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ABSTRACT
The currently available drugs to treat hepatitis B virus (HBV) infection include interferons and nucleos
(t)ide analogs, which can only induce disease remission and are inefficient for the functional cure of
patients with chronic HBV infection (CHB). Since high titers of circulating hepatitis B surface antigen
(HBsAg) may be essential to exhaust the host anti-HBV immune response and they cannot be
significantly reduced by current drugs, new antiviral strategies aiming to suppress serum hepatitis B
surface antigen (HBsAg) could help restore virus-specific immune responses and promote the
eradication of the virus. As an alternative strategy, immunotherapy with HBsAg-specific antibodies has
shown some direct HBsAg suppression effects in several preclinical and clinical trial studies. However,
most described previously HBsAg-specific antibodies only had very short-term HBsAg suppression
effects in CHB patients and animal models mimicking persistent HBV infection. More-potent
antibodies with long-lasting HBsAg clearance effects are required for the development of the clinical
application of antibody-mediated immunotherapy for CHB treatment. Our recent study described a
novel mAb E6F6 that targets a unique epitope on HBsAg. It could durably suppress the levels of
HBsAg and HBV DNA via Fcg receptor-dependent phagocytosis in vivo. In this commentary, we
summarize the current research progress, including the therapeutic roles and mechanisms of
antibody-mediated HBV clearance as well as the epitope-determined therapeutic potency of the
antibody. These insights may provide some clues and guidance to facilitate the development of
therapeutic antibodies against persistent viral infection.
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Introduction

Chronic hepatitis B virus (HBV) infection is a major global
public health issue. It is estimated that there are approximately
248 million individuals worldwide that are persistently infected
with HBV.1 Chronic HBV infection (CHB) can cause chronic
hepatitis and places patients at high risk of death from liver cir-
rhosis (LC) and hepatocellular carcinoma (HCC). Approxi-
mately 25 to 30% of people who acquire HBV as children will
develop LC and/or HCC as adults. Worldwide, approximately
78,000 people die each year because of the acute or chronic
consequences of HBV infection.1,2

The successful development of preventive hepatitis B
vaccines have effectively reduced new cases of HBV infection
globally.3 However, there are still millions people with CHB
that need an effective anti-HBV therapy to prevent the compli-
cations of the disease.4 Interferons (IFNs) and nucleos(t)ide
analogs (NAs) have been approved for treatment of CHB alone
or in combination therapies. Despite the fact that these drugs
have demonstrated clinical benefits for CHB patients, the virus
is difficult to eliminate by current available therapeutics. A
favorable clinical treatment outcome is the loss of serum hepati-
tis B surface antigen (HBsAg), which allows therapy to be dis-
continued and is associated with a significantly reduced risk of
developing LC and HCC. Unfortunately, based on the long-

term follow-up of patients, current treatments achieve HBsAg
clearance only in a small fraction (< 10%) of patients.5-10 This
issue with CHB can be attributed to 2 major reasons. First, the
virological key is the persistence of the intracellular HBV repli-
cation intermediate, covalently closed circular (ccc) DNA,
which resides in HBV-infected cells and cannot be suppressed
by current treatments.11-13 Second, the immunological key is
the exhausted host anti-HBV immune response, included the
functional exhaustion of either cellular or humoral antiviral
immunity.14-16 Therefore, there are 2 major approaches in the
current research aiming to develop novel anti-HBV therapeutic
strategies. Several efforts have been made to develop cccDNA
targeting antiviral strategies, but progress is still limited because
of the absence of desirable experimental models and an inade-
quate understanding of the mechanisms of maintenance and
regulation of cccDNA.17,18 On the other hand, immune restora-
tion is likely indispensable for off-treatment virus control, even
if ways to suppress cccDNA are found. A high-titer of serum
HBsAg is considered the most important factor responsible for
HBV immunotolerance in CHB patients.14,15,19,20 The reduction
of serum HBsAg may allow the immune system to tame viral
infection and promote host immune restoration. Unfortunately,
neither IFNs nor NAs can induce a HBsAg reduction efficiently.
New therapeutic agents and innovative treatment strategies that
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can effectively remove HBsAg are needed to improve the clini-
cal management of this disease.

Antibody-based immunotherapy is widely used to treat
cancer, autoimmune diseases and inflammation. For viral infec-
tious diseases, polyclonal antibodies of hyperimmune human
IgG preparations are used for the prevention and treatment of
acute infections of rabies, vaccinia, varicella-zoster virus
(VZV), influenza viruses and HBV. A humanized monoclonal
antibody (mAb) against respiratory syncytial virus (RSV,
Palivizumab) is used to prevent RSV infection.21 Generally, the
neutralizing antibodies can block the steps viruses take to enter
into cells by several different mechanisms, thus playing a pre-
ventive role in viral infection diseases, but they are mostly
impotent for established viral infections, particularly for treat-
ing persistent viral infections. The therapeutic role of antibod-
ies for persistent viral infections has lacked understanding until
recently. This is especially true for HIV, which has dominated
most of the reports dedicated to broadly neutralizing monoclo-
nal antibodies (mAbs) during the past 5 y. Several studies have
reported that certain unusual neutralizing antibodies could be
used therapeutically to treat established simian immunodefi-
ciency virus (SIV) infections. This virus has the same envelope
proteins as the human immunodeficiency virus type 1 (HIV-1).
Some potent broadly neutralizing antibodies (bnAbs) against
HIV can suppress plasma virus titer over a 3-log change in
SHIV-infected rhesus monkeys.22,23 The latest research in clini-
cal trials further demonstrated that the in vivo administration
of such bnAbs had potent anti-viral activity in HIV-infected
human individuals, which supported the idea that antibody-
mediated immunotherapy might be useful for the clinical treat-
ment of HIV-1 infection.24-26 These findings underline the
therapeutic potential of antibody-based immunotherapy in the
fight against persistent viral infections. Similar to HIV, the hep-
atitis B virus (HBV) causes chronic, even life-long infection.
The 2 viruses share several characteristics: they both replicate
via reverse-transcription-dependent replication, both viral
genomes can integrate into the host genome, they both cause
serious public health problems and both require more effective
drugs. The early explorations of monoclonal (mAb)-based
treatments of chronically HBV-infected humans and animals
only demonstrated transient viremia suppression effects that
were very similar to the effects of treatments based on hepatitis
B immune globulin (HBIG), which is prepared from the plasma
of donors who have high counts of HBsAg antibodies.27,28

More potent antibodies, particularly those that have more pro-
longed viral suppression effects, are essentially required for the
further development of antibody-based immunotherapy strate-
gies for chronic HBV infection.

Epitope-dependent therapeutic effects of anti-HBsAg mAbs

There are several accessible epitopes on HBV large, middle and
small surface proteins that have been identified, including but
not limited to those shown in Fig. 1A. One famous epitope has
only been presented on the HBV large surface protein sur-
rounding the aa21-aa47 of preS1 region. MAbs specific to this
epitope, such as MA18/7, 4D11 and 7H11,29,30 usually have
potent neutralization activities because this epitope is located
in the HBV cellular receptor (NTCP) binding site (RBD).31,32

The mAbs recognizing aa33-aa52 of the preS2 region, which is
located at the translocation motif (TLM) of the middle and
large surface proteins, were found to have HBV genotype-
specific binding activity.33-35 For the small HBsAg, at least 3
epitope clusters on the viral particle surface were noted in pre-
vious studies (Fig. 1A and B).36,37 The majority of small
HBsAg-specific antibodies raised by vaccination or natural
infection recovery recognize the conformation-dependent “a”
determinant located within the first loop containing
aa124-aa137 and the second loop comprising aa139-aa147.38

High-affinity mAbs to “a” determinant (sB mAbs) generally
exhibited potent neutralization activities similar to that of
mAbs for preS1 RBD because the “a” antigenic loop is responsi-
ble for the initial interaction between the virus and cell surface
heparin sulfate proteoglycans.39-42 There are 2 independent lin-
ear epitopes located in the surface-exposed antigenic loop in
the major hydrophilic region (MHR), which surrounds the “a”
determinant region.37 The first one contains aa119-aa125
within the N-terminus of the first loop, which includes a CXXC
motif.43 It is usually found in protein-disulfide isomerase-
related proteins and is evolutionarily and cross-genotype
conserved.41,44 The binding activities of mAbs to this epitope
(sA mAbs) are highly tolerant to common immune-escape
HBV mutants, such as G145R, K141E and D144A.36 The sec-
ond one contains aa139-aa147 within the second loop. The
binding of mAbs to this epitope (sE mAbs) are highly sensitive
to immune-escape HBV mutants, similar to those of “a” deter-
minant mAbs.36,37 According to previous studies, it is possible
that the antibodies in HBIG predominantly recognize the con-
formational “a” determinant and/or second loop epitope.36,40,45

Most mAbs against the abovementioned HBV surface-
exposed epitopes could neutralize HBV infection in vitro to
various degrees.41 However, their therapeutic uses still need to
evaluated in vivo. Our recent study investigated the therapeutic
efficacy of mAbs against various epitopes in HBV transgenic
(HBV-Tg) mice.41 The HBV-Tg mice we used for the study
had a terminally redundant 1.3-fold HBV genome insertion
that produces viral particles HBsAg and HBeAg at high levels
comparable to those of patients with chronic HBV infection.46

Although the HBV particles produced by HBV-Tg mice do not
enter murine hepatocytes, HBV-Tg mice are a suitable model
for evaluating anti-HBV antibody-mediated viral clearance.
Our results demonstrated that the anti-HBV therapeutic effi-
cacy of the mAb is highly dependent on its binding epitope,
and the efficacy does not predominantly correlate with the
mAb’s binding activity or in vitro neutralizing capability. The
mAbs specific to aa119-aa125 within the N-terminal of the first
loop (sA mAbs) exhibited more striking therapeutic effects
than those that recognize other epitopes. Interestingly, although
the mAbs to the preS1 RBD region have very potent in vitro
HBV-neutralizing capability, little or no viral suppression,
either at the HBsAg level or with the virus titer (HBV DNA),
was observed in mice that received these mAbs. The mAbs rec-
ognizing the “a” determinant and/or second loop had signifi-
cant suppression effects to HBsAg and HBV DNA, but their
effects were more transient than those of sA mAbs. This finding
was consistent with the observations found in previous clinical
trials where patients with chronic HBV infection were treated
with mAbs against “a” determinant and/or second loop. One of
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the sA mAbs (E6F6) that completely differs from other mAbs
and exhibits striking therapeutic effects in multiple HBV
murine models without significant side effects. We demon-
strated that a single infusion of E6F6 dramatically suppressed
the levels of HBsAg and HBV DNA over 3.0 log-change for sev-
eral weeks in HBV mice. These results suggested that the bind-
ing epitope differences may significantly impact the in vivo
viral clearance potency of mAbs, thereby underlining the
importance of mAb epitope characterization and clustering in
the selection and in vivo evaluation of antiviral therapeutic
antibodies.47

Therapeutic effects and mechanisms of E6F6 mAb

Theoretically, the in vivo administration of virus-specific anti-
bodies has multiple therapeutic functions. Neutralizing anti-
bodies that bind to and inactivate viral envelope proteins block
virus entry and therefore prevent the spread of infection.21

Moreover, some antibodies might have intrinsic effector func-
tions that facilitate the direct clearance of circulatory viruses,
viral antigens or virus-producing cells via antibody-dependent
cell-mediated cytotoxicity (ADCC), complement lysis (CDC)
or phagocytosis (ADCP). In addition, antibody-virus com-
plexes bind to Fc receptors that are expressed by immune effec-
tor cells that can trigger a multitude of innate and adaptive
responses against viruses.48,49 In HBV-Tg mice, a neutralization

effect could not be observed because mouse hepatocytes do not
support HBV infection. Thus, the HBV suppression effects of
E6F6 in HBV-Tg mice should be derived from antibody-depen-
dent viral clearance. In our results, no significant ALT elevation
or evidence of histological hepatitis was observed, suggesting
that the ADCC and CDC may not be involved in E6F6-
mediated HBV suppression. Further experiments in different
mouse strains, including nude, SCID, Rag2¡/¡ and NOD-SCID
as well as complement-depleted HBV mice, confirmed that the
direct antiviral effects of E6F6 were independent of ADCC and
CDC. However, phagocyte depletion via λ-Carrageenan signifi-
cantly reduced the HBV suppression effects of E6F6. Notably,
compared with mice treated with isotype-control mAb, both
intracellular E6F6 and HBV (immune-complex) were signifi-
cantly increased in liver Kupffer cells, neutrophils and
phagocytes in peripheral blood lymphocytes. Moreover, the
abolishment of the interaction between the E6F6 Fc region and
the mouse Fcg receptor via mAb Fc mutations disabled the
HBV suppression effects of E6F6 in HBV-Tg mice. These
results demonstrate that E6F6 mediates the highly efficient viral
immunoclearance via Fcg receptor-dependent phagocytosis.
Consistent with these observations, recent studies on HIV-1
therapeutic antibodies also revealed that the Fc-FcgR interac-
tions are essentially required to achieve full therapeutic activity
through the clearance of IgG-opsonized virions and the elimi-
nation of HIV-infected cells.48,50 Taken together, we propose

Figure 1. The epitopes and domain characterizations of HBV surface proteins. (A) A schematic diagram depicting the binding sequences of mAbs targeting the HBV
surface proteins. (B) The epitope localization of the mAbs targeting HBV small surface protein (HBsAg). TLM D Translocation motif; RBD D receptor binding domain;
MHR D major hydrophilic region.
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that Fc-FcgR interactions play a key role in antibody-mediated
viral clearance (Fig. 2). Therefore, the enhancement of the
FcgR-mediated effector functions through the augmented
activation of the FcgR-mediated pathways via mAb Fc
modifications may lead to antiviral therapeutic antibodies with
improved in vivo efficacy.

In addition to the potent immune-clearance effects of E6F6 in
HBV-Tg mice, we further demonstrated the immune-modulation
effects of this mAb. When a hydrodynamic injection HBV mouse
model was used to mimic the adaptive tolerance phase of chronic
HBV infection in immmuno-competent mice, successive infu-
sions of E6F6 lead to a sustained HBsAg reduction and to an
increased number of HBcAg-specific interferon-g-secreting
T-cells and HBsAg-specific and HBcAg-specific CD8CT-cells,
suggesting that E6F6 treatment facilitated the restoration of the
anti-HBV T-cell response. Given that FcgR-mediated immune-
clearance has multiple effector functions on several aspects of
adaptive immune response, including stimulation of antigen
processing and presentation, the modulation of antigen-present-
ing cell function, and regulation of T-and B-cell responses
(Fig. 2), the passive administration of antiviral mAbs with potent
viral clearance effects should also stimulate host antiviral immu-
nity, therefore providing the opportunity for the induction of
long-term humoral and cellular immune responses.

Although the neutralization activity of E6F6 does not play a
predominant role in the treatment of established HBV infec-
tion, its significance may be apparent in patients whose viral
load had been greatly reduced by pretreatment of E6F6 or other
antiviral drugs. Using human-liver chimeric FRG mice, which
support robust in vivo HBV infection,51 we demonstrated that
regimens of E6F6 efficiently blocked initial HBV infection and
viral spreading from infected hepatocytes. This effect of E6F6 is
possibly attributed to both its potent viral clearance capacity
and its inhibitory activity for viral entry, and it may play an

important role in the prevention of HBV reactivation, thereby
facilitating sustained HBV suppression. In summary, E6F6 can
suppress HBV via 3 different modes: i) conducting highly effi-
cient viral immune-clearance through Fcg receptor-dependent
phagocytosis, ii) stimulating the restoration of the anti-
HBV T-cell response, and iii) blocking the viral entry and prop-
agation of HBV in the liver (Fig. 2).

Challenges and future perspective

There are some unresolved mechanisms that need to be
addressed concerning the therapeutic roles of E6F6. Further
investigations may focus on investigating the molecular mecha-
nism and structural basis of how and why binding epitope differ-
ences impact the in vivo viral clearance potency. Our preliminary
data revealed a unique characteristic for immune complexes
(ICs) of E6F6-like mAbs and HBV viral particles that is
completely different from mAbs targeting other epitopes. Exami-
nations of the mAb-viral particle ICs using electron microscopy
and low-speed centrifugation demonstrated that the E6F6-like
mAbs only form smaller antibody–viral particle ICs and do not
induce any viral particle aggregation, whereas mAbs to other
epitopes profoundly induce viral particle aggregation. Our recent
cryo-electron microscopy (cryo-EM) reconstruction analyses of
the E6F6 Fab fragment in complexes with spherical HBsAg par-
ticles suggested that the 2 E6F6 arms might directly target 2 adja-
cent HBsAg monomers on a single HBsAg octahedron particle
with limited inter-particle crosslinking, thereby preventing the
formation of large antibody–viral particle ICs (unpublished
data). As previous reports suggested that the size of antibody-
opsonized particles strongly affects their phagocytotic efficacy, it
is reasonable to speculate that macrophages phagocytose smaller
ICs more efficiently than larger ones because the cell membrane
takes more time to enclose larger particles than small

Figure 2. A graphic summary of the therapeutic roles and mechanisms of antibody-mediated immunotherapy for HBV infection.
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particles.52-54 If further experimental evidence validates and sup-
ports this hypothesis, perhaps the size of antibody–viral particle
ICs and the in vitro opsonophagocytotic efficacy would be con-
sidered new important parameters in addition to binding affinity
and neutralization capabilities for the selection of mAbs with
therapeutic potential in the future.

Although we provided a systematic in vivo evaluation of
the data supporting the therapeutic potential of E6F6 for
chronic HBV infection, all results were derived from murine
models. Thus far, the therapeutic effects and possible safety
concerns in human beings with chronic HBV infection
are largely unknown. Moreover, the appearance of escape
mutants during mAb treatment has been observed in clini-
cal trials of anti-HIV therapeutic antibodies, suggesting the
same possible issue for anti-HBV therapeutic antibodies.25

The E6F6 binding epitope (GPCK(/R)TCT) is considered
one of the most important motifs required for the infectiv-
ity of HBV in previous in vitro studies.39 However, the
emerging risk of escape mutants should be further evaluated
in human-liver chimeric mice, particularly in long-term and
multiple-dose treatment procedures. In addition to E6F6,
other potent targets (epitopes) and mAbs are required to be
explored for the development of a cocktail of anti-HBV
antibodies if E6F6-resistant HBV mutants emerged.
Although there are several challenges that need to be over-
come before the final clinical applications of this antibody
and other mAbs with similar potency, the development and
use of antibody-mediated immunotherapy in patients with
chronic HBV infection are certainly expected.
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