, COI gene trees were used to explore the species-level a.-
taxonomy of cone snails.

2.4. Character Evolution

The evolution of two characters was analysed by mapping their character states on the
Bayesian phylogenetic tree obtained with the concatenated dataset: geographic distribution
(five states: East Atlantic; East Pacific; Indo-Pacific; South Africa; West Atlantic) and prey
type (four states: worms; fishes; molluscs; worms, fishes, shrimps and molluscs). The prey
type was based on direct observation for 100 species, was inferred from the radula type for
103 species and remains unknown for 107 species (http://biology.burke.washington.edu/
conus/). It should be noted that the vermivorous type may refer to preys from different phyla.
However, among the 53 species for which the vermivorous diet was based on direct
observation, only one species (C. legpardus) is known to mainly feed on a non-polychaete
(enteropneust Ptychodera - Kohn, 1959) The evolution of the prey type was assessed with
Mesquite V2.74 (Maddison and Maddison, 2009), using the option ‘tracing character
history’ and the likelihood ancestral reconstruction method. The BBM (Bayesian Binary
MCMC) method implemented in RASP (Yu et al., 2013, 2010) was used to reconstruct
ancestral ranges for each node. To account for uncertainties, the 10,000 last trees obtained
with the Bayesian analyses were loaded. Analyses were run with default parameters, except
the number of cycles (set to 500,000) and the root distribution (set to “wide™).

3. Results and Discussion

3.1. Species-Level Phylogeny

Final alignments included 658bp, 457bp and 553bp for the COI, 16S and 12S genes
respectively. Single-gene analyses produced poorly resolved trees (Appendices B-D), with
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only a few clades supported. Trees constructed with the concatenated dataset also recovered
these clades, albeit with higher support. However, single-gene trees are useful to identify
unknown specimens and for evaluation of species-level taxonomy of cone snails.

The eight remaining unidentified Conusfrom GenBank (after one was discarded from the
dataset because it was not a cone snail) were identified following a barcoding approach in
which an unknown specimen is identified based on the identity of its closest neighbour in
the tree (Austerlitz et al., 2009): one specimen which consisted of an egg capsule collected
in the Philippines (Puillandre et al., 2009) matched C. australis, five other specimens (Cunha
et al., 2008, 2005) belonged to the C. venulatus complex; another matched C. capitaneus
(Dang et al., unpublished); and the last corresponded to C. tabidus (Cunha et al., 2005).

In most cases (213 of the 320 named species), DNA analyses were congruent with species
delimitation based on shell characters (i.e. species with several specimens were found
monophyletic, and species with a single specimen were found different from all the others).
For the remaining species, DNA analyses were not found congruent with species
delimitation based on morphological characters, and we examined four hypotheses that
could explain this high number of discrepancies: 1. Specimens were not identified correctly.
Although specimens with vouchers (or at least a picture) were examined by several experts
to verify identification, a large proportion of the sequences (especially those from GenBank)
did not have any voucher material and could not be evaluated. 2. The sequence obtained
belongs to a contaminant. Several identical sequences independently obtained by different
laboratories reduce the likelihood of contamination, but checking for contamination is more
difficult when only a single specimen is available for a given named species. 3. The three
analysed genes all belong to the maternally transmitted mitochondrial genome, and its
evolutionary history is distinct from the species tree. In particular, the non-monophyly of a
given morphospecies may be linked to the fact that the analysed gene(s) have not yet
coalesced (Funk and Omland, 2003). 4. Lack of morphological variability (e.g. cryptic
species) or, conversely, high within species morphological variability (e.g. linked to
phenotypic plasticity) resulted in incorrectly delimited species, suggesting that the taxonomy
needs to be revised.

In addition to the phylogenetic analyses, the ABGD method was also used to discuss the
species complexes. In the vicinity of the barcode gap, the ABGD method constantly returns
a partition in 343 primary species hypotheses (PSH). Because it is not the primary objective
of this article, and because most species are represented by one or a few specimens only, we
will not discuss in detail the ABGD results, but instead identify the problematic cases and
suggest that they deserve more in-depth analyses. In numerous cases several species names
were mixed in a single clade. For most of them (C. aulicusl C. episcopatus C. magnificus, C.
aallil C. canonicus, C. frigidusl C. flavidus, C. jaspideus! C. mindanus, C. mucronatusl C.
sutanorcum, C. muriculatus! C. floridulus, C. sulcatus complex, C. striatellus! C. planorbisl C.
ferrugineus, C. ximenes! C. mahogani, C. loyaltiensisl C. kanakinus/ C. vaubani, C.
pennaceus! C. crocatus! C. lohri, C. bandanusl C. marmoreus, C. pagodusl C. aff. eucoronatus
and C. tessulatusl C. eburneus! C. suturatusl C. sanadwichensis) correlating these preliminary
results with morphological, geographical or bathymetrical variation would require analyses
of additional specimens. Nonetheless, in some cases we can propose preliminary hypotheses
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to interpret the results. C. arenatus occurs in two clades, one corresponding to the form
aequipunctatus and the other being mixed with C. pulicarius, ABGD places these two
lineages in two different PSH. In the case of C. /ividusand C. sanguinolentus (only two
specimens from GenBank, one for each name), specimens may have been incorrectly
identified as C. /ividus or C. sanguinolentus or the morphological criteria used to delimit
these species are inappropriate. For members of the C. teramachiil C. smirnal C. aff.
profundoruml C. n. sp. g complex (Fig. 1A), four clades are recognized: two restricted to
New Caledonia (one including C. n. sp. g and the second containing specimens with C.
profundorunrlike shells), another to Madagascar (it would correspond to the form
neotorquatus of C. teramachii), and one that occurs in the Philippines, Solomon Islands,
Papua-New Guinea and New Caledonia (with C. smirnaand C. teramachii-like shells). In
this complex ABGD recognizes only three PSH, merging the C. profundorum-like shells and
the Philippines/Solomon Islands/Papua-New Guinea/New Caledonia clade in a single PSH.
Also, several species complexes were revealed that have been treated previously (C.
sponsalis complex in Duda et al. (2008), C. orbignyi complex in Puillandre ef al. (2011b), C.
ventricosus complex in Cunha et al. (2005) and Duda and Rolan (2005) and C. venulatus
complex in Cunha et al. (2005), Cunha et a/. (2008) and Duda and Rolan (2005), but our
results suggest that their taxonomy is not fully resolved yet, and that numerous cryptic
species still need formal description.

Sequences of specimens representing 11 species names were not monophyletic and included
two (C. miliaris, C. glans, C. longurionis, C. mappa, C. quercinus, C. villepinii, C. generalis,
C. regius) or three (C. australis, C. daucus, C. imperialis) lineages. All this lineages
correspond to different PSH as defined by ABGD, the high genetic distances thus suggesting
that they may belong to different species. In some cases, one of the lineages is
geographically (e.g., C. longurionis) or bathymetrically (e.g., two of the C. imperialis
lineages — Fig. 1B) distinct. In other cases, one is associated with a previously recognized
subspecies or forms (e.qg., granarius for one lineage of C. mappa, fulgetrum for C. miliaris -
Fig. 1C, maldivus for C. generalis, abbotiifor C. regius, gabryae for C. australis, boui for C.
daucus, and fusctausfor C. imperialis). The two lineages of C. quercinus (one being
identified as “aff quercinus”) were not found with the 12S and 16S genes. In several other
cases, divergent lineages within a single morphospecies were revealed, although the
corresponding morphospecies remained monophyletic, thus suggesting the presence of
cryptic species (e.g., C. consors), some of which are associated with a previously described
subspecies or form (e.g. archiepiscopus for C. textile). ABGD defines two PSH
associatedwith the name C. consors and three with the name C. fextile. Finally, in a few
cases (e.g., C. recurvusand C. virgatus), two species names shared identical or very similar
sequences, suggesting synonymy; ABGD places them in a single PSH. However, the low
number of specimens sequenced for each species name prevents adequate evaluation of this
hypothesis.

3.2. Phylogeny Above the Species Level

Analyses of the concatenated dataset revealed four main highly divergent clades (Fig 2,
Table 3). Three of them correspond to previously reported lineages with molecular data: one
with only one species (C. californicus), a second corresponding to the Small Major Clade

Mol Phylogenet Evol. Author manuscript; available in PMC 2017 August 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Puillandre et al.

Page 10

(SMC - sensu (Duda and Kohn, 2005) and roughly to the Conilithinae (sensu Tucker and
Tenorio, 2009), and a third, the most species-rich, corresponding to the Large Major Clade
(LMC - sensu (Duda and Kohn, 2005) and roughly to the Conidae (sensu Tucker and
Tenorio, 2009). A fourth main clade was found here for the first time with DNA characters.
It roughly corresponds to Profundiconus sensu Tucker and Tenorio (2009) and includes a
number of deep-water species from the Indo-Pacific that were not examined in previous
molecular phylogenetic analyses. Profundiconus is sister-group to all the other Conidae, but
this relationship is not supported. The inclusion of Profundiconusin Conidae thus remains
doubtful, although the morphological characters would place it in cone snails. The recovery
of this clade illustrates the fact that more complete taxon sampling can provide a much
better view of the evolutionary history and taxonomic diversity of groups. Although our
current phylogenetic treatment more than doubles the number of species examined, our
analyses included less than 50% of the recognized cone snail species; inclusion of additional
species and analyses of additional gene sequence regions will be instrumental in
reconstructing the history of the Conidae and may reveal additional previously unrecognized
groups.

Within the SMC and LMC, reconstructed phylogenies show several well-resolved subclades
that generally correspond to genus-level groups defined by Tucker and Tenorio (2009).
However, most of the relationships among the subclades of the SMC and LMC were not
resolved; this could be due to a lack of phylogenetic signal for the three mitochondrial genes
analysed here and/or to a radiation process that led to multiple lineages originating in a short
period of time. Nonetheless, some groupings can be noted, although in most cases only
supported by the Bayesian analysis (Fig. 2). Within the SMC, all the species except for C.
arcuatus and C. mazei clustered together (PP = 1, bootstrap = 34). C. distans s the sister-
species of all other members of the LMC (PP = 1; this relationship was absent in the ML
analysis). Half of the members of the LMC (from Puncticulis to the bottom of Fig. 2) occur
within a well-supported clade (PP = 1; relationship not found with the ML analysis).

Similar to the results obtained by Puillandre et a/. (2011a) with similar outgroups,
monophyly of the cone snails (= Conidae sensu Bouchet et al., 2011 — see Table 1) is not
supported, suggesting that more taxa, in particular within the closely related families
(Borsoniidae, Clathurellidae, Conorbiidae), and additional genes with lower rates of
evolution, should be analysed to fully resolve the relationships of cone snails and other
Conoidea. The diversity pattern within Conidae remained unchanged from previous studies
(e.g. Duda and Kohn, 2005; Tucker and Tenorio, 2009), with very disparate numbers of
species between the main lineages. By far most cone snails (~ 85%) are in the LMC.

Most, if not all, previously published molecular phylogenies are congruent with the
phylogenetic results presented here; this does not come as a surprise as most of the
specimens and sequences analysed in these studies were combined in our dataset. However,
phylogenetic trees that were reconstructed with other gene regions (intron 9 CIS Kraus et al.
(2011); and calmodulin exon+intron gene sequences, Duda and Palumbi (1999a) are also
consistent with those produced here. All clades defined in these prior trees were recovered in
our trees (taking into account that not all the same species were included in all studies). The
inclusion of many more species compared to the previously published phylogenies, however,
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revealed many clades that were previously unrecognized either because members of these
clades were not included in the previous analyses or because the inclusion of additional
species and/or sequences improved the resolution of the tree. The phylogenetic analysis of
the 329 cone snail species has been turned into a new classification for the family Conidae
that now includes 4 genera and 71 subgenera (Puillandre et al., in press).

3.3. Evolution of Diet

Most cone snails feed on polychaete worms, and reconstruction of the evolution of their
diets supports the hypothesis that the cone snail ancestor was vermivorous (Fig. 3). The form
of its radular tooth (Kohn et al., 1999) and its position in the tree (Fig. 3) also support the
evolution of the unusual diet of C. californicus—this species is able to feed on molluscs,
worms, shrimps and fishes (Biggs et al., 2010)—from a worm-hunting ancestor. This is also
likely in the few clades that specialize on fishes (members of Chelyconus, Phasmoconus,
Gastridium and Pionoconus) and molluscs (most of the members of the subgenera Conus,
Leptoconus, Calibanus, Darioconus, Cylindrer, and Eugeniconus). The capacity to feed on
molluscs likely appeared only once, with a probable reversion to worm-hunting behaviour in
C. nobilis (diet predicted from radular tooth characters).

Reconstruction of the evolution of the cone snail diet shows that the capacity to prey on
fishes probably appeared several times during the evolution of the group. If we rely only on
the species for which piscivory has been confirmed by direct observation, and not on the
species for which the diet has been inferred from the radula (marked “2” in the Fig. 3), the
piscivorous diet evolved only twice, in C. ermineusand C. purpurascens within Chelyconus,
and in several species of the clade (Asprella, Afonsoconus, Textilia, Pionoconus, Embrikena,
Gastridium, Phasmoconus), as represented by the two grey boxes in the Figure 3. However,
the relationships between these two clades are not supported, and we thus cannot rule out
that piscivory evolved only once. Similarly, several previous phylogenetic investigations of
cone snails suggest that fish-eating arose multiple times during the evolution of this group,
but many of the resultant trees from these studies lacked rigorous support to reject the
hypothesis that fish-eating evolved only once (Duda et al., 2001, Fig 1-3, 5; Kraus et al.,
2011, Fig. 2 and 3; but see Duda and Palumbi, 2004).

3.4. Clade Specificity of Venom Peptides

In this section we relate an independent dataset — the major peptide toxins expressed in the
venom of each species in Conidae — to the phylogeny based on standard mitochondrial
marker genes shown in Fig. 2. At present, the range of species whose venom has been
comprehensively analyzed is far more phylogenetically restricted than the species for which
the mitochondrial markers are available (as shown by the asterisks in Fig. 3); consequently,
it was thus not possible to directly map the evolution of the toxins on the tree, as done with
the diet and biogeography. Nevertheless, it is clear even from the more limited dataset
available that the major venom peptides expressed in a given species tightly correlate with
the clade to which that particular species is assigned, based on the molecular data (Fig. 2).
Consequently, venom peptides can be used as an independent dataset to confirm or refute the
clades defined using mitochondrial genes.
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We specifically tested this hypothesis with the fish-hunting clades. As discussed above, the
phylogeny suggests that worm hunting was the ancestral state. One family of venom
peptides that are well understood at the mechanistic level are the a-conotoxins, targeted to
the nicotinic acetylcholine receptor, a molecular target that is key to prey capture. Blocking
this receptor at the synapse between nerve and muscle results in the paralysis of potential
prey. The major snake toxins in the venoms of cobra-related snake species, such as
cobratoxin or a-bungaratoxin, similarly target the nicotinic acetylcholine receptor of their
prey. In the shift from worm hunting to fish hunting, the peptides that belong to a particular
family, the a-conotoxins, were clearly under selection to diverge from the ancestral worm-
hunting nicotinic antagonists, and to target the very distinctive nicotinic acetylcholine
receptor expressed in the skeletal muscle of all vertebrates. Thus, the members of the a-
conotoxin family in worm-hunting cones mostly belong to a specific toxin gene subfamily
called the a4/7 subfamily. These have the canonical sequence CCX4CX7C — the peptides in
the gene superfamily, as defined from the similarity in the signal sequence, have 4 cysteine
residues with diverse amino acids in betweenthem —. In the typical ancestral peptide there
are 4 and 7AA respectively in the two inter-cysteine intervals. Appendix E shows examples
of a4/7 subfamily peptides from two different clades of worm-hunting Conus snails,
Puncticulus and Dendroconus, peptide sequences from two species in each clade are shown.

As shown in Appendix E, in one specific clade of fish-hunting cone snails (Pionoconus), the
a-conotoxin family peptides that are highly expressed diverge systematically from the
ancestral canonical sequence, and belong to a different subclass of a-conotoxins, the a3/5
toxin gene subfamily (canonical sequence: CCX3CX5C). However, in a different clade of
fish-hunting cone snails (Chelyconus), the ancestral subfamily has also been altered, but the
change is entirely different: an extra disulfide bond has been added (leading to peptides with
6 instead of 4 cysteines). Thus, all piscivorous species in Pionoconus express the a3/5
subfamily member as the major venom peptide for inhibiting the nicotinic acetylcholine
receptor at the neuromuscular junction. However, in the piscivorous Chelyconus clade, it is
the longer peptides with an extra disulfide linkage (known as aA-conotoxins) that have this
physiological role. Thus, although the Bayesian analysis in Fig 2 does not statistically allow
the unequivocal conclusion of independent origins of fish-hunting in the Pionoconus and
Chelyconus clades, this is strongly supported by the type of venom-peptide expression data
shown in Appendix E. The same divergence between venom peptides in Pionoconus and
Chelyconus is found if the peptides targeted to voltage-gated K channels are examined.

Furthermore, the major nicotinic acetylcholine receptor antagonists in some highly
specialized worm-hunting lineages, such as Stephanoconus (specialized to prey on
amphinomid polychaetes), also diverge systematically from the canonical a4/7 subfamily, to
peptides in the a4/3 subfamily (CCX4CX3C). In this case, the most highly expressed
nicotinic antagonist targets a different nicotinic receptor subtype, presumably similar to the
isoform expressed at the neuromuscular synapse of the amphinomed prey of species in the
Stephanoconus clade.
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3.5. Biogeography
Mapping geographic distributions of species onto the reconstructed phylogeny requires more
transition events than the evolution of the diet (Fig. 4). Based on the tree, most species occur
in the Indo-Pacific (IP), which may be the ancestral source of the Conidae (frequency of
occurrence of Indo-Pacific region at the node 1 — Fig. 4: 90.5%) and of Conus (node 2:
99.2%). However, the fossil record supports the view that the center of diversity of Conidae
in the Eocene was the former Tethys region (Kohn, 1985), also the region of its oldest
known fossils (Kohn, 1990). In total, 22 events of dispersals and 27 events of vicariance are
inferred. Several of these events are relatively recent and involve species from the IP and EP,
e.g., the clades containing the EP species C. nux, C. dalliand C. diadema, that suggest
recent migration events across the East Pacific Barrier to establish these species in the EP.
Several other clades included sets of species from both the EP and WA, e.g., the clade
containing the piscivores C. purpurascensand C. ermineus, suggesting recent allopatric
speciation events linked to vicariance of lineages associated with the emergence of Isthmus
of Panama. In addition, in one case it is possible to reconstruct a scenario of consecutive
speciation (and possible dispersion and/or vicariance) events to explain the origins of current
IP, EP, WA and EA distributions of members of a clade: a first dispersion or vicariance event
between the IP and EP led to the origin of C. fergusoniand C. gladiator in the EP, followed
by another dispersion or vicariance event that gave rise to C. mus in the WA (possibly
associated with the emergence of the Isthmus of Panama), which was then followed by
separation of lineages in (or a migration event between) the WA and EA and ultimate origin
of C. tabidusin the EA. C. tabidusis the only EA cone snail species on the tree that is
restricted to the EA and does not occur in a clade with other EA species.

Overall, the number of suspected migration and vicariance events is low relative to the
number of species included in the analysis. Indeed, few cone snail species occur in more
than one of the main marine biogeographic provinces (e.g., C. ermineus occurs in the WA
and EA and as stated above C. chaldaeus, C. ebraeusand C. tessulatus occur in both the IP
and EP). The low levels of connectivity between these provinces is probably linked to large-
scale historical-geological events, such as the existence of the East Pacific Barrier between
the islands of the central Pacific and the offshore islands and coast of the Americas and the
Mid-Atlantic Barrier that separates the Atlantic Ocean into western and eastern regions
(Duda and Kohn, 2005) as well as physiological barriers that prevent migration through cold
water barriers at higher latitudes.

The only previous analysis of the biogeographic history of cone snails (Duda and Kohn,
2005) inferred that the group contains two main groups, the SMC and LMC, that were
largely restricted to the EP+WA and IP respectively and that this geographic separation
likely promoted the divergence of the lineages that gave rise to these clades. That study was
able to include only nine SMC species, and with increased taxonomic coverage, this pattern
is no longer apparent. Most (70%) SMC species occur in the IP, while the others are evenly
distributed in the EP and WA (Fig. 4). The IP SMC members are deep-water species, while
most of the EP and WA members are not. Thus, bathymetric isolation, and not isolation in
separate biogeographic provinces as inferred by Duda and Kohn (2005), may account for the
separation of the SMC and LMC.

Mol Phylogenet Evol. Author manuscript; available in PMC 2017 August 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Puillandre et al.

Page 14

3.6. Speciation Patterns in Cone Snails

Allopatric patterns, either linked to a speciation event or to within-species differentiation
that has not led to speciation, occur throughout Conidae (e.g. Duda and Lee, 2009a; Duda
and Rolan, 2005; Puillandre et al., 2011b). The likely propensity of such populations to
evolve different venoms (Duda and Lee, 2009b; Duda et al., 2009) that may be linked to
prey shifts, make cone snails a promising model to also explore the effects of non-
geographic factors on the diversification of the group. Prey shifts after speciation could
induce strong positive selection on venom properties and the evolution of new toxins more
adapted to new prey (Duda et al., 2008), in agreement with the hypothesis proposed for
snakes (Barlow et al., 2009; Kordis and Gubensek, 2000; Lynch, 2007) and scorpions
(Kozminsky-Atias et al., 2008). Duda & Lee (2009b) also proposed that ecological release,
occurring when an isolated population is under relaxed selective pressure (e.g. from a
predator-prey arms race), may lead to the appearance of new toxins, even without prey shift,
in C. miliaris. However, the available data on conotoxins remain too scarce (species with an
asterisks in Fig. 3) to reconstruct the evolution of the conotoxins from the phylogenetic tree
presented here and to eventually identify shifts in venom composition between closely
related species that could be linked to prey shift or ecological release (but see pararagraph
3.4.). Only 71 species of cone snails are represented by at least one nucleotide sequence of
conotoxin in GenBank (Puillandre et al., 2012a), and for most of them the conotoxin
sampling is not saturated, as revealed by recent next-gen sequencing (Terrat et al., 2011;
Violette et al., 2012), precluding a robust comparison of venom composition at a large-scale.

Because our analysis revealed only a few diet shifts, one could argue that this could explain
only few speciation events in cone snails. However, we limited prey categories to only the
three major types (molluscs, worms and fishes), and important shifts likely occur at finer
taxonomic levels of prey. Actually, closely related sympatric Conus species of cone snails
typically exhibit different feeding specializations, as shown before (e.g. (Kohn and
Nybakken, 1975; Kohn, 2001, 1959), and additional comparative analyses may provide
stronger evidence linking prey shift to speciation events in some cases.

3.7. Conclusion

Molecular phylogenetic analysis has confirmed that cone snails constitute a largely
heterogeneous group in spite of overall morphological homogeneity that justified their
inclusion until recently in a single genus. Speciation in cone snails results from different
evolutionary processes, since several models of speciation, either linked to geography or
ecology, may apply to the group. This propensity to speciate following several evolutionary
processes would be one of the key factors to explain why cone snails are one of the most
diverse groups of marine invertebrates. We also argue that the pharmacological diversity of
the peptides found in the venom gland of the cone snails could be underestimated, since
most of the studies of the last three decades focused on species that belong to only a few
lineages (Puillandre et al., 2012a), and several lineages remain largely understudied (or even
not studied at all — e.g. Profundiconus). The newly defined, highly divergent lineages of
cone snails may represent novel biological strategies not found in the limited set of cone
snail lineages analyzed so far. One indication of this is the high diversity of conotoxins
found in C. californicus (only half of the subfamilies found in C. californicus are also found
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in Conus species — Biggs et al., 2010), this would imply that conotoxin study is only in its
infancy, suggesting a promising future for the discovery of new conotoxins and new
therapeutic applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendices
Appendix A

List of specimens analysed. Sequences of different genes published by the same author and
identified with the same species name were considered to correspond to the same specimen
(only when only one sequence per species was in GenBank).

Appendix B

Maximum likelihood tree based on COI sequences. Bootstraps values > 80 are shown for
each node.

Appendix C

Maximum likelihood tree based on 16S sequences. Bootstraps values > 80 are shown for
each node.

Appendix D

Maximum likelihood tree based on 12S sequences. Bootstraps values > 80 are shown for
each node.

Mol Phylogenet Evol. Author manuscript; available in PMC 2017 August 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Puillandre et al. Page 16

Appendix E

Venom peptides in the a-conotoxin family in five clades.
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Highlights
- A molecular phylogeny of the cone snails is proposed.
- The phylogeny is based on 329 species and three genes

- Four major highly divergent clades are defined.

- Diet shifts and large-scale phylogeography of cone snails are inferred.
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Figure 1.
Three sub-parts of the COI Bayesian tree that illustrate discrepancies between COI diversity

and morphological diversity. a) C. teramachii complex. b) Putative cryptic species in C.
imperialis. ¢) C. miliaris complex (black arrows).
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Figure 2.
Bayesian tree based on a concatenation of the COI, 16S and 12S genes for the reduced

dataset of 326 specimens. Posterior probabilities (> 0.95) are shown for each node. Genus
and subgenus names follow the classification based on the phylogenetic tree and published
in Puillandre et al. (in press).
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Figure 3.
Mapping of the type of prey on the Bayesian tree based on a concatenation of the COI, 16S

and 12S genes for the reduced dataset of 326 specimens. *: species for which at least one
nucleotide sequence of conotoxin is registered in GenBank. 1: species for which the diet is
know from direct observations. 2: species for which the diet has been inferred from the
radula. ?: species for which the diet is unknown. When species for which the diet has been
inferred from the radula are not taken into account for the ancestral state reconstruction, the
clade delimited by the ligh grey box is inferred to include only mollusc-hunting species and
the two clades delimited by the dark grey boxes are inferred to include only fish-hunting
species.
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Figure4.

Mapping of the geographic distribution (EA = East Atlantic; EP = East Pacific; IP = Indo-
Pacific; SA = South Africa; WA = West Atlantic) on the Bayesian tree based on a
concatenation of the COI, 16S and 12S genes for the reduced dataset of 326 specimens.
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Table 3

Statistical support (Bayesian and Maximum likelihood analyses) for the clades associated to a genus or
subgenus name in the new classification (Puillandre et al., in press).

Group Posterior Probabilities  Bootstraps
Profundiconus 1 99
Californiconus na na
Conasprella 1 100
Kohniconus  na na
Dalliconus  na na
Fusiconus ~ 0.99 53
Conasprella 1 83
Endemoconus 1 100
Boucheticonus  0.53 48
Ximeniconus 1 98
Conus 1 -
Fraterconus na na
Stephanoconus 1 99
Strategoconus 1 85
Klemaeconus 1 100
Turriconus 1 100
Pyruconus (group 1)  na na
Ductoconus 1 100
Dauciconus 1 99
Pyruconus (group 2) na na
Gladioconus 1 100
Floraconus  0.98 96
Leporiconus 1 99
Splinoconus 1 100
Sciteconus 1 100
Rhizoconus 1 100
Puncticulls 1 100
Asprella 1 100
Afonsoconus 1 100
Textilia 1 97
Pionoconus 1 94
Embrikena na na
Gastridium 1 100
Phasmoconus 1 100
Chelyconus 1 100
Virroconus 1 100
Dendroconus  0.86 31
Lindaconus  na na
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Group
Harmoniconus
Tesselliconus
Quasiconus
Conus
Nataliconus
Calibanus
Darfoconus
Cylindrer (group 1)
Eugeniconus
Cylindrer (group 2)
Elisaconus
Hermes
Lithoconus
Lividoconus
Virgiconus
Kalloconus

Lautoconus

Posterior Probabilities

0.72

na
0.74
na

na

N

Bootstraps
100
100
100
94
100
48
97
na
70
na
na
na
98
100
100
100
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