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Gene expression noise results in protein number distributions
ranging from long-tailed to Gaussian. We show how long-tailed
distributions arise from a stochastic model of the constituent
chemical reactions and suggest that, in conjunction with cooper-
ative switches, they lead to more sensitive selection of a subpopu-
lation of cells with high protein number than is possible with
Gaussian distributions. Single-cell-tracking experiments are pre-
sented to validate some of the assumptions of the stochastic
simulations. We also examine the effect of DNA looping on the
shape of protein distributions. We further show that when
switches are incorporated in the regulation of a gene via a
feedback loop, the distributions can become bimodal. This might
explain the bimodal distribution of certain morphogens during
early embryogenesis.

fluctuations � genetic switches � single cell

The inevitable noise in gene expression, manifested at the
subcellular level as distributions in protein numbers, has been

observed experimentally in both prokaryotes and eukaryotes (1–6).
Recent studies have investigated how organisms tolerate this noise
and the kinds of regulatory strategies they use to control or
minimize it (7, 8). One example where it has been suggested that
noise is exploited for the benefit of the organism is bacterial
chemotaxis (9). Analyses of noise in gene expression have high-
lighted the analogy with quantum many-body systems (10), and the
authors of refs. 11–15 have explored the contribution of intrinsic
and extrinsic sources, as well as the relative contribution of tran-
scription and translation, focusing on the standard deviation of
protein fluctuations. If the protein distributions were Gaussian, the
mean, �, and standard deviation, �, would provide a complete
description of the noise characteristics. However, recent experi-
ments have revealed that protein distributions are often non-
Gaussian and also time-dependent, showing a crossover from
long-tailed to Gaussian (3). It is important, therefore, to understand
the origins and implications of the long-tailed nature of the protein
distributions.

We implement a stochastic chemical model of gene expression
and show that it leads to distributions that fit the experimental
observations, presented in this paper and in ref. 3, of protein
distributions at different stages of bacterial growth. The predictions
of the simulations were experimentally tested by single-cell-tracking
experiments. We suggest that long-tailed protein distributions
filtered by appropriate switches can lead to selection at the sub-
cellular level. For example, a switch with a sharp threshold can be
used to select a subpopulation of cells with a large concentration of
a particular protein from a population of cells with a long-tailed
distribution of that protein. By contrast, we show that symmetric
Gaussian distributions are not as sensitive to switches.

When long-tailed distributions are combined with switches via a
positive feedback loop, we find that the system becomes bistable
and can result in bimodal protein distributions. Recent observations
of a bimodal protein distribution in an autoregulatory system (3)
and engineered gene circuits that couple a switch to a GFP gene
(16) confirm our predictions. We also find bimodality in the
distribution of the hunchback protein in early-stage Drosophila

embryos and suggest that this could be the result of the bicoid switch
acting on a long-tailed distribution. Thus, long-tailed distributions
and their response to switches might also be of relevance to
processes in early embryogenesis. A schematic of our studies is
presented in Fig. 1.

Origins of Long-Tailed Protein Distributions
Stochastic Simulations of a Chemical Model of Gene Expression. To
understand the microscopic processes producing the long-tailed
distributions and the importance of different sources of noise, we
have constructed a chemical model of the process of gene expres-
sion and analyzed it by using stochastic simulations. The model
describes a single gene regulated by an operator site where a
repressor molecule can bind and prevent transcription initiation.
Expression of the gene is modeled as a series of chemical reactions,
as in ref. 17. The Gillespie method (18) is used for stochastic
simulation of the reactions. In the Gillespie method, the probability
per unit time for the occurrence of a reaction is taken to be the
product of a combinatorial factor, which is a function of the
numbers of reactants, and the rate constant of the reaction. For
second- and higher-order reactions, the volume of the cell also has
to be taken into account and, here, is assumed to be linearly
increasing through the cell cycle. Each cell cycle, of duration T, is
implemented as follows. First, the Gillespie simulation is run for a
time tD, at which point the gene copy number, n, is doubled. The
simulation is then run until time T when the cell volume and gene
copy number are halved and other molecules are partitioned
binomially. The process is then iterated for the next cell cycle, with
one daughter cell followed after each partitioning (the model and
the simulation algorithm are described in Stochastic Simulation of
a Chemical Model of Gene Expression in Supporting Text, which is
published as supporting information on the PNAS web site; they are
based on models and algorithms used in refs. 13, 17, and 19). Fig.
2 shows the results of simulations with a fixed cell division time, T �
1,800 s, but different values of the total repressor number, R. The
effects of different sources of noise on the protein time series are
evident in these runs. When the protein number is large, the
thermal noise (reflected in the stochastic occurrence of chemical
reactions) is small but the noise from partitioning of molecules
during cell division is visible. Thus, in the R � 100 and R � 300 runs,
in the steady state, the protein number grows (on average) expo-
nentially over each cell cycle: n � N0e�t, where � � ln (2)�T. In
contrast, when the protein number is small (the R � 10,000 runs),
the thermal noise becomes important and dominates the stochastic
features of the time series. These aspects are clearly observed in our
experiments discussed later.

The protein distributions corresponding to the runs of Fig. 2 are
displayed in Fig. 3. The distributions are skewed and long-tailed for
smaller mean protein numbers and closer to Gaussian for the run
with the largest mean protein number. These distributions compare
well with the experimentally observed distributions also shown in
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Fig. 3. These were obtained by using flow cytometry of Escherichia
coli cells containing EGFP as the reporter for gene expression.
The cells were grown in a LB broth, and samples of 50,000 cells
were collected at various times, ranging from 2 to 15 h, after
inoculation (3).

Large N Regime. For the simulations shown in Figs. 2 (b–d) and 3
(ab–ad, the mean protein number is large enough for the thermal
noise to be negligible, but the cell partitioning noise is still impor-
tant. This noise results in a distribution of protein number at the
beginning of the cell cycle that is approximately Gaussian (see
Analytic Expression for the Protein Distribution in Supporting Text).
Therefore, to obtain an analytic expression for the protein distri-
bution in this regime, we can assume the following. (i) Over a cell
cycle, of duration T, the protein number grows exponentially, n �
N0e�t, with � � �T being a constant. (ii) Over the ensemble of runs,
N0 is distributed normally with mean N� 0 and standard deviation �.
(iii) Cells are not synchronized, so the observed distribution is an
average over the whole cell cycle. The distribution of N over one cell
cycle is then obtained by a continuous superposition of Gaussians:

P�N� �

Erf�Ne�� � N� 0

�2�
,

N � N� 0

�2�
�

�2��N
, [1]

where

Erf�A , B� �
2

��
�

A

B

e�x2dx .

The mean of the above expression is
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�

and the variance is

�N
2 � �2
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2�
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2�2 .

Therefore, for large N� 0 and fixed �, the standard deviation is
exactly proportional to the mean (see Analytic Expression for the
Protein Distribution in Supporting Text).

Eq. 1 gives an excellent fit to the protein distributions obtained
from the simulation as well as the experimental data of ref. 3 (see

Analytic Expression for the Protein Distribution in Supporting Text).
Note that, in the experiment, the cells do not have a fixed cell
division time. However, if the cell division time is changing suffi-
ciently slowly, it might be a reasonable approximation to assume
that, at any given point in the growth curve, the system, for a short
period, has a fixed cell division time. We have also done simulations
where the cell division time is variable, and these also show a
crossover from long-tailed to Gaussian protein distributions (see
Simulations with Variable Cell Division Time in Supporting Text). Fig.
3ae shows the nearly Gaussian protein distribution obtained after
13 h in a run with variable cell division time. Thus, we conclude that
in the regime of large protein numbers, the long-tailed nature of the
protein distribution arises from a superposition of Gaussian distri-
butions, each with a different mean and standard deviation. The
superposition, in turn, arises from the additive noise due to parti-
tioning of molecules during cell division combined with the expo-
nential growth of protein number over a cell cycle. Furthermore,
the standard deviation of this superposition is necessarily propor-
tional to the mean, for large protein numbers, which explains that
observation in the experimental data (3).

Small N Regime. When the protein numbers are small, the approx-
imation, that in each cell cycle the protein number grows exponen-
tially (n � N0e�t with � constant,) is not valid. In this regime,
fluctuations in � become important, resulting in multiplicative noise
in the protein numbers. If fluctuations in � are Gaussian, then it is
clear that this will result in a lognormal distribution of N because
ln(N) � ln(N0) � �t. A lognormal distribution, in fact, fits the tail
of the protein distribution in Fig. 3a well. Thus, in this regime one
also expects a long-tailed distribution.

Single-Cell-Tracking Experiments. We have carried out single-cell
gene expression tracking experiments to test the prediction of the
model that the partitioning noise dominates in the large N regime
and the fluctuations in the rate of gene expression dominate in the
small N regime. In Fig. 4, the dependence of the noise in the rate
of gene expression (�) and the cell division ( f) on mean gene
expression level is shown, where fcell division � Idaughter�Imother. As can
be clearly seen in the experiments, for small protein numbers, the
noise (standard deviation) in � is dominant, and for large protein
numbers, the noise in � and f are comparable (see Experimental
Tests of Gene Expression Noise Within Single Cells in Supporting
Text).

Phenomenological Analysis of Lognormal-to-Gaussian Crossover. Pro-
tein distributions from both experiments and variable cell division
time simulations show a crossover from long-tailed to Gaussian. We

Fig. 2. Protein number time series from four runs of a chemical model of
gene expression with a fixed cell division time, T, of 1,800 s, a gene copy
number, n, of 10, and total repressor numbers, R , of 10,000 (a), 2,500 (b), 300
(c), and 100 (d).

Fig. 1. Schematic diagram of the phenomena studied.

4772 � www.pnas.org�cgi�doi�10.1073�pnas.0406415102 Krishna et al.



can describe this crossover using a phenomenological approach that
does not commit itself to any particular model of the microscopic
processes. This approach is analogous to that used to describe a
similar crossover from long-tailed to Gaussian distributions of
conductance in one-dimensional wires (20). We model the protein
number distribution using a simple function, having one natural
scale parameter N0 in addition to � and �, which is lognormal in the
limit of small mean and Gaussian in the limit of large mean (see
Phenomenological Analysis of Lognormal-to-Gaussian Crossover of
Protein Distribution in Supporting Text). This function provides good
fits to the experimental data. The fits for samples at growth hours
5 and 15 are shown in Fig. 5a (fits for all intermediate times for
which data are available are shown in Phenomenological Analysis of
Lognormal-to-Gaussian Crossover of Protein Distribution in Support-
ing Text). With N0 fixed, all of the distributions can be fitted by
adjusting the two parameters � and �. Thus, N0 provides a
reference protein number: If the mean of the protein distribution
is much larger than N0, then the distribution will be Gaussian, else
it will be long-tailed. One way of normalizing for the different
phases is to divide the protein number (fluorescence) by the size of
the cell (forward scatter; see Experimental Tests of Gene Expression
Noise Within Single Cells in Supporting Text). However, because the

forward scatter is a nonlinear function of the cell phase, this
normalization only partially cancels the growth of protein number
during the cell-cycle and we still observe a long-tailed distribution,
albeit with a diminished tail (Fig. 5b). A phenomenological analysis
of these normalized distributions shows that the crossover from
lognormal to Gaussian in this normalized variable is similar to the
crossover for the unnormalized variable.

Implications of Long-Tailed Protein Distributions
Sensitivity of Long-Tailed Distribution to Switches. We now turn to
an analysis of the possible implications of the existence of long-
tailed protein distributions in cells. We conjecture that long-tailed
distributions might be more sensitive than Gaussians to cooperative
switches. To test this, we analyze the sensitivity of different distri-
butions to switches by looking at the effect of multiplying the
distributions by the response function of a switch: (Kh � ANh)�
(Kh � Nh), where h is the Hill coefficient, K is the threshold, A is
the amplitude, and N is the input [this functional form fits the
experimentally observed response of switches generated by using
competition between transcription factors (21)]. The effect of such
a multiplication is to shift the peak of the distribution, and the
relative shift of the peak is one measure of the sensitivity of
the system to the switch. Fig. 6a plots the sensitivity as a function
of the switch threshold for a long-tailed distribution (a lognormal
with a mean of 164.87 and a standard deviation of 216.12) and a
Gaussian distribution with the same mean and standard deviation,
keeping all other switch parameters the same (for more details, see
Sensitivity of Long-Tailed and Gaussian Distributions to Switches in
Supporting Text). Clearly, the long-tailed distribution can be much
more sensitive to the switch than the symmetric distributions.

Next, we examine the sensitivity for switches with different Hill
coefficients. Fig. 6b plots the relative shift of the peak for different
values of h, with all other parameters fixed, for the same lognormal
and Gaussian distributions. For any given value of Hill coefficient,
the sensitivity of the long-tailed distribution is larger than that of the
Gaussians. A similar analysis shows that the sensitivity is indepen-
dent of the switch amplitude, for sufficiently large values of
amplitude, and is 	10 times larger for the lognormal distribution
than for the Gaussian, for a switch with a Hill coefficient of 4 and
a threshold of 1,500 (see Sensitivity of Long-Tailed and Gaussian
Distributions to Switches in Supporting Text).

This analysis suggests that long-tailed distributions can be more

Fig. 3. Protein number distributions for the four runs shown in Fig. 2 and
after 13 h in simulations with variable cell division time (ae), and experimen-
tally observed protein distributions (bf–bi).

Fig. 4. Dependence of noise in the rate of gene expression (�) and the noise
in cell division ( f) on mean gene expression level. fcell division � Idaughter�Imother.
Inset shows a typical fluorescence time trace of a single cell through three cell
divisions. (Upper) Snapshots of a bacterial colony at different time points, t �
46, 107, 137, 159, 169, 181, and 212 min (left to right).
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sensitive than Gaussians to switches. Furthermore, the sensitivity of
the gene circuit to the switch could be adjusted through evolution
by modifying the width and shape of the tail of the distribution,

which in turn can be done, in this case, simply by regulating the
mean protein number.

Long-Tailed Distributions and Autoregulation. The combination of a
cooperative switch with long-tailed distributions could provide a
convenient mechanism for selecting a set of cells from a large
population. For instance, if there exists a switch that sharply
increases the rate of expression of the given gene at some threshold
value of the concentration of its protein product, then cells that are
in the long tail will be selected, resulting in a shifting of the peak of
the distribution. Fig. 7a shows a long-tailed distribution, obtained
from a simulation run, superimposed with the response functions of
cooperative switches with a Hill coefficient of 4, a threshold of
1,500, and different amplitudes. When the simulation is repeated
with the A � 10 switch added to the model, the bimodal protein
distribution of Fig. 7b results. When the amplitude of the switch is
increased to A � 100, the peak corresponding to the original
population vanishes and the resultant distribution is a single peak
centered at a much higher value of protein number (Fig. 7c). The
switch is added to the model by multiplying the concentration of
RNA polymerase by the response function. Thus, as the protein
number, N, increases, the transcription rate also increases. This
positive feedback makes the system bistable and the protein dis-
tribution bimodal in certain parameter regimes (see Bistability due
to Positive Feedback via a Switch in Supporting Text). We believe a
mechanism of this sort explains the bimodal distributions presented
in Fig. 7 d–f and in ref. 3 for an autoregulatory gene circuit. In that
circuit, such a positive feedback might exist because of the strong
nonspecific binding of the GFP-lacI fusion protein to DNA. When
present in large numbers, its binding to nonspecific DNA sites could
release the RNA polymerases bound at those sites, effectively
increasing the number of polymerases available for transcription.
We have also done simulations of such a system, where we added
the following reactions: the folded protein can tetramerize; these
tetramers bind strongly to nonspecific sites on the DNA; and RNA
polymerases dissociate, resulting in an increase in the gene expres-
sion rate. In these simulations, there was no cooperative switch
explicitly involved, but the tetramer binding to nonspecific DNA
sites acts as a switch of Hill coefficient 4, and a progression from
unimodal to bimodal and back to unimodal distributions is ob-

Fig. 5. Distributions of fluorescence (a) and fluorescence normalized by the corresponding forward scatter signal (FSC) (b) for the 5th-hour (black circles) and
15th-hour (gray circles) samples. The 5th-hour distributions in both figures have been scaled down on the y axis and scaled up on the x axis for visual clarity. Black
lines show the fit of the crossover function described in Phenomenological Analysis of Lognormal-to-Gaussian Crossover of Protein Distribution in Supporting
Text to the distributions. Fits were obtained by using a nonlinear Levenberg–Marquardt least-squares fitting algorithm. Best fit parameters were as follows. In
a, � � �1.145 and � � 0.551 for the 5th hour, and � � 1.586 and � � 0.649 for the 15th hour, with N0 � 1,500 kept fixed. In b, � � �0.445 and � � 0.477 for
the 5th hour, and � � 4.505 and � � 0.994 for the 15th hour, with N0 � 100 kept fixed.

Fig. 6. The sensitivity of long-tailed (lognormal) and Gaussian distributions
to a switch, measured by the relative shift in the peak of the distribution when
it is multiplied by the response function of the switch. The sensitivity is plotted
as a function of threshold (a) and Hill (b) coefficient of the switch for two
distributions: solid line, lognormal distribution with mean 100e � 164.87 and
standard deviation 100
e(e � 1) � 216.12; dashed line, Gaussian with the
same mean and standard deviation. Nonvaried switch parameters have the
following values: h � 4, K � 1,500, and A � 1,000.

4774 � www.pnas.org�cgi�doi�10.1073�pnas.0406415102 Krishna et al.



served (see Bistability due to Positive Feedback via a Switch in
Supporting Text). Bistability due to a switch added in a positive
feedback loop has been observed in a number of systems, ranging
from bacteriophages (22) to prokaryotes (23) to eukaryotes (24).
Reviews of the requirements for constructing stable bistable
switches can be found in refs. 25 and 26.

The Effect of DNA Looping. Regulation of transcription initiation by
an operator site that is several hundred base pairs upstream of the
promoter is common in eukaryotic systems (27). It has been
suggested that this scheme of regulation, with DNA looping, can
achieve repression levels far higher than regulation with a single
operator site near the promoter (28). We have extended our
stochastic simulations to include reaction schemes with DNA
looping using an effective increase in the local concentration of the
repressor molecule that is bound to the far upstream operator site
(29) (see DNA Looping in Supporting Text). In these simulations, we
find that the repression level is indeed enhanced, resulting in a much
lower mean protein number for the same number of repressors, if
the upstream site is sufficiently far from the main operator site.
Comparing protein distributions with and without looping, having
the same mean protein number, we find that looping results in a
longer tailed protein distribution (see DNA Looping in Supporting
Text).

We have found that combining DNA looping with a switch also
results in sensitive selection of subpopulations of cells with higher
protein concentrations. Because of the longer tails, the region of
bimodality is much smaller for regulation with DNA looping as
compared with operator regulation (see Bistability due to Positive
Feedback via a Switch in Supporting Text). Thus, it is conceivable
that different mechanisms for regulating transcription initiation,
such as enhancer looping, might have been selected in various
organisms for the kind of sensitivity they show in response to
switches.

Bicoid and Hunchback in Early-Stage Drosophila Embryos. Switches
with sharp thresholds are known to play an important role in
embryogenesis. In early-stage Drosophila embryos, the maternal

morphogen bicoid acts as a switch that causes the hunchback gene
to express in regions of the embryo where the bicoid concentration
is above a critical threshold (30, 31). We have examined the
expression of hunchback in a Drosophila embryo at cycle 14, taken
from the FlyEx database (http:��urchin.spbcas.ru�flyex). The da-
tabase provides fluorescence images of the embryo showing the
amounts of bicoid, hunchback, and other proteins in different parts
of the embryo, as well as quantitative data of average fluorescence
intensities for each protein, for each nucleus seen in the images (32,
33). We have used the quantitative data from the database to
construct the histogram of hunchback concentration in the anterior
portion of each embryo (see Bicoid and Hunchback in Early-Stage
Drosophila Embryos in Supporting Text). Fig. 8 shows the histogram
obtained for the embryo named hx21. Note that this histogram has

Fig. 7. Response of protein distributions to regulatory switches. (a) Long-tailed protein distribution from a simulation run, superimposed with the response
functions of a switch with a Hill coefficient of 4, a threshold of 1,500, and amplitudes of 10 and 100, respectively (for clarity of display the functions have been
scaled by a factor of 2 � 10�5). (b) The modified protein distribution when the switch with A � 10 is added to the model (note the change in y scale). (c) The
modified protein distribution when the switch with A � 100 is added to the model (note the change in y scale). (d and e) Fluorescence image of a cell under
autoregulation at two different time points. d shows a uniform distribution of fluorescence, whereas e shows the same cell having bright spots at different places
besides a uniform haze. ( f) Scatter plot of fluorescence signal (FL) vs. side scatter (SSC) showing emergence of bimodality in the fluorescence distribution at 3.5 h,
from a unimodal distribution at 2.5 h. The SSC distribution remains unimodal throughout.

Fig. 8. Light gray bars, histogram of hunchback fluorescence for anterior
portion of embryo hx21 from the FlyEx database. Only the 1,606 nuclei with
anterior–posterior coordinate between 10% and 70% of the egg length have
been considered to create this histogram. Filled circles, an estimate of the
response function of the bicoid switch. Each data point shows the mean
hunchback fluorescence for nuclei in the corresponding bin (width of five
counts) of bicoid fluorescence. Error bars are one standard deviation.
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been constructed from nuclei at various locations in the embryo
and, hence, does not contain any spatial information. Also super-
posed on the figure is an estimate of the response function of the
bicoid switch. We suggest that a long-tailed distribution of hunch-
back could be modified by the bicoid switch to produce the bimodal
distribution of Fig. 8 in exactly the same way that the distribution
of Fig. 7a is modified by the switch to produce the bimodal
distribution of Fig. 7b.

Conclusions
At the microscopic level, long-tailed distributions can occur in,
broadly, two ways. One is if the microscopic processes are inherently
non-Gaussian; for instance, if there is multiplicative noise in the
system, or if the mean numbers are small and there is a lower cutoff.
This is the case for the long-tailed distributions of conductance
observed in one-dimensional wires, where it is a consequence of the
localization of electrons due to disorder. A second way in which
long-tailed distributions are produced (for instance, in relaxation
spectra of glasses) is by a superposition of Gaussian distributions,
each having slightly different means and variances.

Both these ways are observed in our chemical model of gene
expression. We have observed two regimes: one having very small
protein numbers and lognormal protein distributions that are
primarily shaped by the thermal noise, and the other having larger
protein numbers and protein distributions that are primarily shaped
by the partitioning noise in cell division. In this regime our analysis
indicates that the protein distribution is a superposition of Gauss-
ians. Such a superposition can reproduce both the long-tailed
distributions seen at early times in the growth curve of the bacterial
population as well as the crossover to more symmetric distributions
at later times.

Thus, the results of our detailed simulations of gene expression
indicate that long-tailed protein distributions are a robust outcome
of the constituent chemical processes, in combination with the
different sources of noise that affect a cell. An interesting result of
our simulations is that there exists a regime where the partitioning
noise due to cell division dominates over the thermal noise. Many
of the features seen in the simulation are validated by the single-cell
experiment presented here.

Because long-tailed distributions are likely to occur, it is probable
that cells would evolve to exploit this feature where beneficial and
suppress it where harmful. We suggest that one way in which
long-tailed distributions could be exploited is by combining them
with cooperative switches. A simple, analytically tractable way of
combining switches with protein distributions of different shapes
reveals that long-tailed distributions are more sensitive than com-
parable Gaussian distributions. Thus, where sensitivity is useful, the
cell might evolve to have a long-tailed distribution, and where a less

sensitive response is required, the cell might evolve to have a
Gaussian protein distribution.

A more realistic way in which such switches could act on proteins
is via a feedback mechanism that increases or decreases the level of
expression of the corresponding gene. We have shown that when
long-tailed distributions are combined with switches by using a
positive feedback loop, this can make the system bistable and result
in bimodal protein distributions. As discussed earlier in this article,
such bimodal distributions are seen in engineered gene circuits
which couple a switch to a GFP gene (16) as well as in an
autoregulatory system (3). In ref. 23, there is a discussion of another
engineered autoregulatory system with positive feedback that ex-
hibits bimodal protein distributions. This mechanism also provides
a way to increase the phenotypic diversity of a population of cells.
This is of relevance in early embryogenesis, where producing
phenotypic diversity is crucial for subsequent developmental pro-
cesses, and could explain the observed bimodal distribution of
hunchback in early-stage Drosophila embryos. In this context,
morphogens could perform the role of the cooperative switches; a
morphogen gradient would be a convenient way of exposing cells
at different spatial locations to switches with different thresholds or
amplitudes.

There are parameter regimes where a switch incorporated via
positive feedback does not produce bimodality. In these regimes,
the effect is rather to shift the peak of the distribution, thus selecting
a subpopulation of cells from the original population. This might be
relevant for later stages of embryogenesis, where it becomes
necessary for the system to move from producing more phenotypic
diversity to selecting specific cells that will trigger further develop-
mental processes. Examples of such selection are well known from
studies of neurogenesis, where the Notch signal plays the role of the
selective switch. These observations suggest that cells might tune
protein distributions to either be sensitive or robust to switches
depending on the context and requirements of the cell.

Genome-scale microarray experiments have revealed that the
overall distribution of gene expression, taking all of the genes into
account, is also long-tailed (34). This overall distribution is a
superposition of a number of distributions, with widely varying
means, variances, and skews. Switches could act at this larger scale
also to select out the portions of the tail of the overall distribution.
In contrast to acting on individual genes, a switch acting on this scale
would be selecting modules of interconnected genes that are present
in the tail of the overall distribution. Thus, we can conjecture that
the sensitivity of long-tailed distributions to switches is also ex-
ploited at genome-wide scales.

We thank G. Ananthakrishna, A. Sarin, and K. VijayaRaghavan for
helpful discussions.
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