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I. Introduction

Cancer is a complex, heterogeneous disease, characterized by many interaction processes on, 

and across, multiple scales in time and space that act in concert to drive cancer formation, 

progression, invasion, and metastasis [1]. These processes range from molecular reactions to 

cell-cell interactions, to tumor growth and invasion on the tissue-scale, and even to larger 

scales, such as the physiology, pathophysiology, and population scales. In addition, many 

cancer properties (including, e.g., size, cell density, extracellular ligands, cellular receptors, 

mutation type(s), phenotypic distribution, vasculature status, blood vessel permeability, and 

treatment prognosis) are dynamic and patient-dependent, changing and evolving with both 

time and treatments. For example, cell death rate may change over time due to 

chemotherapy. All these dynamically changing cancer properties make development of 

effective cancer therapies extremely difficult.

Computational modeling has the potential to predict complex behaviors of cancer, elucidate 

regulatory mechanisms, and help inform experimental design [2]. Everyone would agree that 

computer simulations are usually more cost-effective, efficient, and tractable, relative to 

laboratory experiments. This is especially true when testing combinations of parameters that 

can be varied simultaneously in a controlled manner and over a wide range of values – a 

process which can easily become expensive and time-consuming using traditional wet lab 

techniques. As our understanding of cancer biology and treatment evolves, multiscale cancer 

models (i.e., computer models that examine cancer behavior across different spatial, 

temporal, and/or functional biological scales) are uniquely positioned to capture the space- 

and time-dependent changes and the heterogeneities that occur in tumor properties, and to 

provide potentially clinically useful insights. Using these multiscale models, one can 

quantitatively study how separate or collective changes in parameters related to tumor 

pathological, chemical, and physical processes on one scale affect parameters or functions 

on another scale – information that would not be accessible through scale-specific models. 

For example, perturbations of smaller-scale parameters (e.g., drug-cell binding kinetics) can 

generate observable and measurable changes in larger-scale outputs (e.g., tumor size and 

shape), thus allowing for identification of the smaller-scale parameters (and their 

combinations) that have significant impact on larger-scale outputs.
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Multiscale modeling is now being conducted iteratively with experiments and used as a 

means to investigate cancer phenomena in more experimentally relevant ways. At the same 

time, new approaches in multiscale modeling are being developed to bridge the relevant 

scales for a specific problem of interest. From a broader perspective, multiscale models can 

help biologists and medical scientists test experimental hypotheses, facilitate drug 

development, reveal new biomarkers and drug targets, predict biological mechanisms and 

treatment responses, and optimize drug delivery and therapeutic effect [3–6].

II. Multiscale Modeling Methods and Overview of this Special Section

Here, we will briefly discuss continuum, discrete, and hybrid approaches in modeling cancer 

behavior and treatment, and we encourage the reader to refer to, e.g., [7–10] for more in-

depth discussions. Continuum modeling describes tumor growth by implementing model 

variables as continuous fields, mostly by means of ordinary or partial differential equations, 

but cannot be used to examine discrete cell-cell and cell-environment interaction events. 

Because the representation of large scale factors by relatively few equations is 

computationally less demanding (than discrete methods), this approach is more appropriate 

for studying larger-scale systems, such as tissues, organs, and populations. Discrete 

modeling is basically a stochastic approach, and can be used to predict emergent properties 

generated by interactions amongst individual entities (usually cells or cell clusters). 

However, the computational demand increases rapidly with the number of entities modeled 

(and their interactions), limiting the spatial and temporal scales that a discrete model can 

represent. Hybrid models couple continuous and discrete systems in order to best describe 

and capture biological information across spatial scales. Individual cells are often treated 

discretely, but interact with overlying chemical and mechanical fields which are modeled as 

continua. Hybrid modeling presents a promising strategy for characterizing cancer systems; 

indeed, the complexity of cancer systems and the interactions among their constitutive 

elements is probably best described by a hybrid continuum and discrete approach.

This Special Section includes five articles, with two based on a continuum approach and 

three on a discrete-continuum hybrid approach. All papers have gone through a rigorous 

peer-review procedure, according to the journal’s editorial policy. It is interesting and 

exciting to see that, in addition to presenting models that address important questions in 

cancer progression, all five papers have demonstrated additional potential by suggesting new 

approaches for developing more effective and personalized cancer therapies based on their 

modeling results. This exhibits a clear trend in this field. We also believe this Special 

Section should inspire opportunities for further research within and beyond the study of 

cancer.

Brown et al. [11] point out that current research in cancer chemoresistance is typically 

limited to the evolutionary adaptive phenotypic properties of individual cells. They apply the 

ecological concept of aggregation effects to a continuum mathematical model that accounts 

for the interactions between populations of phenotypically and environmentally diverse 

tumor cells. In their model, the response of an individual cancer cell to an externally applied 

therapy may be altered by its interactions with neighboring cells; thus, the outcome of the 

perturbation(s) may be substantially different than expected based on the phenotypic 
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properties of the cell alone. They studied four different types of aggregation effects, and 

found that these aggregation effects influence response to chemotherapy independent of the 

properties of individual cells. While validation of the model with appropriate in vivo 
experiments remains to be done, this model has shown how important it is for the design of 

evolutionarily-based therapies to take into account the detrimental effects that neighboring 

cells may have on each other.

Kim et al. [12] present a continuum model of reaction-diffusion type to investigate how 

glioma cells can manipulate, through cell-cell signaling, the microglia so that, instead of 

mounting an immune response, the latter actually promote tumor invasion. The purpose of 

this study was to understand and identify important factors in determining the active 

components of invasive glioma cell movement (haptotaxis and chemotaxis). Model results 

were found to be in agreement with a series of experimental observations. Furthermore, 

sensitivity analyses of model parameters show that blocking both transforming growth factor 

beta (TGF-β) signaling and matrix metalloproteinase (MMP) activity simultaneously can 

effectively block the glioma invasion in the system investigated. Hence, this result suggests a 

new, potentially effective therapeutic approach for preventing glioma cells from invading the 

surrounding tissues.

Grogan et al. [13] develop a hybrid multiscale agent-based model to investigate how the 

structure and distribution of microvascular networks influences tissue oxygenation and the 

tumor response to radiotherapy. While it is well-accepted that the maturity of the tumor 

vascularity affects oxygen delivery – a process known as “vessel normalization” [14], 

relatively little attention has been paid to the effect of the spatial distribution of the 

vasculature. Grogan et al. analyzed artificial vessel networks and biologically-derived vessel 

networks (obtained from imaging data from well-vascularized mouse tumors) with their 

model. Simulation results showed no significant differences in either tissue oxygen levels or 

tumor burden when 3D simulations were generated from the three different types of vessel 

networks under consideration; however, in 2D there can be significant differences. Further 

development of this model may provide insight into how vessel normalization strategies can 

be administered to maximize the radiotherapy efficacy and how radiotherapy, alone or in 

combination with other treatment methods, can be personalized for individual patients.

Picco et al. [15] propose a 2D spatially-extended hybrid model to examine the role of 

context-driven cancer stem cell (CSC) plasticity in the early stage of breast cancer. CSC is 

the name given to a small population of cancer cells that are hypothesized [16] to self-renew 

and give rise to subpopulations of more differentiated cells with limited capacity for 

proliferation. In this model, stemness continuously varies across a phenotypic spectrum and 

is also directly modulated by the local environment (the so-called “stem cell niche”). After 

introducing mutation to induce carcinogenesis in homeostatic mammary duct cells, the 

model predicts an invasive phenotype that breaches the duct structure, invading out of the 

lumen and into surrounding tissue. Their results highlight that the stem cell niche is a 

dynamic and emergent property of the interactions that occur between cells and 

environmental factors, motivating a new therapeutic perspective that accounts for, and 

targets, both the dynamic and emergent nature of the niche.
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Yan et al. [17] present a 3D hybrid model of glioblastoma (GBM) progression and 

vasculature growth which accounts for the feedback among various cell types considered in 

a cell lineage, tumor-induced vascularization, and crosstalk between vascular endothelial 

cells (VECs) and glioma stem cells (GSCs). The VEC-GSC crosstalk was implemented via 

vascular endothelial growth factor (VEGF), which promotes vessel formation, and a VEC-

secreted factor that promotes GSC self-renewal and proliferation. Model analysis found that 

partially disrupting the VEC-GSC crosstalk reduces tumor size but does not significantly 

increase invasiveness. This result is interesting because current anti-angiogenic therapies 

show a somewhat opposite outcome: while tumor size can be reduced, tumor invasiveness 

may be increased [18]. Hence, further investigation of the anti-tumor effects of blocking this 

VEC-GSC crosstalk is both needed and expected, and this crosstalk may serve as a new 

target for GBM treatment.

III. Future Directions

It is clear that multiscale modeling can complement current experimental and clinical studies 

in prevention, diagnosis, and treatment of cancer, and it also has the potential for shaping 

current research in cancer biology [9]. In particular, the exponential growth of 

multidimensional biological data requires a parallel growth in quantitative modeling 

methods to explain non-intuitive observations from such data [19]. Thus, it is foreseeable 

that multiscale modeling will become ever more important, as more quantitative 

measurements become available from preclinical models and patient samples.

We emphasize that any computational model, including multiscale models, should be 

appropriately parameterized, extensively tested, and thoroughly validated, at least within the 

defined context of use. In particular, as with all modeling efforts, validation is key to 

achieving acceptance in the cancer biology and clinical oncology communities. Some of the 

modeling approaches that are being presently developed can be extended to couple with 

quantitative data from high-throughput experimental methodologies or specific patient data 

to individualize the models to improve predictive power. Indeed, mechanism-based 

multiscale models that include patient-specific parameters are an important complement to 

current statistical approaches in developing more personalized medicine [20–24]. It is our 

hope that the techniques and practices presented and discussed in this Special Section will 

guide future efforts in this field toward the development of high-quality and more predictive 

multiscale models.
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