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Abstract

Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterized by facial, oral 

and digital abnormalities associated with a wide range of additional features (polycystic kidney 

disease, cerebral malformations and several others) to delineate a growing list of OFD subtypes. 

The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding 

a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other 

ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort 

has been greatly helped by the recent development of whole exome sequencing (WES). Here, we 

present all our published and unpublished results for WES in 24 OFDS cases. We identified causal 

variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753, IFT57) and related the clinical 

spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231, WDPCP) to 

OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional 

studies revealed the involvement of centriole elongation, transition zone and intraflagellar 

transport defects in OFDS, thus characterizing three ciliary protein modules: the complex 

KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the MKS module, a major 

component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. 

OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes 

the initial classification obsolete. A clinical classification restricted to the three frequent/well-

delineated subtypes could be proposed, and for patients who do not fit one of these 3 main 

subtypes, a further classification could be based on the genotype.
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INTRODUCTION

Oral-facial-digital (OFD) syndromes are rare genetic disorders characterized by the 

association of abnormalities of the face (hypertelorism, low-set ears), oral cavity (lingual 

hamartoma, abnormal frenulae, lobulated tongue) and extremities (brachydactyly, 

polydactyly). OFD syndromes also comprise a broad range of additional features that 

initially led to the clinical delineation of 13 OFD subtypes with mainly OFDI (polycystic 

kidney disease, corpus callosum agenesis), OFDIV (tibial dysplasia), OFDVI (mesoaxial 

polydactyly, vermis hypoplasia, molar tooth sign) and OFDIX (retinopathy) (1,2). More 

recently, a new subtype has been described associated with microcephaly wich has designed 

OFDXIV by OMIM [MIM 615948]. However, the precise phenotypic description revealed 

new unclassified OFD subtypes, in particular with severe microcephaly (3–6). Classically, 

the inheritance pattern is autosomal recessive except for OFDI, which has dominant X-

linked inheritance and is lethal in males. Until recently, the molecular bases of OFD 

syndromes were poorly known. A few years ago, the OFD1 gene [MIM 300170] was 

initially described as causing the OFDI subtype (7). OFD1 encodes a protein located in the 

centrosome and basal body of primary cilia, suggesting that OFD syndromes are 

ciliopathies.

Ciliopathies are human diseases defined by ciliary structural and/or functional defects. Cilia, 

microtubule-based organelles projecting from the cytoplasmic membrane of the cell body, 

are divided into motile and non-motile or primary cilia. The primary cilia appear to be 

essential in several biological processes especially during development (8) and serve a broad 

range of specific sensory processes using receptors and ion channels to sense photo, chemo 

and mechanical stimuli and allow the transduction of signalling pathways. Four structural 

compartments have been described: (1) the centrosome, composed of two centrioles (mother 

and daughter) and pericentriolar material, including the mature mother centriole, which 

converts to the basal body that orients and positions the cilium (9); (2) the basal body 

formed where the centrosome, a microtubule organizing centre, migrates to the cell surface 

to initiate cilium assembly; (3) the transition zone, located at the distal end of basal body and 

composed of Y-links connecting microtubules to the ciliary membrane and ciliary necklace; 

and (4) the transition fibres, that forms the ciliary gate and constitutes a diffusion barrier to 

regulate cytoplasmic protein entry into the ciliary compartment (10,11). The microtubules 

extend distally from the basal body to form the axoneme, where receptors localize on the 

apex and the ciliary membrane, a lipid bilayer distinct from the plasma membrane, and 

surround the cilium. Proteins are transported along the axoneme to permit ciliary growth, 

maintenance and function. This essential intraflagellar transport is composed of two 

modules: IFT-A for retrograde transport and IFT-B for anterograde transport, which 

distribute ciliary molecules to the different ciliary compartments (12).

Ciliopathies present a broad range of features (retinopathy, cerebral malformations, bone 

defects, deafness or renal disease …); they are thus highly genetically heterogeneous 

diseases, and include nephronophthisis (NPHP), Joubert (JBS), Meckel-Gruber (MKS), 

Bardet-Biedl (BBS) syndromes and different chondrodysplasias. Multiple allelism has been 

described, suggesting that human ciliopathies are genetically complex (13). More recently, 

mutations in six additional genes that encode ciliary proteins have been identified in one or 
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two patients with OFDS: centrosomal proteins implicated in centriole elongation (NEK1 
[MIM 604588], SCLT1 [MIM 611399] and TBC1D32/C6orf170 [MIM 615867]), proteins 

located in the transition zone (TMEM216 [MIM 613277] and TCTN3 [MIM 613847]) and a 

protein that regulates ciliary signalling (DDX59 [MIM 615464]). Each known gene appears 

to be implicated in a classified OFD subtype: OFD1 in OFDI [MIM 311200] with polycystic 

kidney disease and corpus callosum agenesis, TCTN3 in OFDIV [MIM 258860] with tibial 

defect, DDX59 in OFDV [MIM 174300], TMEM216 in OFDVI [MIM 277170] 

characterized by cerebellar hypoplasia with the molar tooth sign, SCTL1 and TBC1D32/
C6orf170 in OFDIX [MIM 258865] with coloboma (7,14–22).

Using a strategy of whole exome sequencing, we identified five new causal genes in OFD 

syndromes and showed the implication of four additional genes previously reported in other 

ciliopathies, as well as their different ciliary functions. In this unique cohort, all novel genes 

have been published independently. This paper presents an overview of the whole series and 

discusses the classification of this group with the advance of molecular delineation.

PATIENTS AND METHODS

Patient cohort

We gathered an international cohort of 115 index cases affected with different OFD 

syndromes. In all cases with a typical OFD I phenotype, we looked for OFD1 SNV or CNV 

by Sanger sequencing and targeted array-CGH, respectively (23,24). Causal OFD1 SNV or 

CNV were identified in 59/115 cases. Among the 56 other index cases with atypical clinical 

features or negative OFD1 sequencing (Figure 1 and Table S1), we performed whole exome 

sequencing (WES) in 24 index cases, including 17 sporadic cases and 7 cases from 

consanguineous parents. WES was limited to 24 cases because of the quality and quantity of 

patients’ DNA and the availability of parental DNA. All of the patients presented oral 

abnormalities (lingual hamartoma, abnormal frenulae or lobulated tongue), facial 

dysmorphism and extremity abnormalities (mainly polydactyly), associated with cerebral 

malformations (12/14 cases), retinopathy (3/16 cases), renal abnormalities (4/14 cases) 

and/or cardiac malformations (9/17 cases). Six individuals were diagnosed with OFDVI 

because of the molar tooth sign (MTS) on brain MRI and positive diagnostic criteria, two 

with OFDII and one with OFDV (25). Parental DNA samples were available in 17/24 cases.

Exome Analysis

After written consent had been obtained, blood samples were collected and DNA was 

extracted. Three micrograms of genomic DNA per index individual was subjected to whole-

exome capture and sequencing using the SureSelect Human All Exon V5 kit (Agilent). The 

resulting libraries were sequenced on a HiSeq 2000 (Illumina) as paired-end 76 bp reads. 

BAM files were aligned to a human genome reference sequence (GRCh37/hg19) using 

BWA (Burrows-Wheeler Aligner; v0.6.2). All aligned read data were subject to the 

following steps: (i) duplicate paired-end reads were removed by Picard 1.77, (ii) indel 

realignment and (iii) base quality score recalibration were done on the Genome Analysis 

Toolkit (GATK; v2.1–10). Variants with a quality score >30 and an alignment quality score 

>20 were annotated with SeattleSeq SNP Annotation (see Web resources). CNV were 
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detected by XHMM software (https://www.atgu.mgh.harvard.edu/) and annotated using 

chromosomic coordinates of coding exonic sequences on the human genome (https://

www.ncbi.nlm.nih.gov/refseq/). Rare variants present at a frequency above 1% in dbSNP 

138, ExAC Browser and the NHLBI GO Exome Sequencing Project or present in 312 

exomes of unaffected individuals were excluded (see Web resources). To improve our exome 

analysis, data were crossed with a list of known cilia-related genes from the Ciliome 

Database, Cildb v2.1, Syscilia (see Web resources) and transcriptomic, proteomic and 

bioinformatics studies of cilia to identify putative ciliary genes (26–29). First, we looked for 

SNV or CNV in the six known genes in OFDS (OFD1, TCTN3, TMEM216, SCLT1, 
TBC1D32/C6orf170 and DDX59). We then focused on genes with homozygous variants in 

consanguineous families and with two heterozygous variants in other cases and prioritized 

(i) genes associated with human disease in ClinVar or HGMD databases (see Web 

resources), (ii) cilia-related genes and (iii) other genes (Figure 2).

Sanger sequencing

Candidate variants and parental segregation were confirmed by Sanger sequencing. The 

different primers are available on request. Genomic DNA was amplified by Polymerase 

Chain Reaction (PCR) using HotStarTaq PCR kit (Qiagen) according to the manufacturer’s 

protocol. PCR products were purified by the Agencourt CleanSEQ system (Beckman 

Coulter) and sequenced with the BigDye Terminator Cycle Sequencing kit, v3.1 (Applied 

Biosystems) in ABI 3730 sequencer (Applied Biosystems). Sequence data were analysed 

using Mutation Surveyor v4.0.9 (Softgenomics).

RESULTS

WES identified causal mutations in 14/24 cases. The first analysis of known genes 

implicated in OFDS identified a homozygous missense variant in the DDX59 gene [MIM 

610621] and heterozygous mutations in the OFD1 gene [MIM 311200] in three unrelated 

cases (p.Tyr87Cys, p.Ala614Hisfs*15 and c.655-8A>G, predicted to affect a splice-site). In 

these latter cases, OFD1 mutations were not previously detected by Sanger sequencing.

The filtering strategy extracted five homozygous variants in consanguineous families (Table 

1): a frameshift in the INTU gene [MIM 610621], a nonsense mutation in the C2CD3 gene 

[MIM 615944], TMEM138 [MIM 614459] and TMEM107 genes, and a synonymous 

variant affecting a splice site in the IFT57 gene [MIM 606621] (6,30–33). For all these 

genes, Sanger sequencing and parental segregation confirmed the homozygous status in the 

affected cases and the heterozygous status in each parent. We also identified compound 

heterozygous variants in four ciliary genes (Table 1): TMEM231 [MIM 614949], WDPCP 
[MIM 613580], C5orf42 genes [MIM 614571] and KIAA0753 (31,33–35). Sanger 

sequencing and parental segregation confirmed the compound heterozygous status in the 

affected cases and the heterozygous status in each parent for all genes, except for the 

KIAA0753 gene. For this gene, Sanger sequencing confirmed that the nonsense variant 

(NM_014804.2:p.Lys631*) was maternally inherited and the intronic substitution 

(NM_014804.2:c.1546-3C>A) occurred de novo and affected a splice-site causing a 

truncated protein (34).
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The clinical heterogeneity of OFD syndromes was confirmed with various atypical signs and 

the overlap between OFD subtypes. Patients with a mutated OFD1 gene presented typical 

signs of the OFDI subtype (lingual hamartoma, lobulated or bifid tongue, cleft palate, renal 

disease and corpus callosum agenesis) associated with very rare abnormalities including 

cardiac malformations (case n°20), the molar tooth sign on brain MRI (case n°13) or 11 

pairs of ribs (case n°12), which suggest overlapping with other subtypes. Variants in 

TMEM138, TMEM107 and C5orf42 caused OFDVI, characterized by the molar tooth sign. 

In unclassified OFD, C2CD3 mutations were associated with severe microcephaly, INTU 
and WDPCP mutations with cardiac defects, and IFT57 mutations with chondysplasia. 

DDX59 mutations had previously been reported in OFDII and identified in this cohort in a 

case of OFD V (n°1). OFDV, characterized by a median cleft of the upper lip and post-axial 

polydactyly, overlapped with OFD II, but this was predominantly found in patients of Indian 

origin. Finally, variants in the TMEM231 gene were identified in a foetal case with 

unclassified OFD.

We thus identified causal mutations in five new genes, in four genes previously implicated in 

other ciliopathies and in two genes previously known to be responsible for OFD syndromes 

(Figure 3).

DISCUSSION

This study presents the largest OFD cohort investigated by WES. It led to the identification 

of causal mutations in 58% of affected cases, thus confirming the power of WES in 

identifying the genetic cause in well-phenotyped cases and highly heterogeneous disorders.

Wide clinical and genetic heterogeneity of OFD syndromes

The wide clinical heterogeneity and variable modes of inheritance in OFD syndromes 

suggest extreme genetic heterogeneity. Exome sequencing thus appeared the obvious choice, 

and because OFD syndromes were suspected to be mainly recessive, we initially focused on 

homozygous or potential compound heterozygous mutations, and prioritized ciliary genes 

and truncating rare variants in the absence of OMIM genes. In cases of suspected 

consanguinity, the probable causal variant was expected to be located within a large stretch 

of a homozygous region, thereby making it easier to identify new genes. Causal variants 

were thus identified in five new genes, at the homozygous status (C2CD3, INTU, IFT57, 
TMEM107) or compound heterozygous status (KIAA0753) (6,32,33). Recently, additional 

C2CD3, TMEM107 and TMEM231 mutations confirmed the implication of these genes in 

OFD syndromes (Table 1) (36,37). Causal variants were also identified in six other genes 

previously implicated in OFD syndromes (DDX59, OFD1) or in other ciliopathies 

(TMEM138, C5orf42, TMEM231, WDPCP). In all these patients, the OFD phenotype was 

clinically heterogeneous with OFDI (OFD1), OFDV (DDX59), OFDVI (TMEM138, 
TMEM107, KIAA0753, OFD1, C5orf42) or OFDXIV (C2CD3), as well as unclassified 

OFD (TMEM231, IFT57, INTU, WDPCP), with cerebellar hypoplasia, severe microcephaly, 

chondrodysplasia or cardiopathy. These results demonstrate the wide clinical and genetic 

heterogeneity of OFD syndromes, with, to date, 16 different genes. However, except for 

OFD1, few mutations have been reported in the other OFD genes because OFD syndromes 
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remain rare with wide genetic heterogeneity and because some mutations are found in 

specific ethnic groups (figure 4).

Frequent clinical and genetic allelism between OFD and ciliopathies

The progressive identification of the molecular bases has highlighted the involvement of the 

primary cilia in OFD syndromes and confirmed the clinical and genetic overlap between 

OFD and other ciliopathies (38). Indeed, OFD1, which is responsible for OFDI syndrome, 

was also reported in JBS and severe retinitis pigmentosa (39–42). TMEM216, initially 

implicated in JBS and MKS, also caused OFDVI (43). Moreover, we identified OFD 

mutations in the TMEM107 gene which also cause JBS (30,33), as well as in four other 

genes previously implicated in other ciliopathies (TMEM138, C5orf42, TMEM231, 
WDPCP) (table 1). To date, allelism with other ciliopathies affects nine of the 15 OFD 

genes. The most frequent allelism concerns OFDVI and JBS (TMEM216, TMEM138, 
TMEM231, TMEM107, OFD1, and C5orf42) (30,31,33,35,43,44). TMEM231, TMEM107 
and C5orf42 genes also cause MKS (30,45,46), thus confirming the clear allelism between 

OFDVI, MKS and JBS syndromes with variable phenotypic expression. INTU and WDPCP 
mutations are also reported in NPHP and BBS, respectively, but the allelism between OFD 

and BBS remains uncertain because of the absence of clinical data in the reported cases 

(33,47). Recently, C2CD3 mutations have also been reported in two foetuses with skeletal 

dysplasia, suggesting a short rib-polydactyly (SRP) syndrome (48).

Characterization of three ciliopathy protein complexes and cilia disturbance in OFD 
syndromes

The clinical description of different subtypes suggested that the causal proteins could be 

assembled in different functional modules. Because the 15 genes encode for proteins located 

in different compartments of primary cilia, new ciliary functions were suspected of being 

implicated in OFD syndromes (Table 2). Different functional studies have revealed two new 

ciliary complexes, CPLANE and KIAA0753-OFD1-FOPNL, and better characterized the 

transition zone and MKS module.

At the centrosomal level, the positive regulator C2CD3 was found to be an antagonist of 

OFD1, a negative regulator of centriole elongation (6). KIAA0753 or OFIP (OFD1 and 

FOR20 Interacting Protein) forms a ternary complex with OFD1 and FOPNL (also known as 

FOR20) to initiate ciliogenesis and control centriole length (34). When KIAA0753 is 

necessary to recruit OFD1 and FOPNL in centriole and pericentriolar satellites and to 

stabilize microtubule organization in the centrosome, C2CD3 was thought to be associated 

with the KIAA0753-OFD1-FOPNL complex probably via OFD1 protein. Knockdown of 

OFD1, C2CD3 or KIAA0753 induces hyperelongated (OFD1, KIAA0753) or shortened 

centrioles with the absence of subdistal appendages (C2CD3). These centriole defects affect 

membrane anchoring with the absence of cilia or greatly decreased cilium length. All these 

proteins control centriole elongation as do other centrosomal complexes, consisting of 

subunits with antagonist functions in ciliogenesis.

At the basal body level, a new protein complex, CPLANE (Ciliogenesis and Planar polarity 

Effectors) formed by FUZ, RSG1 and the three OFD proteins INTU, WDPCP and C5orf42, 
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was characterized (33). C5orf42 initially recruits CPLANE components in the hierarchical 

assembly of this complex. CPLANE complex binds extensively with the IFT-A complex 

involved in retrograde intraflagellar transport, which is crucial for the recruitment of 

peripheral IFT-A proteins (IFT144, IFT43, IFT121 and IFT139) and their cytosolic pre-

assembly. CPLANE defects affect intraflagellar transport and induce shortened cilia. Thus 

RSG1 and FUZ genes are good candidates for OFD syndrome, but so far, Sanger sequencing 

of a local cohort negative for known OFD genes has not revealed any mutations in these 

genes.

At the transition zone (TZ), two functional modules, MKS and NPHP, interact to regulate 

ciliogenesis, the assembly of membrane-microtubule Y-link connectors, diffusion barrier 

formation, and the entry of IFT particles into the cilia (30,31,49). The NPHP module 

consists of two subunits (NPHP1-4) and the MKS module of twelve subunits (RPGRIP1L, 

TMEM107, TMEM216, B9D1, B9D2, MKS1, TMEM17, TMEM231, TMEM218, 

TMEM237, TMEM67 and CC2D2A), some of which are now known to be involved in OFD 

syndromes (TMEM231, TMEM216). It has been reported that TMEM107 occupies a new 

intermediate layer in the hierarchical assembly of the MKS module and is necessary to 

recruit TZ-proteins MKS1, TMEM17, TMEM237 and the new OFD protein TMEM231 

(30). In C. elegans, CEP290 is required for the TZ localization of the MKS protein module 

and of other TZ-proteins, such as TMEM138, involved in OFD syndrome (31).

The new IFT57 gene encodes a peripheral subunit of the IFT-B complex, which consists of 

14 members. It is believed that the IFT-B complex has been highly conserved during 

evolution and has an essential function in the formation and maintenance of primary cilia. 

Only five subunits are involved in ciliopathies (IFT27, IFT80, IFT81, IFT88, IFT172) (50). 

IFT57 mutations induce staining of IFT57 in the basal body in OFD patients’ fibroblasts, 

whereas IFT57 was observed in the whole cilia in controls. Likewise, the IFT57 mutation 

affects the SHH pathway, thus confirming the involvement of IFT57 in ciliary transport and 

signalling transduction (32).

Most of the genes involved in the same ciliopathy encode for subunits of the same protein 

complex and usually affect one ciliary function. In contrast, OFD syndromes implicate 

several protein complexes with various localizations and various ciliary functions, from 

centriole elongation to intraflagellar transport, thus illustrating the wide genetic 

heterogeneity. However, we noted a correlation between the genotype and the phenotype. 

Mutations in TZ-genes mainly caused OFDVI, CPLANE-gene mutations caused 

unclassified OFD with cardiac malformations and mutations in genes coding for 

centrosomal proteins were implicated in various subtypes (OFDI, IX, XIV or unclassified) 

but with a clinical continuum between C2CD3, KIAA0753 and OFD1, sometimes including 

the molar tooth sign on brain MRI or renal abnormalities.

OFD syndromes: a distinct subgroup of ciliopathies and phenotype-genotype correlations

OFD syndromes were initially classified as 13 clinical subtypes depending on the additional 

clinical features (polycystic kidney disease, corpus callosum agenesis, tibial dysplasia, 

retinopathy…). While numerous cases of OFDI, OFDIV and OFDVI syndromes have been 

reported, only anecdotal or single cases of some other subtypes have been published. This 
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initial classification now appears to be obsolete given the wide clinical and molecular 

heterogeneity, with different overlapping ciliopathies such as JBS, MKS, BBS, SRP and 

NPHP. When OFD1 mutations induce OFDI or OFDVI subtypes, the OFDVI subtype 

appears to be linked to different genes also implicated in JBS and MKS. Considering the 

clinical and molecular data, the OFD classification could be reduced to three main subtypes 

and several additional anecdotal cases (Table 3). Indeed, while a fine clinical description of 

the disease remains important for reverse phenotyping, prognosis and genetic counselling, a 

detailed classification appears to be extremely complex and of little use in such diseases 

with high clinical and genetic heterogeneity. Indeed, this high genetic heterogeneity leads to 

the use of WES for the molecular diagnosis of patients with OFD syndromes.

The high efficiency of the WES strategy in highly heterogeneous diseases

Despite the high clinical and genetic heterogeneity of these diseases, the solo WES strategy 

was very successful and led to the identification of five new genes responsible for OFD 

(C2CD3, KIAA0753/OFIP, IFT57, INTU, TMEM107). It also confirmed that OFD, BBS, 

JBS, MKS and SRP are allelic disorders and extended the clinical spectrum of TMEM138, 
TMEM231, C5orf42, C2CD3 and WDPCP genes, thus increasing to 16 the number of genes 

known to be responsible for OFDS (Figures 3 and 4). This was possible thanks to a large 15-

year international cohort and to knowing the probable mode of inheritance and the functions 

of candidate proteins. However, 42% of affected cases remained negative, raising questions 

about the choice of strategy. Indeed, the hypothesis of autosomal recessive inheritance and 

the limited availability of parental DNA at the beginning of the study led us to preferentially 

use the solo WES strategy, which is known to be less effective for the identification of 

sporadic mutations. In these negative patients, a trio WES strategy or whole genome 

sequencing (WGS) could now be considered to look for non-exonic variants. In these 

negative cases, genetic counselling remains difficult because an autosomal recessive mode of 

inheritance could be excluded.

In conclusion, this solo WES strategy in 24 OFDS cases identified five new genes 

responsible for OFD (C2CD3, KIAA0753/OFIP, IFT57, INTU, TMEM107), confirmed that 

OFD, BBS, JBS, MKS and SRP are allelic disorders and extended the clinical spectrum of 

TMEM138, TMEM231, C5orf42, C2CD3 and WDPCP genes, thus increasing to 16 the 

number of genes known to be responsible for OFDS (Figures 3 and 4). Negative patients 

explored by secondary WES or WGS analysis with the trio strategy could extend these 

results to additional new genes.
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Figure 1. Clinical pictures, X-rays and brain MRI of OFD cases
Case 3a (K), case 3b (L), case 4 (B, N, V), case 5 (κ), case 6a (A, R, S, T, U), case 6b (F, Y, 

Z, α, β), case 7 (G), case 8 (E, L, Q, ε, ζ, ι, κ), case 10 (J, Y), case 11 (O), case 17 (D, I, 

K), case 19 (E), case 22 (ε), case 25 (λ, μ), case 26b (D, X, ζ), case 27 (P, ν, ο, π) case 28b 

(Q, ρ, ς), case 29 (υ, φ) with facial dysmorphism (A-D) including low-set ears, median 

pseudo-cleft of upper lip (F), missing incisors (A) or severe microcephaly (B), abnormal 

frenulae (E), cleft palate (I), lobulated tongue or hamartoma (G, H, J), pre and postaxial 

polydactyly of hands and feet (R, S, V, W, ε, ζ, ι, κ-υ), broad duplicated and/or deviated 

hallux (T, U, V, ε, ζ, η, θ, μ, ν, υ), Y-sharped metacarpal abnormality (κ, π), hypothalamic 

hamartoma (P), cerebellar hypoplasia (Q), brain MRI with MTS (K-O).
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Figure 2. 
Strategy for exome analysis
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Figure 3. Localization of proteins encoded by the 16 OFD genes in primary cilia
5 new OFD genes (in red), 4 genes previously implicated in other ciliopathies (in green), 7 

genes previously reported in OFD - 2 with presented mutations (blue) and 5 others (white).
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Figure 4. 
Distribution of mutated genes in genotyped OFD cases reported in this study and in the 

literature.
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Table 3

Novel classification of OFDS based on the association between clinical and molecular features

OFD subtype Clinical data Genes

OFDI
OFDIV
OFDVI

Polycystic kidney disease, Corpus callosum agenesis
Tibial dysplasia
Molar tooth sign

OFD1
TCTN3

TMEM216, TMEM231, TMEM138, C5orf42, 
TMEM107, KIAA0753

Classification based on the genotype 
for other patients

Median cleft of the upper lip
Cardiac defects

Retinopathy
Severe microcephaly

Chondrodysplasia

DDX59, NEK1
INTU, WDPCP

SCLT1, TBC1 D32/C7orf170
C2CD3
IFT57
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