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Abstract: Single-pixel imaging which employs active illumination to acquire spatial 
information is an innovative imaging scheme and has received increasing attentions in recent 
years. It is applicable to imaging at non-visible wavelengths and imaging under low light 
conditions. However, single-pixel imaging has once encountered problems of low 
reconstruction quality and long data-acquisition time. Hadamard single-pixel imaging (HSI) 
and Fourier single-pixel imaging (FSI) are two representative deterministic model based 
techniques. Both techniques are able to achieve high-quality and efficient imaging, 
remarkably improving the applicability of single-pixel imaging scheme. In this paper, we 
compare the performances of HSI and FSI with theoretical analysis and experiments. The 
results show that FSI is more efficient than HSI while HSI is more noise-robust than FSI. Our 
work may provide a guideline for researchers to choose suitable single-pixel imaging 
technique for their applications. 
© 2017 Optical Society of America 

OCIS codes: (110.1758) Computational imaging; (110.5200) Photography; (110.0180) Microscopy; (110.3010) 
Image reconstruction techniques. 

References and links 
1. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427–471 (1996). 
2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, 

C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). 
3. E. P. DiMagno, J. L. Buxton, P. T. Regan, R. R. Hattery, D. A. Wilson, J. R. Suarez, and P. S. Green, 

“Ultrasonic endoscope,” Lancet 315(8169), 629–631 (1980). 
4. C. W. Oatley, W. C. Nixon, and R. F. W. Pease, “Scanning electron microscopy,” Adv. Electron. Electron Phys. 

21, 181–247 (1966). 
5. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon 

quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995). 
6. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-Photon’ coincidence imaging with a classical source,” Phys. 

Rev. Lett. 89(11), 113601 (2002). 
7. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, 

“A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 
(2006). 

8. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78(6), 061802 (2008). 
9. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz 

imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008). 
10. J. H. Shapiro and B. I. Erkmen, “Ghost imaging: from quantum to classical to computational,” Adv. Opt. 

Photonics 2(4), 405–450 (2009). 
11. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on 

computational ghost imaging,” Opt. Lett. 35(14), 2391–2393 (2010). 
12. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett. 104(25), 253603 

(2010). 
13. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 

20(15), 16892–16901 (2012). 
14. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational 

imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013). 

                                                                                              Vol. 25, No. 16 | 7 Aug 2017 | OPTICS EXPRESS 19619 

#300756 https://doi.org/10.1364/OE.25.019619 
Journal © 2017 Received 26 Jun 2017; revised 31 Jul 2017; accepted 31 Jul 2017; published 4 Aug 2017 

https://crossmark.crossref.org/dialog/?doi=10.1364/OE.25.019619&domain=pdf&date_stamp=2017-08-04


15. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3-D Computational 
imaging with single-pixel detectors,” Science 340(6134), 844–847 (2013). 

16. R. Horisaki, H. Matsui, R. Egami, and J. Tanida, “Single-pixel compressive diffractive imaging,” Appl. Opt. 
56(5), 1353–1357 (2017). 

17. R. Horisaki, H. Matsui, and J. Tanida, “Single-pixel compressive diffractive imaging with structured 
illumination,” Appl. Opt. 56(14), 4085–4089 (2017). 

18. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel 
imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008). 

19. V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric 
imaging,” Opt. Lett. 37(5), 824–826 (2012). 

20. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a 
single-pixel detector,” Opt. Lett. 38(14), 2524–2527 (2013). 

21. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. 
J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 
605–609 (2014). 

22. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared 
and visible microscope,” Optica 1(5), 285–289 (2014). 

23. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, 
“Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5(1), 10669 (2015). 

24. S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear Stokes imaging with 
single-pixel detectors,” J. Opt. 17(2), 025705 (2015). 

25. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-
dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016). 

26. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of 
single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016). 

27. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate 
ultrasonic imaging,” Optica 3(1), 26–29 (2016). 

28. B. Lochocki, A. Gambín, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera 
ophthalmoscope,” Optica 3(10), 1056–1059 (2016). 

29. L. Martínez-León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital 
holography with phase-encoded illumination,” Opt. Express 25(5), 4975–4984 (2017). 

30. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. 
Commun. 6, 6225 (2015). 

31. Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective 
image pixels,” Opt. Lett. 41(11), 2497–2500 (2016). 

32. Z. Zhang, X. Wang, and J. Zhong, “Fast Fourier single-pixel imaging using binary illumination,” arXiv preprint 
arXiv:1612.02880 (2016).  

33. L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18(8), 
085704 (2016). 

34. H. Jiang, S. Zhu, H. Zhao, B. Xu, and X. Li, “Adaptive regional single-pixel imaging based on the Fourier slice 
theorem,” Opt. Express 25(13), 15118–15130 (2017). 

35. B. L. Liu, Z. H. Yang, X. Liu, and L. A. Wu, “Coloured computational imaging with single-pixel detectors based 
on a 2D discrete cosine transform,” J. Mod. Opt. 64(3), 259–264 (2017). 

36. M. Alemohammad, J. R. Stroud, B. T. Bosworth, and M. A. Foster, “High-speed all-optical Haar wavelet 
transform for real-time image compression,” Opt. Express 25(9), 9802–9811 (2017). 

37. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way (Academic, 2008). 
38. W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image coding,” Proc. IEEE 57(1), 58–68 (1969). 
39. J. A. Decker, Jr., “Hadamard-Transform Image Scanning,” Appl. Opt. 9(6), 1392–1395 (1970). 
40. J. Gourlay, P. McOwan, D. G. Vass, I. Underwood, and M. Worboys, “Time-multiplexed optical Hadamard 

image transforms with ferroelectric-liquid-crystal-over-silicon spatial light modulators,” Opt. Lett. 18(20), 1745–
1747 (1993). 

41. http://sipi.usc.edu/database/ 

1. Introduction 
The earliest example of single-pixel imaging might be the flying-spot camera patented by 
Paul Nipkow in 1884. P. Nipkow provided a method for encoding and transmitting image 
information using a rotating Nipkow disk. Laser confocal scanning microscopy [1], optical 
coherence tomography [2], ultrasonic endoscope [3], and scanning electron microscopy [4] 
are also examples of single-pixel imaging which perform raster scanning in the spatial 
domain. Contemporary single-pixel imaging, which uses a time-varying structured 
illumination and an appropriate computer algorithm, originates from ghost imaging [5–17]. 
Ghost imaging was initially considered as a quantum effect [5] but later Bennink et al. 
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demonstrated that it can be implemented with a classical source [6]. Computational ghost 
imaging [7–17] allows one to capture a scene using a single-pixel (or bucket) detector. 
Objects to be imaged are under spatially and temporally varying illuminations. The 
illumination patterns are typically generated using a spatial light modulator (SLM). The 
single-pixel detector is used to collect the corresponding light signal for each illumination 
pattern. The desired image is computationally reconstructed by correlating the illumination 
patterns with the detected signals. 

Single-pixel imaging techniques [14–35] do not need to use any pixelated detector for 
light signal detection. This advantage brings single-pixel imaging a potential capability of 
solving some challenges in conventional imaging. For example, single-pixel imaging scheme 
allows one to build a low-cost imaging system that can work at non-visible wavelengths. It 
should be noted that pixelated detectors are commonly expensive or even unavailable at most 
non-visible wavelengths. Single-pixel imaging may also have the advantage of imaging at 
low light conditions. This is because, in comparison with pixelated detectors, single-pixel 
detectors with large active area are easier to fabricate and more sensitive to light. 

Inherited from ghost imaging, single-pixel imaging was initially based on a statistical 
model, which can be evident by the use of random patterns for illumination. The random 
patterns form an overcomplete non-orthogonal set. Consequently, it requires a great number 
of measurements (much larger than pixel counts) and long data-acquisition time for recording 
signals. For instance, Sun et al. used 106 random patterns to reconstruct an image with a 
resolution of 256 192×  pixels [15]. Even with so many measurements, the quality of images 
reconstructed by single-pixel imaging is hardly comparable with the quality of images 
obtained by conventional pixelated-detector-based imaging. Long-data acquisition time and 
low reconstruction quality limit the applicability of this innovative imaging scheme. 
Compressive sensing [7,9,14,16–18,20,21] has been adopted to reduce measurements, but it is 
at the expense of computational time. 

The recently proposed deterministic model based techniques [18–35] can well tackle these 
problems of long data acquisition time and low reconstruction quality. These techniques use 
deterministic orthogonal basis patterns, instead of non-orthogonal random patterns, for 
illumination. Hadamard single-pixel imaging (HSI) [18–29] and Fourier single-pixel imaging 
(FSI) [30–34] are two representative single-pixel imaging techniques that use a deterministic 
model. HSI uses Hadamard basis patterns for illumination while FSI uses Fourier basis 
patterns. The use of basis patterns for illumination brings two advantages. The first advantage 
is perfect reconstruction in principle. We refer perfect reconstruction to the ability that allows 
images to be accurately recovered and the property that an imaging model itself would not 
introduce errors. Or in other words, a technique that allows perfect reconstruction is able to 
produce a reconstruction exactly the same as the ground truth in an ideal case (such as 
noiseless simulation). Illumination using basis patterns enables perfect reconstruction, 
because the basis patterns form a complete orthogonal set. Basis patterns illumination allows 
one to acquire the spatial information of object image in a transformation domain and recover 
the object image via the corresponding inverse transform. In principle, the image can be 
reconstructed without noticeable difference from the ground truth, when is fully sampled in 
the transformation domain. This feature solves the problem of low reconstruction quality in 
ghost imaging. The second advantage is measurement reduction. Natural images give a sparse 
representation in some transformation domains, such as Hadamard, Fourier, discrete cosine 
[35] or wavelet [36,37] domain, allowing one to reconstruct a sharp image with under-
sampled data. This feature solves the problem of long acquisition time. As such, deterministic 
model based techniques well tackle the problems that are inherited from ghost imaging. 

In this paper, we theoretically and experimentally compare these two representative 
deterministic model based single-pixel imaging techniques–HSI and FSI, in terms of 
principles, imaging efficiency, noise robustness, and etc. This comparison shows the 
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commons and the differences between HSI and FSI. The comparison also presents the 
advantages and disadvantages of the both techniques. 

2. Comparison of theory

2.1 Principle of HSI and FSI

Fig. 1. Illustration of differential HSI, 4-step FSI, and 3-step binary FSI. 

HSI is based on Hadamard transform [38–40]. HSI acquires the Hadamard spectrum of the 
object image and reconstructs the object image by applying an inverse Hadamard transform. 
Hadamard spectrum is composed by a group of Hadamard coefficients. Each coefficient 
corresponds to a unique Hadamard basis pattern. To obtain a Hadamard coefficient, one can 
project the corresponding Hadamard basis pattern(s) onto the object and use a single-pixel 
detector to measure the resultant light intensity. The single-pixel light intensity measurement 
is mathematically equivalent to the inner product between the Hadamard basis pattern(s) and 
the object. As such, the Hadamard spectrum can be reconstructed based on the single-pixel 
measurements. The two-dimensional Hadamard transform { }H  of an image ( ),I x y  is

defined as [38] 

( ) ( ){ } ( )( ) ( )1 1
, , ,

H
0 0

, , , 1 ,
M N

q x y u v

x y

I u v H I x y I x y
− −

= =

= = − (1)

( ),x y  is the coordinate in the spatial domain

( ) ( ) ( )
1

0

, , , ,
n

i i i i
i

q x y u v g u x g v y
−

=

≡ +   (2)

where ( ),u v  is the coordinate in the Hadamard domain, 2logn N= , and 
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The terms iu , iv , ix , and iy  are the binary representations of u , v , x , and y  respectively . 

For example, 

( ) ( )1 2 1 0decimal binary
.n nu u u u u− −=  (4)

A frequency interpretation can be given to the Hadamard spectrum–along each row/column of 
the Hadamard spectrum the frequency is called the number of changes in sign. However, as 
Hadamard basis patterns are not strictly periodic, the word “sequency” is used to designate 
the number of sign changes [38]. Hadamard transform is only applicable for input images of 
size N -by- N , where N , 12N , or 20N  is a power of 2. 

A Hadamard basis pattern ( )H ,P x y  can be obtained by applying an inversed Hadamard 

transform to a delta function ( )H ,u vδ ,

( ) ( ){ }1
H H

1
, 1 , ,

2
P x y H u vδ− = +  (5)

where { }1H −  denotes an inverse Hadamard transform and

( ) 0 0
H

1, ,
, .

0 otherwise

u u v v
u vδ

= =
= 
 ,

(6)

The sample Hadamard basis pattern shown in Fig. 1 is derived by substituting 5u =  and 
5v =  into Eq. (5). Thus, it has 5 sign changes each row and 5 sign changes each column. 

Differential HSI is an embodiment of HSI, allowing each Hadamard coefficient ( ),H u v

to be acquired in a manner of differential measurement [19–27]. Differential HSI is conducive 
to suppression of noise. As illustrated in Fig. 1, to acquire a coefficient ( ),H u v , differential

HSI takes two measurements. The one measurement is acquired by projecting a Hadamard 

basis pattern ( )H ,P x y  and the other measurement is by its inverse ( )H1 ,P x y−   . The 

coefficient ( ),H u v  is obtained by using the two corresponding measurements

( ) 1 1, ,H u v D D+ −= − (7)

where 1D+  and 1D−  are measurements corresponding to the illuminations of ( )H ,P x y  and 

( )H1 ,P x y−   , respectively. Hadamard coefficients are real-valued and the number of 

Hadamard coefficients is the same as that of image pixels. Fully sampling an N N× -pixel 

image using differential HSI takes 22N  measurements. 
FSI is based on Fourier transform. FSI acquires the Fourier spectrum the object image and 

reconstructs the object image by applying an inverse Fourier transform. Fourier spectrum is 
composed by a group of Fourier coefficients. Each coefficient corresponds to a unique 
Fourier basis pattern (also known as sinusoidal pattern or fringe pattern). To obtain a Fourier 
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coefficient, one can project the corresponding Fourier basis pattern(s) onto the object and use 
the single-pixel detector to measure the inner product between Fourier basis patterns and the 
object. As such, the Fourier spectrum can be reconstructed from the single-pixel 
measurements. Fourier transform was proposed in the late 1800s by Joseph Fourier and has 
been widely used in a number of fields. It allows any signal to be decomposed into a set of 
orthogonal sinusoidal waveforms of different frequencies. For example, images as two-
dimensional signals are allowed to be broken down into a combination of sinusoidal intensity 
patterns. The two-dimensional Fourier transform { }F  of an image ( ),I x y  is defined as

( ) ( ){ } ( )
1 1

F
0 0

, , , exp j2 ,
M N

x y

ux vy
I u v F I x y I x y

M N
π

− −

= =

  = = − +    
  (8) 

where ( ),x y  is the coordinate in the spatial domain and ( ),u v  is the coordinate in the

Fourier domain. A Fourier basis pattern ( )F ,P x y  can be obtained by applying an inverse

Fourier transform to a delta function ( )F , ,u vδ ϕ ,

( ) ( ){ }{ }1
F F

1
, 1 real , , ,

2
P x y F u vδ ϕ− = +  (9)

where { }real  denotes the real part, { }1F −  denotes an inverse Fourier transform, and

( ) ( ) 0 0
F

exp j , ,
, , .

0, otherwise

u u v v
u v

ϕ
δ ϕ

= =
= 


(10)

4-step FSI and 3-step FSI are two embodiments of FSI, using the 4-step phase-shifting
formula Eq. (11) and the 3-step phase-shifting formula Eq. (12), respectively. Both
embodiments allow each Fourier coefficient ( ),F u v  to be acquired in a manner of

differential measurements. As illustrated by Fig. 1, 4-step FSI and 3-step FSI acquire each 
Fourier coefficient with 4 and 3 measurements, respectively. Please note that Fourier 
coefficients are complex-valued. 4-step FSI allows one to acquire each complex-valued 
Fourier coefficient ( ),F u v  by projecting four patterns ( )F , ,0P x y , ( )F , , 2P x y π , 

( )F , ,P x y π  and ( )F , ,3 2P x y π , and using the corresponding four measurements 0D , 2Dπ , 

Dπ , and 3 2D π : 

( ) ( ) ( )0 3 2 2, = j .F u v D D D Dπ π π− + − (11)

Also note that ( )F , ,P x y π  is the inverse of the pattern ( )F , ,0P x y ; ( )F , ,3 2P x y π  is the 

inverse of the pattern ( )F , , 2P x y π . The number of Fourier coefficients is the same as that of 

image pixels ( M N× ). With the prior knowledge that the Fourier spectrum of any real-valued 
image is conjugated symmetric, fully sampling an M N× -pixel image using 4-step FSI takes 
2 M N× ×  measurements. It can be seen that the 4-step FSI is essentially a differential 
method of measurement. FSI can also be conducted by employing the 3-step phase-shifting 
formula. The 3-step FSI acquires each complex-valued Fourier coefficient with 3 
measurements, 

( ) ( ) ( )0 2 3 4 3 2 3 4 3, = 2 3j ,F u v D D D D Dπ π π π− − + ⋅ − (12)
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where 0D , 2 3D π , and 4 3D π  are the measurements corresponding to the illumination patterns 

of ( )F , ,0P x y , ( )F , , 2 3P x y π , and ( )F , , 4 3P x y π , respectively. Evident by Eq. (12), 3-step 

FSI is also a differential method of measurement, but in an asymmetric form. As the 4-step 
FSI does, the 3-step FSI has the property of noise suppression, but its performance is not as 
good as the 4-step FSI. It is because the 4-step FSI is a differential method of measurement in 
a symmetric manner while the 3-step is in an asymmetric manner. Fully sampling an M N× -
pixel image using 3-step FSI takes 1.5 M N× ×  measurements. In comparison with 4-step 
FSI, 3-step reduces 25% measurements. 

In short, FSI and HSI are single-pixel imaging techniques based on basis scan and 
theoretically allow perfect reconstruction for any images in noiseless situations. 

2.2 Basis patterns generation 

The core of single-pixel imaging is to employ active illumination to acquire the spatial 
information of a target object. Instead of using random patterns, basis-scanning single-pixel 
imaging techniques use deterministic basis patterns for illumination. Figure 1 shows the 
comparison between the Hadamard and Fourier basis patterns. The difference can be 
summarized as follows: 1) Hadamard basis patterns are binary and mosaics look-alike while 
Fourier basis patterns are grayscale and fringes look-alike; 2) Hadamard basis patterns only 
have horizontal and vertical features while Fourier basis patterns have horizontal, vertical, 
and oblique features; 3) Fourier basis patterns are strictly periodical while Hadamard basis 
patterns are not. 

The applicability and the performance of these basis-scanning single-pixel imaging 
techniques rely on the effectiveness and efficiency of basis patterns generation. Thus, it is 
necessary to discuss the methods of basis patterns generation for HSI and FSI. Hadamard 
basis patterns are binary (black-and-white), which makes HSI naturally suitable for single-
pixel imaging systems based on a digital micro-mirror device (DMD). As DMD is a binary 
device, HSI can benefit from the high-speed binary illumination ability given by a DMD. 
Additionally, binary Hadamard basis patterns would not lead to quantization errors or gamma 
(nonlinear) distortion. However, to our best knowledge, Hadamard transform does not carry 
clear physical meaning, which makes Hadamard basis patterns almost impossible to be 
generated by a physical means. The applicability of HSI relies on the use of SLM. In other 
words, HSI would likely have difficulties when SLMs are unavailable at certain spectral 
regions. 

On the other hand, Fourier basis patterns are naturally grayscale. It leads to the fact that 
FSI is not able to take the benefit of a high-speed SLM directly. For instance, DMDs work 
much slower in the grayscale mode. A state-of-art DMD can display ~20,000 binary patterns 
per second but can only display ~250 8-bit (256 quantization levels) grayscale patterns per 
second. Thus, FSI suffers from slower illumination rate and therefore longer data-acquisition 
time than HSI. In addition, using any digital device to generate Fourier basis patterns would 
cause quantization errors. When the number of quantization levels is too low, the resulting 
quantization errors would lead to pronounced image quality degradation. Recently, Zhang et 
al. proposed binary FSI [29], a workaround that uses binary Fourier basis patterns for 
illumination. Binary Fourier basis patterns are generated by upsampling and then dithering 
the grayscale Fourier basis patterns. The shortcoming of this approach is at the expense of 
reduced spatial resolution. Although Fourier basis patterns are not perfectly compatible with 
DMDs, fortunately Fourier transform is a natural operator and has physical meaning, which 
enables Fourier basis pattern to be generated by some physical means. For example, an ideal 
thin lens can be used as a Fourier transform engine with which the Fourier transform of an 
object image can be obtained at the back focal plane of the thin lens. Even without a thin lens, 
the Fourier transform of an object image can be approximately obtained by the far-field 
diffraction pattern, which is subject to Fraunhofer diffraction. Thus, one can generate Fourier 
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basis patterns by using the interference of two plane waves, which adds applicability to FSI, 
especially for the cases that SLMs are expensive or even not available. 

In short, FSI is more flexible and variant than HSI in terms of illumination patterns 
generation while HSI can benefit much more from the high-speed binary DMDs. 

2.3 Robustness to noise 

Both HSI and FSI are robust to dark noise and read-out noise in principle, because, as evident 
by Eq. (1) and Eq. (8), Hadamard transform and Fourier transform are global transformation. 
Global transformation has a property that each point (coefficient) in the transformation 
domain is a weighted sum of all points in the spatial domain and each point (image pixel) in 
the spatial domain is also a weighted sum of all points in the transformation domain. In other 
words, global transformation implies that each pixel in a reconstructed image is contributed 
by all measurements and such an averaging process allows evening out errors in 
measurement. Additionally, the average flux per each Hadamard/Fourier pattern is 
independent of the number of pixels, and each measurement collects on average half of the 
total flux. 

In terms of quantization errors, HSI outperforms FSI. It is because Fourier basis patterns 
continuously vary in space and magnitude. Thus, quantization errors will be caused when 
using digital devices [such as DMD or Liquid Crystal on Silicon (LCoS)] to generate Fourier 
basis patterns. Such errors would degenerate the quality of final reconstruction. On the other 
hand, Hadamard basis patterns are naturally in a discrete manner. Digital devices are able to 
generate quantization error-free Hadamard basis patterns. 

2.4 Efficiency 

We refer efficient single-pixel imaging to a technique that allows one to reconstruct a sharp 
image with a small number of measurements. Additionally, highly efficient single-pixel 
imaging enables time-lapse imaging. Since the throughput of a single-pixel imaging system is 
inherently limited by the readout rate of the single-pixel detector, it is of critical importance to 
improving the efficiency of single-pixel imaging techniques. 

The efficiency of a basis-scanning single-pixel imaging technique depends on how well 
the utilized transformation concentrates the image energy. If a transformation is able to highly 
concentrate the image energy within a waveband (i.e., a small number of coefficients have 
large magnitudes), one can simply measure those large-magnitude coefficients and omit the 
rest to improve efficiency. 

For natural images, energy is usually uniformly distributed in the spatial domain. Both 
Hadamard transform and Fourier transform have the ability to concentrate the image energy 
near the origin of their transformation domain. Thus, both HSI and FSI are able to reconstruct 
an imaging under Nyquist conditions by sampling coefficients with large magnitude. As will 
be quantitatively demonstrated in the following experimental comparison section, for natural 
images, Fourier transform gives a more condensed representation than Hadamard transform 
does. In other words, FSI outperforms HSI in terms of energy concentration. 

Moreover, the physical meaning of Fourier transform gives it the capability of 
characterizing the impulse-response of some optical system. Optical transfer function (OTF), 
defined as the Fourier transform of the point spread function, shows how different spatial 
frequencies are handled by the system. For most optical systems, the OTF is an equivalent 
low-pass spatial filter. As a result, the spatial information that an imaging system can collect 
is low-pass filtered. 

It can be seen that the characteristics of natural images and optical imaging system 
concentrate the image energy at the lower frequencies range of the Fourier domain. As such, 
it leads to rapid convergence in terms of reconstruction quality for FSI to sample the Fourier 
spectrum along the increment of spatial frequency. 
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In some diffraction-limited situations such as microscopy, the achievable spatial 
resolution is determined by the cut-off spatial frequency given by the diffraction limit. In this 
case, the optical system acts as a low-pass filter with a finite ability to resolve details. In 
mathematical terms, a diffracted-limited system sets a spatial cutoff frequency 0f  in the 

Fourier domain. Only the spatial information that falls into the circular low-frequency band 
with a radius of 0f  can be acquired through the system. Thus, the approach that FSI samples 

the Fourier spectrum along a circular path and stops at the cutoff frequency is the most 
effective for a diffraction-limited system in principle. If the spatial cut-off frequency of the 
system is given, FSI allows one to sample the circular low-frequency band only. Even if the 
spatial cut-off frequency is not given, FSI allows one to sample the Fourier domain along a 
circular path until the sampled energy is lower than a certain threshold. On the contrast, 
Hadamard basis patterns are actually step functions whose bandwidth is infinite. The 
diffraction-limited system applies low-pass filtering to the Hadamard basis patterns, resulting 
in blur. Consequently, undersampled reconstructions in HSI would be degraded. For HSI, the 
lower cut-off frequency is, the more remarkable degradation will be. 

Lower spatial frequency components are typically of much larger magnitude than higher 
spatial frequency components, as shown in Fig. 1. This prior knowledge implies a simple but 
efficient sampling strategy that only low-frequency components are needed to be sampled in 
the data-acquisition process. 

3. Comparison of experiment

3.1 Numerical simulations 

We firstly compare the performance of both techniques through numerical simulations using 
MATLAB. In the presented simulations, we focus on the quality of reconstructed images by 
using both techniques, especially when the images are undersampled. It should be emphasized 
that the throughput of single-pixel imaging systems is, in general, lower than conventional 
imaging systems and undersampling is a straightforward approach to reduce the number of 
measurements. Undersampling refers to acquire only the low-frequency coefficients and omit 
the high-frequency ones, given the prior knowledge that most energy of natural images is 
concentrated in low-frequency bands. Since sampling strategies may change the quality of the 
reconstructed images, we use three different sampling strategies for HSI and FSI without 
losing generality. The sampling strategies refer to the path along which coefficients are to be 
acquired. The sampling strategies in comparison are shown in Fig. 2. We note that the origin 
for Fourier spectra is located at the center of the pictures while the origin for Hadamard 
spectra is located at the left-top corner of the pictures. Therefore, Fourier spiral path is 
equivalent to Hadamard square path; Fourier diamond path is equivalent to Hadamard zig-zag 
path; Fourier circular path is equivalent to Hadamard circular path. The resolution of all 
reconstructed images in the presented numerical simulations is 64 64×  pixels. 

Fig. 2. Illustration of six sampling strategies used in our simulations. The pictures in the first 
row are sampling paths, according to which coefficients are acquired from low-frequency 
bands (blue) to high-frequency bands (red). The pictures in the second row are sample spectra 
acquired along the corresponding path. Spectra shown are with the sampling ratio of 50%. 
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Three different and characterized input images are used in the comparison, the 1951 
USAF test chart pattern, ‘Siemens star’ target pattern, and the Lena image. The 1951 USAF 
test chart pattern is a binary pattern consisting of groups of three bars with dimensions from 
big to small. The bars are along vertical and horizontal directions. The ‘Siemens star’ target 
pattern is also a binary pattern. It provides multiple contrast measurements from a wide range 
of spatial frequencies. Different from the USAF 1951 test chart pattern, the ‘Siemens star’ 
target pattern has many oblique features. The Lena image is one of the most widely used 
natural image in imaging system tests and has multiple gray levels. We use peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), and power ratio to quantitatively 
evaluate the quality of reconstructed images. Power ratio is a quantity which can evaluate the 
energy concentration ability, defined as power of the acquired spectrum to that of the 
complete spectrum ratio. Please note that, for Tables 1–3, the data in bold are the overall best 
results. 

Fig. 3. Comparison results for USAF 1951 test chart pattern reconstruction by HSI and FSI for 
different sampling ratios. 

Table 1. Quantitative comparison results for USAF 1951 test chart 

Strategy 
Sampling ratio 

1% 5% 10% 15% 20% 40% 60% 80% 

PNSR (dB) 

Hadamard 
circular 11.00 12.45 13.17 13.64 14.25 15.45 19.42 27.24 
square 10.93 12.39 13.04 13.49 13.84 15.09 16.68 20.94 
zig-zag 11.10 12.47 13.34 13.89 14.42 17.62 22.85 27.94 

Fourier 
circular 11.39 12.71 13.55 14.22 15.52 19.81 24.27 33.01 
spiral 11.37 12.66 13.28 13.91 14.51 18.48 22.19 26.59 

diamond 11.47 12.77 13.72 15.01 16.27 21.58 26.71 33.00 

SSIM (%) 

Hadamard 
circular 7.2 30.0 41.1 48.3 57.2 67.2 83.1 93.2 
square 9.3 28.4 39.7 48.5 51.4 69.0 74.8 86.4 
zig-zag 9.1 28.2 41.6 48.5 57.2 71.4 88.1 95.9 

Fourier 
circular 9.5 31.0 49.2 59.0 67.4 87.1 93.5 98.4 
spiral 9.9 31.8 44.3 54.8 62.7 84.1 91.6 95.9 

diamond 9.2 32.0 49.2 59.8 70.0 86.5 94.4 98.8 

Power (%) 

Hadamard 
circular 6.7 18.5 27.5 33.7 40.1 56.6 76.0 91.8 
square 6.4 18.0 26.5 32.6 37.5 53.7 69.0 86.1 
zig-zag 7.3 18.6 28.4 35.2 41.2 63.2 81.4 92.1 

Fourier 
circular 7.7 20.0 29.2 36.6 45.1 69.0 84.2 95.1 
spiral 7.6 19.8 27.5 34.6 41.0 65.6 80.9 91.5 

diamond 8.3 20.7 30.6 40.4 48.7 73.1 86.9 95.2 
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As the results shown in Fig. 3 and Table 1, FSI with the diamond path gives the best 
reconstruction for the USAF 1951 test chart pattern. With the diamond path, Fourier 
coefficients on both spatial frequency axes are acquired preferentially. Those Fourier 
coefficients corresponding to horizontal and vertical fringe patterns highly correlate with the 
features of the resolution target (that is, horizontal and vertical bars). Thus, FSI with diamond 
sampling strategy achieves better reconstruction than the others for the same sampling ratio. 

Fig. 4. Comparison results for “Siemens star” target pattern reconstruction by HSI and FSI for 
different sampling ratios. 

Table 2. Quantitative comparison results for ‘Siemens star’ 

Strategy 
Sampling ratio 

1% 5% 10% 15% 20% 40% 60% 80% 

PNSR (dB) 

Hadamard 
circular 8.01 10.24 11.12 12.21 14.02 16.17 18.21 23.70 
square 7.98 9.94 10.83 11.55 13.84 15.29 17.36 20.98 
zig-zag 7.98 10.16 11.36 12.16 13.82 16.39 19.37 24.05 

Fourier 
circular 8.08 11.88 14.67 16.00 17.08 21.47 25.32 30.39 
spiral 8.07 11.84 14.46 15.93 17.07 21.28 24.91 30.11 

diamond 8.05 11.82 14.39 15.77 16.81 20.93 24.39 29.88 

SSIM (%) 

Hadamard 
circular 10.0 43.1 52.4 62.2 72.2 82.1 87.0 93.2 
square 10.3 38.4 49.2 59.3 71.3 82.5 84.9 91.4 
zig-zag 10.1 41.7 53.9 60.5 70.5 81.6 88.6 94.2 

Fourier 
circular 11.1 54.6 74.9 80.1 83.9 93.8 96.5 98.6 
spiral 11.0 54.0 75.0 81.3 84.3 93.9 97.1 98.7 

diamond 9.6 55.6 71.9 78.7 82.6 92.0 95.9 98.4 

Power (%) 

Hadamard 
circular 8.9 22.9 31.2 39.5 48.3 63.8 76.6 90.6 
square 8.7 22.4 29.9 37.3 48.1 60.9 74.2 88.3 
zig-zag 8.6 22.3 32.1 39.5 47.2 64.7 79.1 90.8 

Fourier 
circular 9.4 28.1 42.8 51.3 57.7 76.2 87.1 94.8 
spiral 9.4 28.0 42.6 51.0 57.6 75.8 86.7 94.5 

diamond 9.3 28.5 42.5 50.9 57.2 75.4 86.3 94.8 

As the results shown in Fig. 4 and Table 2, FSI with the circular path gives the best 
reconstruction for the ‘Simens star’ image. The results by HSI, as they present, are with 
mosaic artifacts, especially for the oblique features. It is because, Hadamard basis patterns are 
mosaic look-alike, but lack of oblique features. 
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Fig. 5. Comparison results for ‘Lena’ image reconstruction by HSI and FSI for different 
sampling ratios. 

Table 3. Quantitative comparison results for ‘Lena’ 

Strategy 
Sampling ratio 

1% 5% 10% 15% 20% 40% 60% 80% 

PNSR (dB) 

Hadamard 
circular 16.65 19.54 20.77 21.74 22.85 24.71 27.16 31.48 
square 16.70 19.46 20.61 21.43 22.44 24.32 26.02 29.58 
zig-zag 16.76 19.38 20.93 21.92 22.69 25.26 28.07 32.16 

Fourier 
circular 17.28 20.76 22.70 23.96 25.12 29.22 33.65 39.29 
spiral 17.35 20.70 22.50 23.96 25.07 28.90 32.99 37.93 

diamond 17.26 20.70 22.63 23.91 24.84 29.07 33.24 38.61 

SSIM (%) 

Hadamard 
circular 27.1 49.6 60.2 67.3 75.7 84.2 89.7 95.8 
square 27.0 48.9 58.9 64.9 72.4 83.1 87.9 92.9 
zig-zag 30.4 48.0 61.7 69.6 73.6 85.1 92.2 96.7 

Fourier 
circular 27.3 58.4 72.6 79.6 83.8 92.4 96.9 99.2 
spiral 27.6 58.5 71.2 79.3 83.8 92.0 96.2 98.5 

diamond 26.5 58.5 72.2 79.5 83.0 92.7 97.0 99.2 

Power (%) 

Hadamard 
circular 15.6 30.2 39.3 46.6 53.2 67.3 79.3 90.8 
square 15.8 30.4 38.7 45.4 51.9 65.6 76.8 88.7 
zig-zag 16.0 29.8 39.9 47.0 52.8 68.9 81.1 91.5 

Fourier 
circular 17.6 35.3 46.3 53.6 59.8 76.8 87.8 95.3 
spiral 18.0 35.4 46.2 53.7 59.8 76.7 87.5 94.7 

diamond 18.1 35.4 46.4 53.8 59.4 76.6 87.7 95.1 

As the results shown in Fig. 5 and Table 3, FSI outperforms HSI for the ‘Lena’ image 
which is a natural image. However, both techniques introduce observable artifacts when 
sampling ratio is too low. HSI introduces mosaic artifacts while FSI introduces ringing 
artifacts. 

Without loss of generality, we test all images in the USC-SIPI image database [41]. The 
database consists of 632 images and all the images are categorized into four groups—textures, 
aerials, miscellaneous, and sequences. Similarly, for every single image, we evaluate 
reconstruction quality of the six sampling strategies using PSNR, SSIM, and power ratio. The 
statistical comparison results are derived by counting the overall best for each image. The 
results are shown in Fig. 6. Based on the comparison results, it is found that FSI has better 
performance than HSI in terms of reconstruction quality in the situations of undersampling. It 
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is also found that for natural images reconstruction circular path is the best sampling strategy 
for FSI and zig-zag path is the best sampling strategy for HSI. 

Fig. 6. Statistical comparison results for all four different kinds of images in the USC-SIPI 
Image Database by HSI and FSI. (a) aerials, (b) miscellaneous, (c) sequences, and (d) textures. 
The bars indicate the image count of overall best for six different sampling strategies. 

Furthermore, we consider the case that the imaging system is diffraction-limited. We 
assume that the OTF of the system is an ideal low-pass filter whose cut-off frequency is 

0 0.25f =  pixel−1, indicated by the dash circles in Fig. 7. The ‘Baboon’ image is used as the 

ground truth and we reconstruct the image by HSI and FSI under different sampling ratios. 
HSI employs the zig-zag sampling path while FSI employs the circular sampling path. As 
OTF is commonly represented in the Fourier space, we give the Fourier spectrum for all 
reconstructions, even for those by HSI, so as to show how the OTF affects the reconstruction. 
As the results shown in Fig. 7, the quality of reconstructions by FSI converges after the 
sampling zone reaches the boundary set by the cut-off frequency. For the results by HSI, 
although the recovered spatial information fills up the low-pass band, the value of the 
recovered Fourier coefficients is inaccurate when undersampled. The coefficients are 
corrected gradually as the sampling ratio increases. As indicated by the curves of PSNR, 
SSIM, and RMSE, the convergence of HSI is lower than that of FSI. 
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Fig. 7. Results of diffraction-limited system simulation. The OTF is assumed to be an ideal 

low-pass filter whose cut-off frequency is 0f .

The simulations above demonstrate that quality of sub-Nyquist sampled images depends 
on the energy concentration ability of the utilized transformation and the sampling strategy. 
For natural images, Fourier transform has better energy concentration ability than Hadamard 
transform, because the correlation between a Fourier basis pattern and a natural image is 
larger than that between a Hadamard pattern and a natural image. Or in other words, Fourier 
basis patterns are more similar to the natural images than Hadamard basis patterns. Thus, FSI 
outperforms HSI in terms of reconstruction quality under sub-Nyquist sampling conditions. 

We further compare the both techniques in terms of robustness to noise. Without loss of 
generality, we use both the ‘Lena’ and the ‘Cameraman’ images for the test. To simulate 
cases of different noise levels, we add white Gaussian noise to the raw data (that is, 
measurements D ) resulting in different SNRs. The addition of white Gaussian noise is 
implemented by using the built-in function awgn() of MATLAB. We jointly use PSNR, 
SSIM, and root mean square error (RMSE) to evaluate the reconstruction quality. The 
PSNRs, SSIMs and RMSEs are computed with the ground truth as reference. The results are 
shown in Figs. 8 and 9 and highly consistent. According to the results, HSI is more robust to 
FSI. It turns out that there’s a tradeoff between energy concentration and robustness against 
noise. 
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Fig. 8. Noise-robustness comparison using the ‘Lena’ image. (a) PSNR, (b) SSIM, (c) RMSE, 
and (d) reconstructed images under different SNRs. 

Fig. 9. Noise-robustness comparison using the ‘Cameraman’ image. (a) PSNR, (b) SSIM, (c) 
RMSE, and (d) reconstructed images under different SNRs. 

Furthermore, we examine the effect of quantization error on the quality of reconstructed 
image in FSI. We quantize the Fourier basis patterns under different levels. For instance, for 

quantization levels Q , the Fourier basis patterns are quantized by ( )Fround ,Q P x y Q⋅   .

The input image used in this simulation is the ‘Pepper’ image. Figure 10 shows the 
reconstruction for quantization levels 2, 4, 8, 16, …, 512. As the figure shows, when the 
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number of quantization levels is 2, which equivalent to binarize the Fourier basis patterns by 
thresholding, it would make the reconstruction drenched into periodic artifacts. When the 
number of quantization levels is 4, the quantization errors result in a grid overlay on the 
reconstruction. The grid fades away as the number of quantization levels increases and 
becomes unnoticeable when the number of quantization levels is 64. It should be noted that 
SLMs commonly have 256 quantization levels 

Fig. 10. Quantization errors test for FSI. The reconstruction results for different quantization 
levels (a) 2, (b) 4, (c) 8, (d) 16, (e) 32, (f) 64, (g) 128, (h) 256, and (i) 512. (j) shows the 
ground truth. 

3.2 Experiments 

We further compare HSI and FSI with experimental data. The first experiment is single-pixel 
photography using a commercial digital projector (Acer K750) for spatial light illumination. 
The experimental set-up is shown in Fig. 11. The projector switches pattern every 0.2 
seconds. A photodiode (HAMAMATSU S1227-1010BR) is used as a single-pixel detector. 
The active area of the photodiode is 1 × 1 cm2. The photodiode is driven by a customized 
amplifier circuit. We don’t use any lenses in front of the photodiode for light coupling and the 
photodiode detects the back-scattered light from the scene directly. The resultant electric 
signals are delivered to a data acquisition board [National Instruments USB-6343 (BNC)]. 
The digitalized data is finally collected by the computer. The methods in comparison are 
differential HSI and 4-step FSI. 

Fig. 11. Experimental set-up for single-pixel photography where a commercial digital projector 
is used for illumination. 

The results are shown in Fig. 12. The resolution of the reconstructed images is 256 × 256 
pixels. As the figure shows, the FSI presents more clear and sharp reconstructions than HSI 
does in the case of undersampling. The advantage of FSI is relatively observable for the 
sampling ratio lower than 10%. The results in this experiment coincide with those derived in 
the numerical simulations. 
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Fig. 12. Comparison results of single-pixel photography. Scale bar = 4 cm. 

The second experiment is fast single-pixel imaging. As the experimental set-up shown in 
Fig. 13, we employ a DLP development kit to achieve high-speed illumination. The DLP 
development kit is equipped with a 0.7-inch DMD. The DMD has 1024 × 768 micro mirrors, 
each of which is 13.6 × 13.6 μm2 in size. The light source is a 3-watt white LED. The DMD 
operates at 2,000 Hz, allowing 2,000 binary patterns projection per second. The patterns 
generated by the DMD are projected onto the scene through a lenses system. The lenses 
system is removed from a commercial digital projector (Toshiba T-95). The back-scattered 
light is detected using a photomultipliers tube (Thorlabs PMM01). The photomultipliers tube 
has a self-owned collecting lens for better light coupling. The resultant electronic signals are 
transferred to the computer via a data acquisition board [National Instruments USB-6343 
(BNC)]. The object to be imaged is some stationery and a piece of A4 paper printed an 
enlarged 1951 USAF resolution test pattern. The object is under illumination by basis 
patterns. The methods in comparison are differential HSI 3-step binary FSI, and 4-step binary 
FSI. The reason why we use binary FSI in this experiment for comparison is that the original 
FSI is not able to directly use a high-speed DMD for high-speed imaging. It is because the 
original FSI uses grayscale patterns for illumination, while even an edge-cutting DMD can 
only display ~250 8-bit grayscale patterns per second, which is a shortcoming of the original 
FSI. 
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Fig. 13. Experimental set-up for fast single-pixel photography where a DMD development kit 
is used for illumination. 

The resolution of illumination patterns is 256 × 256 pixels. For binary FSI, the patterns 
are upsampled using ‘bicubic’ interpolation so that the resolution of the images becomes 512 
× 512 pixels, twice of the original. Floyd-Steinberg dithering is then applied to the upsampled 
Fourier basis patterns. For HSI, the Hadamard basis patterns are upsampled to be 512 × 512 
pixels using ‘nearest’ interpolation. The comparison results are presented in Fig. 14. 

Fig. 14. Comparison results for fast single-pixel photography. Scale bar = 4 cm. 

Based on the comparison results, binary FSI outperforms HSI in terms of reconstruction 
quality in the case of a small number of measurements. In the case of 1,000 measurements, 
heavy ringing artifacts present in the results of FSI while HSI gives a mosaic reconstruction. 
3-step FSI is the only technique that can reconstruct the horizontal lines on the pencil holder,
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showing its advantage in extremely undersampled cases. In the case of 4,000 measurements, 
3-step binary FSI gives better reconstruction, which is evident by that all five pencils in the
holder on the right become distinguishable. In the case of 8,000, the results by both FSI
techniques are satisfactory, except that there still ringing artifacts on the background while the
result by HSI is of mosaic, especially for the oblique structures such as the pencil in the left
pencil holder. HSI outperforms FSI in terms of uniform pattern reconstruction. The
background in the reconstruction by HSI is free of artifacts or noises. In the case of 30,000
measurements, the result by HSI looks as good as those by FSI. In the case of 98,304, the
result by HSI is even better than those by FSI in terms of noise level. The noise on the
background of the results by FSI becomes noticeable, which is due to the quantization errors.

In short, in the case of a small number of measurements, FSI outperforms HSI for FSI has 
better energy concentration ability than HSI. In the case of a large number of measurements, 
HSI has better reconstruction quality than binary FSI. It is because binary FSI introduces 
quantization errors when generates binary Fourier basis patterns using dithering. 

The third experiment is microscopy where we use a digital light projector (Texas 
Instruments LightCrafter Display 4710 evaluation module) along with a tube lens and an 
objective lens [Olympus 10X objective (NA = 0.4)] for illumination patterns generation. The 
experiment set-up is shown in Fig. 15. The DMD of the projector consists of 1920× 1080 
micro mirrors whose pitch is 5.4 microns. A Si amplified photodetector (Thorlabs PDA-
100A) is used as a single-pixel detector that collects the transmitted light through the object. 
The model of the data acquisition board used in this experiment is National Instruments USB-
6363 (BNC). The object to be imaged is a USAF1951 resolution target (Ready Optics 
#2015A). Please note that to make full use of the area the DMD, we use 4 × 4-pixel binning 
in this experiment. The resolution of illuminations patterns is 256 × 256 pixels and each 
pattern uses 1024 × 1024 mirrors for illumination. The illumination patterns switch every 0.2 
seconds. 

Fig. 15. Comparison results for single-pixel microscopy. 

Figures 16 and 17 show the comparison results for single-pixel microscopy. Please note 
that Fig. 17 shows the partial enlargement of the results in Fig. 16. 
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Fig. 16. Comparison results for single-pixel microscopy. The enlarged partial image (in the red 
box) are shown in Fig. 17. 

As the results shown, FSI presents clearer and sharper reconstruction than HSI in the case 
of undersampling, especially when the sampling ratio is under 10%. For instance, the digits 
and the bars of the 6th group become distinguishable for the results by FSI. For the full-
sampled cases, HSI presents as good results as FSI does. 

Fig. 17. The partial enlargement of the images shown in Fig. 16. 
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4. Conclusion
We present a systematic comparison between the HSI and the FSI in principle and 
experiments. The overall comparison is summarized in Table 4. According to the principle 
analysis and the experimental results, we conclude that the FSI is more efficient than the HSI 
as Fourier transform better concentrates image energy than Hadamard transform does. 
Additionally, the 3-step FSI allows measurement reduction in the case of differential 
measurement. Thus, for applications where efficiency is concerned, the FSI is the primary 
selection. We also conclude that the HSI has better noise robustness than the FSI and is 
perfectly suitable for DMD-based single-pixel imaging systems. Therefore, for applications 
where image quality or accuracy is concerned, the HSI is the primary selection. 

Table 4. Comparison between HSI and FSI 

HSI 
FSI 

Original FSI Binary FSI 
Perfect reconstruction Yes Yes No 

Measurements for each 
coefficient (direct 

sampling) 
1 1 1

Measurements for each 
coefficient (differential 

sampling) 
2 1.5 (3-step); 2 (4-step) 1.5 (3-step); 2 (4-step) 

Grayscale levels Binary Multiple Binary 
Robust to dark / read-out 

noise 
Yes Yes Yes

Robust to quantization 
errors 

Yes No Yes

Reconstruction for 
arbitrary-size image 

No Yes Yes

Patterns generation 
methods 

Spatial light 
modulator 

Spatial light 
modulator / 

Interference of planar 
waves 

Spatial light 
modulator 
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