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Abstract

Congenital heart disease is the most common birth defect, and due to major advances in medical 

and surgical management, there are now more adults living with CHD than children. Until 

recently, the cause of the majority of CHD was unknown. Advances in genomic technologies have 

discovered the genetic etiology of a significant fraction of CHD, while at the same time pointing to 

remarkable complexity in CHD genetics. This review will focus on the evidence for genetic causes 

underlying CHD and discuss data supporting both monogenic and complex genetic mechanisms 

underlying CHD. The discoveries from CHD genetic studies draw attention to biological pathways 

that simultaneously open the door to a better understanding of cardiac development, and impact 

clinical care of CHD patients. Finally, we address clinical genetic evaluation of patients and 

families affected by CHD.
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CHD epidemiology: evidence for genetics underlying CHD

Congenital heart disease (CHD) is a structural abnormality of the heart and/or great vessels 

that is present at birth1. It is the most common birth defect, affecting approximately 1% of 

all liveborn infants2. CHD results from perturbation of the normal program of cardiac 

development (Fig. 1A). Historically, CHD has been categorized based on a combination of 

final anatomic and physiologic phenotypes (Fig. 1B), such as conotruncal defects that affect 

the ventricular septum and outflow tract (CTD), defects that lead to obstruction to left 

ventricular outflow (LVO), defects resulting from abnormal left-right relationships within 

the heart (heterotaxy, HTX), defects affecting the inflow such as the mitral and tricuspid 

valve abnormalities seen in atrioventricular canal defect, and a broad range of other defects 
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including isolated atrial or ventricular septal defects3. Approximately one third of patients 

with CHD have disease that is categorized as severe (comprising univentricular hearts, HTX, 

CTD, atrioventricular canal defects, total anomalous pulmonary venous return, left 

ventricular outflow obstruction, and right ventricular outflow obstruction except isolated 

valvar pulmonary stenosis) and require intervention in the first year of life4. Despite progress 

in medical and surgical treatments, CHD remains the leading cause of mortality from birth 

defects in the developed world. Further, among the world’s poorest populations, CHD has a 

greater contribution to cardiovascular disease associated disability-adjusted life-years than 

ischemic heart disease or stroke5.

The natural history of severe congenital heart disease was altered dramatically by the 

performance of the first systemic to pulmonary artery shunt procedure by Helen Taussig, 

Vivien Thomas and Alfred Blalock6. Since then, an almost universally lethal condition has 

become progressively more approachable through a combination of surgical, catheter-based 

and medical interventions. In the modern era, patients in developed countries undergoing 

CHD surgery, including those with complex CHD, have 10-year survival exceeding 80%1. 

This has resulted in an ever-increasing population of adults who are living with CHD, and 

there are now more people over the age of 18 with CHD than children with CHD7.

While hemodynamic management of CHD has improved dramatically, many patients with 

CHD have significant cardiac and extracardiac co-morbidities that impact their quality of 

life. Patients with repaired or palliated CHD are at risk for developing arrhythmias and 

myocardial dysfunction; in addition, 13.6% have associated extracardiac structural 

malformations, compared to 7% in the control population. Potentially the largest impact on 

quality of life in patients with CHD is from associated neurodevelopmental disabilities 

(NDD); the prevalence of NDD in the CHD population ranges from 10% in patients with 

mild CHD to over 50% in patients with severe CHD who require surgery during infancy8.

The underlying causes of CHD remains relatively poorly understood, and although it has 

long been thought to have both genetic and environmental contributions, the epidemiology 

of CHD points to genetics contributing to the majority of CHD. The overall incidence of 

CHD has been very stable at 0.8–1.1% of live births, with small changes in CHD incidence 

attributable to improved diagnostic methods such as increased detection of small septal 

defects via echocardiography9, 10. Although there is little evidence of temporal or 

geographic variation in overall incidence to suggest an environmental trigger, there are small 

differences in the types of CHD observed in different populations, such as the increased 

number of LVO lesions amongst white children compared to an increase in RV obstruction 

amongst Chinese children, which suggests population-specific genetic contributions2, 11.

Evidence supporting the genetic contribution to CHD can be gleaned from a number of 

sources. There is greater concordance of CHD in monozygotic than dizygotic twins12, 13, 

although there is evidence that twinning itself increases risk of CHD14,15. The risk of 

recurrence of related forms of CHD among siblings is elevated, ranging from 3.4 for ASDs 

to 79.1 for heterotaxy in the Danish national cohort study16; there is a smaller, but still 

significantly increased risk recurrence for discordant CHD17. Additionally, rare Mendelian 

forms of CHD, comprising a small fraction of all cases, been described. These include forms 
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of ASD18, HTX19, severe mitral valve prolapse20, 21, and Bicuspid Aortic Valve22. The 

increased incidence of CHD in populations with high levels of consanguinity suggests a role 

for recessive genetic contributions23. However, it is striking that a large fraction of CHD, 

particularly of severely affected subjects, occurs in families with no other history of CHD. 

This suggests the possibility that a significant fraction of these cases is attributable to de 
novo genetic events including chromosomal abnormalities, smaller copy number variants 

and point mutations. The severity of CHD in these instances is likely to impair reproductive 

fitness, limiting transmission of these large-effect mutations and accounting for the absence 

of extended pedigrees supporting dominant modes of transmission.

Collectively, these findings point to a major genetic contribution to CHD (Fig. 1C). This 

observational data does not allow insight into whether CHD in individual subjects is 

attributable to single loci with large effect, a few loci with epistatic or additive interactions, 

polygenic effects of many loci, or various combinations of these models together. 

Additionally, the possibility of gene-environment interaction is an important consideration. 

The aggregate of genetic contributions to CHD are likely to not only underlie the structural 

CHD, but also be major contributors to CHD co-morbidities including heart failure, 

arrhythmia, neurocognitive outcomes, and even to the observation that cancer rates are 

higher in adults with CHD24. As CHD contributes to an ever-increasing amount of the 

overall burden of cardiovascular disease25, a thorough understanding of the underlying 

genetics will become ever more important to improved care of patients with CHD.

Established genetic contributions to CHD

Aneuploidy

Aneuploidies were the earliest identified genetic causes of CHD. Estimates of the proportion 

of CHD associated with cytogenetic abnormalities range from 9–18%26. The large number 

of genes that are dysregulated in the setting of aneuploidy results in effects on development 

that are often pleiotropic and severe, and 98% of fetuses with CHD and cytogenetic 

abnormalities have at least one extracardiac abnormality27. CHD is observed in 35–50% of 

liveborns with trisomy 21, 60–80% of liveborns with trisomy 13 and trisomy 18, and 33% 

with monosomy X. Further, there is a large effect on overall viability, as evidenced by the 

33–42% incidence of aneuploidy amongst fetuses with prenatally diagnosed CHD, 

compared to 9–18% amongst neonates with CHD27. The types of CHD associated with 

specific aneuploidies covers a broad range of CHD phenotypes, although there are lesions 

that are more prominently associated with specific chromosomal abnormalities, such as 

atrioventricular septal defects in trisomy 21. The large numbers of genes with dosage 

disturbance in aneuploidy make it more challenging to pinpoint the underlying genetic and 

developmental mechanisms. However, insights have been gleaned from studies of patients 

with rare segmental trisomies affecting chromosome 21 suggesting that DSCAM and 

COL6A contribute to Down Syndrome-associated CHD28. Interestingly, overexpression of 

both DSCAM and COL6A in mice leads to heart abnormalities, while overexpression of 

either gene alone does not affect heart development29.
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Copy number variation

Copy number variation (CNV) refers to structural aberrations consisting of deletions or 

duplications ranging in size from 1 kb to several megabases and leading to altered dosage of 

genes encompassed by the CNV. Low-copy repeats and retrotransposons found throughout 

the genome form the substrate for CNV formation30. CNVs can occur de-novo, or be 

inherited. Millions of SNPs (Single Nucleotide Polymorphisms), each typically with 

population allele frequency >1%, can be simultaneously genotyped at very low cost through 

dense array-based platforms. This technology permits identification of regions of genome 

duplication and deletion in both coding and non-coding regions of the genome. More 

recently, CNVs have also been detected through whole exome and genome sequencing data. 

Comparison of dense array-based platforms with whole-exome sequencing showed that each 

strategy only identified ~70% of the CNVs that should have been detected,31 and therefore 

together may provide substantial complementary information.

Several well-characterized large CNVs underlie recognized clinical syndromes that include 

CHD. Del22q11, a deletion of ~3mB resulting from flanking low-copy repeats, is the most 

common human microdeletion. It presents with a variable phenotype encompassing 

congenital heart disease, palate abnormalities, hypocalcemia, immunodeficiency, 

characteristic facial features, and neurodevelopmental abnormalities including learning 

disabilities and psychiatric disorders, also known as DiGeorge Syndrome and Velocardio-

facial syndrome. Del22q11 includes the T-Box transcription factor TBX1, and 

haploinsufficiency for TBX1 underlies the cardio-pharyngeal phenotype32–34. Recent work 

in mice haploinsufficient for Tbx1 delineates regulation of H3K4me1 enrichment, providing 

an intriguing link between TBX1 and chromatin remodeling in CHD35. Other CHD-

associated CNVs that are well characterized include del8p23, which includes the cardiac 

transcription factor GATA4 and manifests with a range of CHD along with developmental 

delay36; del7q11, the cause of William Syndrome, wherein the cardiac disease consists of 

supravalvar aortic and pulmonary stenosis and results from haploinsufficiency for 

Elastin37, 38; del 11q24-25 resulting in Jacobsen Syndrome39, 40. Recent analyses of larger 

cohorts of patients with CHD found several recurrent CNVs associated with CHD, including 

1q21.1, 3p25.1, 16p13.11, 15q11.2 and 2p13.331, 41.

Beyond specific syndromes associated with CNVs, their global contribution to CHD has 

been investigated in several large cohorts of patients with specific CHD: Tetralogy of 

Fallot41, Heterotaxy42 and Hypoplastic Left Heart43–45, all of which show an 

overrepresentation of rare CNVs, and de-novo CNVs, in patients with CHD compared to 

controls46. An increased burden of CNVs was also detected in non-syndromic patients with 

mild-to-moderate severity CHD47. The availability of chromosomal microarray testing as a 

standard clinical test has increased the awareness of the contribution of CNVs to congenital 

heart disease, and clinical and research-based testing suggests that CNVs contribute to 10–

15% of CHD48. As previously noted, given the inherent limitations of most commonly used 

platforms for CNV detection for optimal sensitivity, the contribution of CNVs to disease 

phenotypes may underestimate their contribution31.
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Inherited point mutations: Mendelian and inherited CHD

Remarkable insights into Mendelian and inherited forms of CHD have emerged from classic 

linkage analyses, positional cloning and targeted sequencing of CHD candidate genes. Many 

of the genes first implicated in inherited CHD are members of a core group of cardiac 

transcription factors that includes NKX2.5, the GATA family of zinc-finger proteins, T-box 

factors including TBX5 and TBX1 and MEF2 factors (reviewed in49–51). Mutations in 

NKX2.5 were one of the first inherited point mutations clearly shown to cause human CHD. 

NKX2.5 is a transcriptional regulator that interacts with GATA4 to specify cardiac 

mesoderm, first identified in Drosophila mutants that had complete failure to form a heart 

tube52. Evaluation of large pedigrees that included individuals with isolated ASDs, and 

individuals with ASDs along with abnormalities of the conduction system subsequently 

identified NKX2.5 mutation underlying both the ASD and conduction system defects. 

Notably, some affected individuals had the ASD alone, others had the conduction defect 

alone, and some had both the ASD and the conduction defect53. The phenotypic 

heterogeneity associated with NKX2.5 mutations is remarkable, encompassing a wide range 

of CHD beyond ASDs, including HTX and Tetralogy of Fallot54. It is interesting to 

speculate whether the wide spectrum of CHD results from differences in genetic 

background, or interaction between an at-risk genotype and environmental influences that 

may include subtle variation in hemodynamics in-utero during critical times in cardiac 

development. GATA4 is a zinc-finger transcription factor essential for cardiogenesis that 

directly associates with NKX2.555. GATA4 mutations were implicated in two families with 

CHD with cardiac septal defects56.

Mutations in TBX5, a T-box protein, were likewise implicated in two families with Holt-

Oram Syndrome, a disease characterized by upper limb malformations and cardiac 

abnormalities (septation and conduction defects)57, 58. TBX5 is notably expressed in both 

the developing forelimb buds and the heart, and similar to other T-box proteins, regulates 

cell fate and crucial developmental processes. Further evidence of causality has emerged 

from heterozygous Tbx5 null mice displaying limb abnormalities, septal defects, deformed 

hearts, and other complex cardiac malformations59.

X-linked ZIC3 mutations were identified in several multi-generational pedigrees, and were 

carried by family members with the mutation, some of whom by chance ended up with 

either complete situs solitus or complete situs inversus and functionally normal 

hearts19, 60, 61. ZIC3 is a zinc-finger transcription factor that is required to form a functional 

left-right organizer62 and is required to direct the directionality of heart looping. Since 

absence of left-right organizer function leads to random heart looping, these pedigrees show 

striking incomplete penetrance: some affected family members will have normal heart 

looping and appear phenotypically normal and transmit the disease allele, while others will 

have situs inversus or heterotaxy and complex CHD.

In addition to cardiac transcriptional regulators, genes coding for a variety of signaling 

molecules and cellular structural components have been identified in Mendelian inherited 

CHD. Dominantly inherited NOTCH1 mutations were first described in 2 multigeneration 

pedigrees that included family members with bicuspid aortic valve with only hemodynamic 

impairment, while other family members have complex CHD including hypoplastic left 
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heart syndrome (HLHS)22. Since then, NOTCH1 mutations have been found in additional 

CHD pedigrees63, and in ~5% of cases of one of the most common cardiac defects, bicuspid 

aortic valve, which is found in up to 2% of adults64. Similarly, mutations in JAG1 were 

mapped to affected family members with Alagille syndrome, a multi-system disorder with 

diverse cardiac phenotypes. JAG1 is one of the five ligands for receptors in the Notch 

signaling pathway, which results in localization of Notch to the nucleus and downstream 

activation of target genes. In addition, genes coding for the focal adhesion protein Tns1 

(tensin 1) and the planar cell polarity protein Dchs1 (dachsous1) were identified from 

several large pedigrees of severe mitral valve prolapse20, 21.

Less is known about the impact of recessive inheritance on CHD, although several lines of 

evidence support a recessive model contributing to some types of CHD. CHD is more 

prevalent in populations with a high degree of consanguinity23. Although there is an increase 

in all types of CHD in consanguineous populations, HTX and the associated complex 

cardiac malformations are observed at a higher frequency in consanguineous populations65. 

Pedigrees of consanguineous families with HTX identified recessively inherited mutations in 

genes including SHROOM3 66(cytoskeletal protein), WDR16 67(cilia-associated WD40 

repeat-protein), and MMP21 68(matrix metalloproteinase 21), and NPHP4 69 

nephronopthisis 4).

A different approach to understanding the recessive contribution to severe CHD was 

undertaken through an unbiased recessive mutagenesis screen in mouse70. Here, the 

offspring of ENU-mutagenized mice were intercrossed, and the pregnancies studied for any 

severe congenital heart disease by fetal ultrasound. This identified 61 genes contributing to 

recessively-inherited CHD. Several notable findings from this landmark study were that, of 

the 61 genes identified, 34 were cilia-related genes, several of which had previously been 

identified in human CHD. Further, cilia-related genes contributed to both HTX-type CHD, 

and CHD not associated with laterality defects. Together, the observations in a limited 

number of human pedigrees and in model organism suggest that recessive inheritance 

contributes to CHD, in particular to HTX-type (laterality) CHD.

Beyond large structural variation and Mendelian CHD: the impact of next 

generation sequencing on CHD genetics

The explosion of technological approaches and analysis tools for next generation 

sequencing, which has occurred over almost a decade has opened the door for understanding 

the genetics of complex disease such as CHD. In particular, whole exome sequencing has 

allowed identification of mutations that were undefinable through traditional genomic 

methods, such as de novo variation, variants without clear Mendelian inheritance patterns, 

variants with marked reduced penetrance, and somatic alterations, among others.

Whole-exome sequencing

The development of robust methods of whole-exome sequencing (WES) has created new 

opportunities for genomic discovery71, 72. The complete coding regions of the ~20,000 

genes in the human genome plus their flanking splice sites comprises only ~33 Mb of DNA, 
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about 1% of the human genome sequence. Unbiased genetic discovery by positional cloning 

in humans, mice and fruit flies has demonstrated that the overwhelming majority of 

phenotypes caused by large-effect mutations are caused by coding sequence mutations. This 

has identified mutations in ~3,500 genes underlying known Mendelian phenotypes. The 

recognition that the 20,000 human genes are largely conserved across vertebrate phylogeny 

strongly suggests that mutation of most will lead to phenotypic consequences, although how 

many of these phenotypes will manifest as disease remains unknown. These observations 

motivated the development of methods for selective sequencing of this 1% of the genome, 

which now can be completed at about 20% of the cost of sequencing complete genomes, 

affording a very significant cost advantage and allowing large cohorts of patients with 

unexplained phenotypes to be sequenced. Sequential improvements have resulted in virtually 

complete detection of point mutations in the full coding region; challenges nonetheless 

remain in detecting certain CNVs and chromosomal translocations. WES can be used to 

identify genes that are mutated more often than expected by chance after accounting for 

sequencing 20,000 genes. This has allowed for the identification of novel disease genes for a 

range of disease phenotypes ranging from autism to congenital malformations to cancer 

through the analysis of transmitted, de novo and somatic mutations.

Whole exome sequencing identifies de novo mutations in CHD

The first advance derived from applying next generation sequencing to the study of CHD 

was the discovery of the role of de novo mutation in CHD. Most CHD is sporadic: only 

2.2% patients with CHD have affected first-degree relatives16. That sporadic disease such as 

CHD has stable incidence despite low reproductive potential suggests that new mutation 

occurs as existing mutations are lost due to impaired reproductive fitness, and suggests that 

de novo mutations underlie some CHD73. De novo mutations are on average more 

deleterious than inherited mutations, as there has been less evolutionary selection. These 

mutations occur at approximately 1.8 × 10−8/nucleotide/generation, resulting in ~1 de novo 
mutations per coding-region (exome), and ~100–115 de novo mutations per genome74, 75. 

As spermatogenesis has many more germline cell divisions than oogenesis, this results in a 

3.9:1 ratio of de novo mutations when comparing the paternal allele to the maternal 

allele76, 77. De novo mutations occur throughout the genome, but are not entirely randomly 

distributed. Factors that influence DNA mutation rate include high CpG density, segmental 

duplications, paternal age, and mutations conferring advantages during spermatogenesis.78

Since there is strong evidence for impaired reproductive fitness in a majority of CHD 

subjects, it is likely that de novo mutations confer a major contribution. This hypothesis has 

been tested in several studies that employed whole-exome sequencing of large cohorts of 

patient-parent trios affected by CHD. The first of these studies analyzed 362 trios with the 

patient affected by severe CHD. While the overall rate of de novo mutations was not 

significantly different between CHD cases and controls, there was a marked enrichment 

when stratifying for protein-altering de novo mutations in genes highly expressed in the 

developing heart (top quartile of gene expression in murine hearts at E9.5 and E14.5) in 

CHD cases. Further stratification by mutation type graded by stringency, from all protein-

altering mutations to highly conserved missense and LOF mutations to LOF mutations 

alone, produced a significant rise in odds ratio. De novo mutations were found to 
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collectively contribute to 10% of severe CHD79. Moreover, an excess of de novo mutations 

was identified in chromatin remodeling genes that affected the reading, writing, and removal 

of two bivalent marks, H3K4 and H3K27 methylation, found at the promoters and enhancers 

of key developmental genes posed for activation79. Expanding the cohort size from 362 to 

1,213 CHD trios comprising patients with the complete spectrum of CHD including less 

complicated CHD such as isolated atrial septal defects, in addition to moderate and severe 

CHD, reinforced the contribution of de novo mutations to ~10% of CHD. This cohort 

included patients with isolated CHD, CHD associated with known syndromes, and CHD 

with extracardiac malformations and/or neurodevelopmental abnormalities. More extensive 

phenotyping coupled with a larger patient cohort demonstrated that de novo mutations 

disproportionately contributed to CHD in patients with associated syndromes, extracardiac 

malformations and/or neurodevelopmental abnormalities. Notably, de novo mutations 

accounted for at least 20% of CHD with associated extracardiac and neurodevelopmental 

abnormalities75. While these mutations are more prominently associated with syndromic 

rather than non-syndromic CHD80, there is a small but measurable contribution to isolated 

CHD (CHD not associated with a known syndrome, and without any extracardiac 

malformations or neurodevelopmental abnormalities)81, which may become more clearly 

delineated when larger cohorts are analyzed8275.

Biological pathways in CHD

The genetics underlying CHD have identified critical biological pathways involved in CHD 

including chromatin remodeling, Notch signaling, cilia function, sarcomere structure and 

function, and RAS signaling. These pathways are anticipated to provide direct insights into 

the mechanism of heart development, and provide insights into potential CHD co-

morbidities such as ventricular dysfunction observed in the setting of sarcomere and RAS 

pathway mutations. Furthermore, identification of common developmental pathways shared 

between cardiac development and other systems, such as the nervous system in the setting of 

chromatin modifier mutations, and the respiratory system in the setting of cilia mutations, 

are anticipated to directly inform outcomes and prognosis for CHD patients. We will outline 

studies linking three of these pathways to CHD: Chromatin remodeling, Notch signaling and 

cilia genes.

Chromatin modifiers and overlapping biology

As noted above, one of the most significant findings arising from the recent analysis of large 

cohorts of patients with CHD by whole-exome sequencing is the important role of mutations 

affecting chromatin regulating genes in CHD75, 79, 80. The first of these studies showed that 

de-novo mutations affecting chromatin regulating genes contribute to ~3% of CHD. This 

observation was reinforced by a larger analysis of 1,213 trios, noting LOF mutations in 

chromatin regulating genes in 25/1213 CHD cases, while only 3/900 controls (p=5.7×10−11). 

All mutated genes with damaging mutations in cases and their affected chromatin marks are 

shown in Fig. 2a. Genes identified are involved in production, removal or reading of H3K4 

methylation (H3K4me), H3K9 methylation (H3K9me), H3K27 methylation (H3K27me), 

H4K20 methylation (H4K20me), and ubiquitylation of H2BK120, which is required for 

H3K4 methylation79.
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Chromatin regulating genes encompass ~ 600 genes that orchestrate dynamic gene 

expression during development by addition or removal of chemical marks on chromatin or 

by catalyzing changes in chromatin structure. The biological state of chromatin is controlled 

by ATP-dependent chromatin modifiers, including the Baf complex and Chd8, and by 

histone modifiers. Both have been linked to heart development; Baf60c regulates early heart 

development through cooperation with the GATA4 transcription factor83. H3K4me and 

H3K27me constitute ‘bivalent’ marks that are found on the promoters and enhancers of key 

cardiac developmental genes poised for activation84. A significant burden of 

haploinsufficient (dominant) de novo mutations within these elements therefore indicate 

dosage sensitivity of the chromatin pathway in heart development. Although relatively rare, 

chromatin modifiers have been linked to isolated CHD such as the histone methyl 

transferase PRDM6 which has been associated with non-syndromic Patent Ductus 

Arteriosus85.

The same control of gene expression required for normal cardiac development is also 

essential for brain development, and many chromatin regulating genes have been directly 

implicated in brain development, including members of the BAF complex, CHD8, HDAC4 
and polycomb group protein EZH286. The overlap between specific chromatin regulators 

required for both heart and brain development remains unclear. Chromatin regulators are 

widely expressed, and mouse knockout frequently leads to very early lethality, precluding 

analysis of specific brain or heart phenotypes87. Heart-specific knockout of Kmtd2, a H3K4 

methylase that is associated with Kabuki syndrome, results in very abnormal hearts with 

outflow tract septation defects in mice88. Mutations in chromatin modifying genes have been 

identified in patients with CHD have been associated with a range of syndromes, including 

Sotos Syndrome, Kabuki Syndrome, CHARGE and others (Fig. 2b). At the same time, 

genome sequencing studies in human neurodevelopmental and psychiatric disorders have 

identified mutations in chromatin modifying genes in Kleefstra, Schinzel-Giedion, Claes-

Jensen, Weaver, Sotos, and Coffin-Siris syndromes among others. Although 

neurodevelopmental abnormalities are the most prominent feature, up to 50% of affected 

patients also have a CHD. These observations indicate that chromatin regulating mutations 

result in both cardiac and neurodevelopmental sequelae, and begin to shed light on potential 

developmental-genetic causes of the NDD associated with a subset of CHD patients.

Notch pathway genes

Notch signaling is a highly conserved pathway mediating local intercellular communication 

that has important roles in a host of developmental processes that are very relevant to heart 

development, including formation of the left-right organizer89, blood vessel development90 

and ventricular chamber development91. Notch signaling provides a way for a Notch ligand 

from one cell to influence a directly neighboring cell via its Notch receptor (Fig. 3a) and 

determine cell fate. Upon binding of Notch ligand and receptor, signaling requires release of 

the Notch intracellular domain (NICD) via a coordinated series of tightly regulated steps 

including glycosylation of the receptor, ubiquitylation of the ligands by Mib1 and cleavage 

of the receptor triggered by Adam17/Tace. NICD can then function as a transcription factor 

regulating a large number of targets, including SNAIL1, HES, HEY and NRARP. Notch 

pathway genes implicated in CHD are outlined in Fig. 3b. This pathway was initially 
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implicated in CHD when NOTCH1 mutations were identified in families with dominantly 

inherited bicuspid aortic valve and other left-ventricular outflow tact obstructive lesions22. 

Within a single family, NOTCH mutation associated with a range of CHD ranging from 

BAV to CoA to HLHS. Mutations affecting multiple components of Notch signaling 

(NOTCH1, MAML1, JAG1) were significantly enriched in 51 families with multiple family 

members affected by a range of LVO-type CHD63. NOTCH1 function does not appear to be 

restricted to left-sided heart development, as additional family studies identified high-impact 

NOTCH1 mutations in families with both LVO-type CHD and TOF63.

Further, NOTCH1 and Notch ligand DLL4 mutations are the most common cause of Adams-

Oliver Syndrome, a rare syndrome comprising CHD, aplasia cutis of the scalp and limb 

defects. Alagille syndrome (Arteriohepatic Dysplasia) is an autosomal dominant inherited 

syndrome characterized by cholestatic liver disease, variable degrees of kidney involvement 

and CHD that is most commonly TOF. Mutations in the Notch ligand JAG1 are found in 

~90% of patients with Alagille Syndrome92, 93, and mutations in the NOTCH2 receptor are 

found in another 2% of individuals with Alagille Syndrome94. Similar to mutations in other 

Notch pathway members, JAG1 mutations underlie both syndromic and isolated CHD, most 

notably TOF95. Finally, GALNT11, which is required for the S2 cleavage step of Notch 

receptor processing, has been linked to human HTX by affecting Notch-mediated 

specification of cilia function at the left-right organizer42, 89.

Cilia genes

Mutations affecting cilia structure and function have been identified in patients with CHD, 

and notably, cilia mutations were the major class of mutations found in a recessive mouse 

screen for severe CHD70. Cilia are hair-like organelles found on the surface of most 

vertebrate cell types and serve a multitude of functions, including signaling, extracellular 

fluid propulsion and cell cycle control (Fig. 4a). Defects affecting cilia structure and/or 

function have been intimately linked to a group of diverse human disorders characterized by 

pleiotropic phenotypes including renal, neurological, sensory and laterality defects coined 

‘ciliopathies’. In heart development, the best understood role for cilia is establishing left-

right (LR) asymmetry and determining the direction of heart looping. Here, a highly 

conserved ciliated left right organizer (LRO) utilizes cilia to generate and sense directional 

flow of extraembryonic fluid and transduce it in a polycystin-dependent manner to a calcium 

signal96–99. This triggers asymmetric gene expression in the lateral plate mesoderm, 

eventually leading to asymmetric heart looping. Due to the role of cilia in determining LR 

patterning, mutations affecting ciliary motility100 and sensing101 machinery result in HTX 

and CHD.

In mice, mutations in components of the dynein motor complex, such as left-right dynein 

(Dnah11/Lrd) and dynein heavy chain 5 (Dnah5), result in cardiac and visceral LR 

abnormalities102, 103. Not surprisingly, 6.5% of patients with PCD (primary ciliary 

dyskinesia), a disorder defined by abnormal ciliary motility in the airway epithelia, also 

display heterotaxy100. PCD is genetically highly heterogeneous, and there are currently 35 

genes that have been linked to PCD. It remains unknown how many of the PCD genes cause 

CHD, since a diagnosis of PCD in patients with CHD is made more challenging, due to the 
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difficulty differentiating whether respiratory symptoms are primary, or secondary to the 

underlying cardiac pathology and the medical and surgical interventions required to manage 

the CHD. Other cilia genes that are not required for cilia motility and left-right development, 

but instead are involved in ciliogenesis or cilia-mediated sensation are also associated with 

CHD (Fig. 4b). It is interesting to speculate that cilia found in the developing heart and 

vasculature have a function in cardiac morphogenesis extending beyond their role in LR 

development104, 105, and that similar to mouse, cilia defects may underlie a broader range of 

human CHD than suspected to date.

Future Efforts in CHD Genomics

State of the art understanding of CHD genetics

The genetic basis of CHD has now been established in 1 out of 3 affected cases (Fig. 1 C). 

These comprise a broad array of genetic alterations in a large, heterogeneous group of genes. 

Earliest insights arose from aneuploidies in CHD. Likewise, there is a growing catalogue of 

CNVs in CHD, typified by well characterized deletions, such as del22q11. Given the large 

number of genes involved in aneuploidies and CNVs, identification of specific disease 

associated genes is challenging. In addition, inherited forms of CHD have been identified 

through traditional genetic tools, such as linkage. These linkage studies have ranged from 

mutations in cardiac transcription factors, such as NKX2.5, and GATA4 to signaling 

molecules and cellular structural components, such as NOTCH1 and JAG1. Through critical 

advances in next generation sequencing, our understanding of CHD biology has expanded 

rapidly over the past decade. Seminal studies have found that 10% of CHD is due to de novo 
mutations, which increases to greater than 20% when stratifying for CHD with associated 

EM or NDD. Indeed, certain biological pathways, including chromatin modification genes, 

cilia genes and the Notch signaling pathway, have been implicated in CHD, raising the 

possibility that environmental perturbations might phenocopy the effects of these mutations. 

Despite these significant advances, the genetic underpinnings of over 50% of CHD remain 

unknown. Barriers to a complete understanding of CHD genetics include the extreme 

genetic heterogeneity coupled with limited genotype-phenotype correlation. Some of the 

“unexplained CHD cases” could be due to mutations affecting the as of yet underexplored 

non-coding DNA, somatic mutations and gene-environment interactions as discussed below. 

In addition, CHD due to biallelic mutations has been underexplored, and thus far has largely 

focused on candidate gene analysis and familial CHD101. As new statistical approaches are 

coupled with larger CHD cohorts, the inherent challenges in an unbiased analysis of 

recessive mutations in sporadic CHD can be surmounted.

Most CHD is sporadic, with no affected family members. Beyond the 20% of sporadic CHD 

caused by de-novo CNVs and SNVs, it is likely that some CHD will be secondary to 

complex inheritance, wherein for example, a heterozygous mutation requires a modifier 

mutation, or the absence of a protective variant, in order to manifest as disease. This is 

supported by incomplete or non-penetrance in extended families carrying mutations in well-

characterized CHD genes including ZIC3 and NOTCH119, 61, 106. Animal models provide an 

avenue for testing the complex trait hypothesis in a more controlled genetic environment, 

and for example the susceptibility to VSDs in mice heterozygous for mutation in the cardiac 
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transcription factor Nkx2.5 was modified by loci on mouse chromosomes 6, 8 and 10107. 

Another example is provided by the observation that introduction of a null allele for the 

VEGF-A pathway gene CRELD1 into a mouse model of Down Syndrome raises the 

incidence of AVSDs108, which supports prior observations on human Down Syndrome 

cohorts109. Correspondingly, several large GWAS studies in patients with CHD also 

identified possible loci influencing the susceptibility to CHD110, 111. In addition, it is also 

quite likely that since heart development appears to be highly dosage sensitive, some CHD 

may result from convergence of hypomorphic mutations in several components of a single 

pathway to exceed a threshold and manifest as disease. This model has previously been 

shown in a mouse model of congenital heart disease where the penetrance of the CHD 

phenotype is increased in mice compound heterozygous for Zic3(+/−); Nodal (+/−) 112. As 

available gene- and protein-level interactome databases become more robust and 

comprehensive, it may very well become possible to link CHD genomics data with genetic 

interactome databases to better explore multigenic CHD.

Exhausting the Coding Region: Number of Genes Contributing to CHD

Analysis of de novo mutations has illuminated the immense genetic heterogeneity 

underlying CHD pathogenesis. Recent work analyzing de novo mutations in 1,213 CHD 

subjects showed that ~392 genes, albeit with wide confidence intervals, collectively 

contribute to CHD. This estimation of the number of risk genes was performed using a 

maximum likelihood function, details of the simulation and derivation are noted in Homsy et 

al. and Iossifov et al. 75, 113. Based on this function in 1,213 CHD cases, 392 genes were 

estimated to contribute to CHD 75. An approach to identify a greater fraction of the CHD 

risk genes is to identify additional genes with more than one de-novo mutation in CHD 

patients. In a cohort double the size (2,426 trios), power simulations approximate 61 genes 

with more than one damaging mutation (~40 new genes in the additional 1,213 trios and 21 

previously identified in the original 1,213 trios). To identify all 392 genes would require a 

significant increase in the number of CHD trios analyzed. Furthermore, recent work suggests 

that WES of 10,000 trios would permit ~80% saturation for detecting genes contributing to 

haploinsufficient syndromic CHD alone 80; it is likely that a significantly larger number of 

trios will have to be analyzed to approach a complete gene set for all CHD. As sequencing 

continues to become faster and less expensive, it is anticipated that large-scale collaboration 

of CHD genetics programs such as the Pediatric Cardiac Genomics Consortium (PCGC) 114, 

Pediatric Heart Network (PHN) 115, and the UK10K consortium 116 could allow for capture 

of the estimated ~392 CHD risk genes, and make a previously daunting task achievable.

Contribution of Somatic Mosaicism in CHD

The wealth of sequencing data at high coverage has prompted the search for genetic 

mosaicism. Genetic mosaicism is defined as the presence of having multiple populations of 

genetically distinct cells within an individual. Mosaic de novo variants have been shown to 

contribute up to 20% of sporadic cases in a number of developmental disorders, including 

Sturge Weber syndrome 117, facioscapulohumeral muscular dystrophy 118, and segmental 

neurofibromatosis 119. There have also been clinical reports suggesting pathogenic mosaic 

CNVs in patients with CHD 120. Small studies using array comparative genomic 

hybridization (aCGH) have not identified any CNVs with differential presence between 
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cardiac tissue and peripheral whole blood 121. A recent study identified an excess of extreme 

allele-specific expression events in cardiac tissue from CHD patients compared to controls, 

and since only 15% of the ASE events were explained by genomic variants, it is possible 

that some of these were secondary to mosaicism 122. However, such studies are limited due 

to sample size, lack of developmentally relevant cardiac tissues, and imperfect statistical 

tools to detect mosaic variation. Larger cohorts of sequencing data, continued developmental 

of analysis tools, and ascertainment of cardiac tissues could help in identification of mosaic 

mutations, such as (1) de novo mutations with mosaic tissue distributions with involvement 

of cardiac tissues or precursors that would directly influence heart development, and (2) 

parental mosaicism where the unaffected parents of an affected offspring with CHD harbors 

mutation in the germline and any somatic tissue not involved in cardiac developmental, such 

that the mutation is constitutively transmitted to the affected offspring.

Environmental Phenocopies

Considering the overrepresentation of mutations in certain pathways, such as chromatin 

modifying genes, in which dosage sensitive mutations confer CHD, it is possible that 

environmental triggers phenocopy the effects of these mutations. Many environmental 

exposures have been studied through observational and epidemiological studies in CHD 123. 

A large Canadian population study showed a modest association between folic acid 

supplementation and reduction in several subtypes of CHD 124; of note is that a maternal 

MTHFR polymorphism contributes to the CHD risk pointing to gene-environment 

interaction in the development of CHD 125. The best documented environmental exposure 

that contributes to CHD is maternal pre-pregnancy diabetes which leads to an adjusted 

relative risk for CHD of 4.0 126. The effect is independent of whether the mother is affected 

by type 1 or type 2 diabetes, and studies of the NOD (non-obese diabetic) mouse show that 

CHD in offspring correlates with elevated glucose during embryogenesis 127. Especially in 

view of the increasing rates of type 2 diabetes in the younger population, this represents an 

important contributor to CHD; for example, maternal diabetes is thought to contribute to 6–

8% of HLHS and TOF 128. The potential for gene-environment interactions highlight the 

continued need to catalogue environmental exposures within a cohort which also has 

corresponding DNA sequencing data. This should further expand our understanding of the 

genetic and non-genetic mechanisms of CHD, and moreover tell us how these two etiologies 

may converge.

Contribution of Non-Coding Mutations

The prominent role of transcriptional regulation in CHD predicts that mutations affecting 

regulatory elements will contribute to CHD. For example, homozygous variation in a TBX5 

enhancer was found in a patient with isolated septal defects 129. An important obstacle of 

detecting non-coding mutations in CHD is to delineate cardiac-specific regulatory elements 

and promoters at appropriate developmental time-points. Projects, such as ENCODE and the 

Cardiovascular Genomic Consortium, continue to build these datasets, and thus may be 

helpful in identifying rare de novo events in these non-coding elements. Other sources of 

WGS discovery could focus on cis-acting regulatory sequences, allelic selective gene 

expression in regulatory elements, and identification of epistatic and modifying mutations in 

diseases with known coding mutations, but with poor penetrance. An example of the latter 
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has been shown in another developmental disorder, craniosynostosis, where rare SMAD6 
LOF mutations modified by a common variant in BMP2 resulted in complete penetrance of 

this disease 130. Exploration of the non-coding DNA will require whole genome sequencing 

(WGS), which provides the most comprehensive view of the genome. Beyond complete 

determination of mutations outside the coding region, WGS provides more complete 

coverage of the exome and leads to improved detection of exonic CNVs and translocations. 

The potential challenges of WGS include greater expense, larger amounts of acquired and 

stored data, and the greater challenge of interpreting sequence variation in non-coding DNA. 

At present, evidence that WGS comes close to WES in efficiency of discovery of rare 

mutations with large effect remains limited 131. Moreover, the 10-fold lower conservation of 

enhancer sequences indicates a much lower power to find disease-related mutations and adds 

to the challenge. One study of patients with severe intellectual disability, however, identified 

a conclusive cause in 42% of patients by WGS, compared to 27% by WES; it is notable that 

many of the mutations identified by WGS in this study actually affected the exome 132. This 

limitation of WES is progressively being overcome by improved capture technologies that 

generate progressively more complete coverage of all exonic sequences 133. The genomic 

technologies applied to CHD gene discovery and CHD patient diagnosis are rapidly 

evolving. Currently, WGS is likely contribute to understanding the genetic cause of CHD, 

but will is most effective when applied in patients without WES evidence of damaging de 
novo mutations or likely pathogenic dominant and recessive mutations.

Clinical impact of CHD genetics

For CHD genetics to become part of standard care for CHD patients, there are a few 

essential considerations. First, testing should be broadly available, and specific testing 

(chromosomal microarray, karyotype, targeted sequencing, exome sequencing or genome 

sequencing) should be tailored to the specific patient’s case with regard to type of CHD and 

presence or absence of extracardiac abnormalities. Second, the results of genetic testing for 

CHD should be actionable, i.e. impact management and hopefully contribute to improved 

outcome. Third, when a genetic cause for CHD can be identified, it becomes possible to 

provide much more specific information regarding recurrence risk in other family members; 

this will become increasingly important as many more patients with CHD reach reproductive 

age in the context of the growing population of adults with CHD. The extreme heterogeneity 

and variable expressivity of CHD make it difficult to directly link specific genes to specific 

outcomes. However, evidence is mounting that defects affecting specific gene ontologies and 

pathways predispose patients to defined groups of potential complications. These risks may 

be defined by the genetic defect, in addition to the specific anatomic-physiologic cardiac 

defect. We will focus on two outcomes associated with CHD for which there is mounting 

evidence that the genetic cause of the CHD is a major contributor: neurodevelopmental 

abnormalities, and surgical outcome focusing on respiratory complications. Other co-

morbidities such as renal and myocardial dysfunction may also be influenced by genetic 

findings contributing to the CHD 134.
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Neurodevelopmental outcomes

One of the most impactful associations with CHD are neurodevelopmental abnormalities. 

They affect 10% of all patients with CHD, and 50% of patients with severe CHD 135. The 

spectrum of associated neurodevelopment abnormalities includes intellectual disability, 

language deficits, autism spectrum, executive function deficits, deficits in non-verbal skills 

including motor skills and social cognition. Attention-deficit hyperactivity disorder is also 

observed at a prevalence of up to 3–4 times higher than the general population 135, 136. 

Although the incidence of NDD is increased in the setting of complex CHD and CHD in the 

setting of known genetic syndromes, the underlying causes remain poorly defined. 

Investigation of risk factors for CHD-associated NDD has focused on the role of 

complications of cardiopulmonary bypass, effects of abnormal physiology preceding repair 

(including during fetal life), and complications of hospitalization including prolonged 

requirement for intensive care; it is likely that these factors interrelate with the genetic 

substrate 137. Thus far, no dominant major contributor to the NDD associated with CHD has 

been identified, and it remains difficult to identify at-risk children prospectively. While some 

studies show a modest correlation with type of CHD and length of deep hypothermic 

arrest 138, the most striking predictor of poor neurodevelopmental outcome at age two was 

preoperative microcephaly. Similarly, preoperative brain MRI has demonstrated white-

matter abnormalities in 32% of newborns with D-Transposition of the Great Arteries or 

single ventricle, compared to none of the control infants 139; both of these observations 

support the association of CHD and abnormal brain development independent of surgical 

management.

Although recent recommendations include developmental evaluation in a subset of high-risk 

patients with CHD, ND risk-stratification for CHD remains difficult. Poor 

neurodevelopmental outcomes are much more prevalent in CHD patients with a diagnosed 

genetic syndrome, and a link between genetic factors and weight growth and head 

circumference has been identified 140. Genetic analysis of patients of 1,213 CHD patients 

revealed that de novo risk increases when stratifying for CHD cases with NDD and/or 

extracardiac manifestations (EM). Specifically, 10% of patients with CHD and NDD were 

found to be attributable to damaging de novo mutations, which increased to 20% when 

looking at patients with both NDD and EM. These mutations tended to occur in genes that 

were highly expressed in both the heart and the brain. Furthermore, within this set of cases, 

there were 66 genes, which were mutated in both CHD probands and seven published 

cohorts ascertained for neurodevelopmental phenotypes. These findings were suggestive of 

common genetic etiologies. Common pathways converged on chromatin modification, 

transcriptional regulations, Notch and Wnt Signaling, among other pathways in cardiac 

development.75 These findings open an avenue to identification of CHD patients who are at 

risk for neurodevelopmental difficulties early during their clinical course. Several studies 

show that early interventions impact neurodevelopmental outcomes such as executive 

function in at-risk children 141. Whether these or other interventions could also benefit 

children with CHD who are at high risk for neurodevelopmental sequelae still needs to be 

rigorously tested.
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Postoperative and Respiratory Outcomes

Surgical correction or palliation of even the most complex CHD has been one of the main 

drivers of the remarkable increase in survival for patients with CHD. One of the challenging 

aspects of caring for these patients is the variable outcome resulting from surgery for 

anatomically and physiologically identical CHD. Two of the most significant modulators of 

post-operative outcome that may be influenced by the genetic underpinnings of the CHD are 

respiratory complications and myocardial dysfunction, and the ability to identify at-risk 

patients preoperatively may allow improved surgical and post-operative care that is better 

tailored to the individual patient. Mutations in cilia genes are known to cause heterotaxy, and 

are also likely contributing to some types of non-heterotaxy CHD 70, 100. In addition to 

CHD, cilia mutations cause PCD (Primary Ciliary Dyskinesia), a genetically heterogeneous 

disorder leading to pulmonary dysfunction, male infertility, and organ laterality 

defects 142, 143. In the respiratory tract, PCD can result in immotile or dyskinetic cilia that 

fail to coordinate mucociliary clearance of pathogens and debris from the respiratory tract. 

Poor mucociliary clearance leads to infection and inflammation that damage the airway, and 

it is especially important to note that patients with ciliary dysfunction depend entirely on 

cough for mucociliary clearance, a function that is compromised in patients on mechanical 

ventilatory support such as post-operative CHD patients. With this in mind, it is not 

surprising that patients with airway ciliary dysfunction and heterotaxy with CHD have a 

higher rate of respiratory complication post-operatively compared with patients without 

airway ciliary dysfunction 144; these findings suggest that prospective knowledge of which 

patients have airway ciliary dysfunction could improve postoperative outcome by tailored 

modifications to their respiratory care.

Genetic testing in CHD

The utility of genetic information in tailoring care for the CHD patient, risk stratification, 

establishing prognosis, and counseling families affected by CHD is continually expanding as 

more is learned about the genetic contribution to CHD. Genetic testing is being offered to an 

increasing portion of CHD families, however, at this time there is little consensus on the type 

of testing, the specific clinical indication for testing, and the interpretation of testing results. 

Increasingly, specialty clinics in CHD genetics where testing can be ordered, and patient 

counseling provided by geneticists and genetic counselors working together with pediatric 

cardiologists are being offered to patients 145. Below, we outline CHD genetic testing 

available on a clinical basis at the time of this writing; notably, the technology for genetic 

testing along with the interpretation of results is evolving at an extremely rapid pace, and it 

is distinctly possible that whole-exome or whole-genome sequencing will become more 

universally employed in the diagnosis and management of CHD in the very near future.

The most common clinical genetic tests utilized in CHD are karyotypes, chromosomal 

microarray, targeted FISH (Fluorescence in-situ hybridization), directed panel sequencing, 

and more recently whole-exome sequencing. The decision on which type of testing is 

appropriate depends on the clinical presentation. Karyotyping is commonly the first line of 

testing used. In studies of CHD patients admitted to a cardiac intensive care unit, or who had 

surgery in the first year of life, karyotyping yielded a diagnosis in 10.5%–23% of 

patients 146, 147. The majority of the positive results from karyotyping were either Down 
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Syndrome or Turner Syndrome, both of which are often clinically recognized. Genome-wide 

microarray provides information on deletions and duplications including common CNVs 

associated with CHD such as del22q11 (DiGeorge Syndrome) and del7q11 (William 

Syndrome). Microarray has yielded a diagnostic result in 10–25% of patients tested, with an 

additional 8% of patients carrying a variant of unknown significance. Targeted FISH 

(fluorescent in-situ hypbridization), most commonly focusing on the 22q11 deletion, 

identifies the presence or absence of the specific target at lower cost and slightly more rapid 

turnover than genome-wide microarray, and had a positive diagnostic rate of 12%. Whether 

targeted FISH is positive correlated most directly with the specific cardiac lesion being 

tested, with 25–50% of patients with interrupted aortic arch, pulmonary atresia with 

ventricular septal defect or truncus arteriosus having a positive 22q11 FISH 147. It is 

important to note that the abnormalities detected by targeted FISH will also be detected by 

genome-wide microarray, and at least one study suggests that except in specific clinical 

scenarios, microarray testing is more cost effective 146.

Finally, sequencing is increasingly being utilized to identify genetic causes of CHD at the 

clinical level. Targeted sequencing is being offered for panels of CHD candidate genes. Two 

studies using similar sets of 57 genes previously implicated in CHD to test a group of 

patients from non-syndromic CHD families with probable dominantly inherited CHD 

identified likely causative mutations in 25–46% of the families 148, 149. This approach relies 

on variants segregating with disease within a family, and thus becomes more difficult in non-

familial CHD, first because the composition of the currently utilized CHD gene sets in the 

targeted sequencing approach are biased towards inherited CHD, and second because variant 

interpretation in an isolated case is more challenging. When there is strong clinical suspicion 

for CHD associated with a syndrome that has known genetic cause, targeted sequencing of a 

gene or group of genes associated with that syndrome is indicated, and one study finds that 

targeted sequencing that is driven by clinical evaluation identified the etiology of CHD in 

17% of the cases 147. In specific syndromes that have been well characterized at the 

molecular level, such as Noonan Syndrome or Marfan Syndrome, the diagnostic yield can be 

as high as 80% (Noonan Syndrome) to 90% (Marfan Syndrome). Finally, whole-exome or 

even whole-genome sequencing, which have been extensively utilized in management of 

oncology patients, are increasingly being offered as a clinical tool in the care of CHD 

patients. Although these methods are more expensive and time-consuming than targeted 

sequencing, they are unbiased and allow re-analysis when additional clinical or genetic 

information come to light. Whole-exome sequencing has been successfully utilized 

clinically for almost a decade 72, and is now becoming part of genetic testing for 

CHD 150, 151. It provides information for the entire coding region of the genome at a cost of 

only 2–3 times the cost of targeted panels. The current clinical approach to WES in CHD is 

to obtain the data for the entire exome, and then interrogate gene sets that are driven by the 

clinical phenotype. If there are new pieces of clinical information obtained during the 

patient’s course, it is possible to re-interrogate and look for mutations in a different set of 

genes. Further, if new genes are identified as possible etiologies for the patient’s phenotype, 

it is possible to obtain patient data for those genes without reobtaining a sample and 

repeating sequencing. Because of the large amounts of data obtained by WES, the most 

challenging aspect of this methodology is identifying whether rare variants that are 

Zaidi and Brueckner Page 17

Circ Res. Author manuscript; available in PMC 2018 March 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biologically plausible, but have not previously been linked to disease (variants of unknown 

significance, VUS), are actually causal. Since de-novo mutations have been associated with 

CHD, interpretation of clinical WES results is greatly helped by obtaining parental samples; 

if a variant is not identified in either phenotypically normal parent, the likelihood that it is 

contributing to the patient’s CHD is much more likely.

Genetic testing for CHD is increasingly becoming part of standard care, especially for severe 

CHD requiring intervention, and for CHD associated with extracardiac abnormalities. 

Specific testing should be strongly guided by the cardiac and extracardiac phenotype; a 

proposed strategy for clinical genetic testing in CHD is outlined in Figure 5. Phenotyping 

and family history are exceptionally important in this scenario, as they inform the type of 

testing, and will help guide the genetic testing laboratory. Equally important will be careful 

adjudication of those variants that are not known disease-causing variants, but variants of 

unknown significance (VUS). The first step here is to test whether the variant is de-novo, 

which greatly raises the likelihood that the variant is disease causing. Additional information 

on the likelihood that a given variant is disease-causing is provided by measures of 

evolutionary conservation of the position at which the variant is occurring, and by the 

biological impact of the resulting amino acid substitution. Computational algorithms that 

integrate sequence and functional parameters provide indices of whether a given missense 

variant is predicted to be damaging or benign are also able to add information on the likely 

pathogenicity of a sequence variant (Meta-SVM, Polyphen-2, SIFT, MutationTaster, among 

others) 152. As more and increasingly complex technologies reveal an expanding array of 

genomic variation, criteria for interpretation of clinical genetic testing are being developed 

and standardized by workgroups including the American College of Medical Genetics and 

Genomics 153. Finally, the implications of genetic testing for CHD patients and their 

families are significant, ranging from prognostic risk factors for neurodevelopmental 

outcome, to estimates of recurrence risk in siblings, and increasingly as CHD patients reach 

reproductive age, to recurrence risk in their own offspring. The increasing awareness of the 

major genetic contribution to CHD provides a strong argument for providing broad access 

for CHD patients and families to specialized cardiac genetics clinics that can provide high-

quality genetic counseling, along with training of pediatric and adult cardiologists, and 

genetic counselors, in CHD genetics 150.

Summary

Genetics of CHD has made giant leaps forward in parallel with the evolution of genome 

analysis technologies. The suspicion that CHD is extremely heterogenic has been validated, 

and the anticipated complexity of CHD genetics further increased by relatively limited 

observed genotype-phenotype correlations. Even syndromes that were thought to be well-

defined clinically, such as CHARGE and Kabuki, are showing tremendous variation in 

phenotype when they are defined on the basis of the molecular finding. It is distinctly 

possible that some of the outcome in CHD is substantially influenced by the underlying 

genetic cause, in addition to the morphology and hemodynamics that underpin the 

impressively successful medical and surgical management of CHD to date 3. This 

observation drives the hope that early identification of genetic causes of CHD will allow 

more tailored management of CHD, and will hopefully improve the outcome especially with 
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respect to the many co-morbidities of CHD that have a profound impact in quality of life for 

patients living with CHD. For example, identification of neurodevelopmental risk genes can 

identify patients who can benefit from early intervention programs long before any clinical 

signs of NDD such as learning disabilities become apparent. In addition to the clinical 

implications of a more complete understanding of CHD genetics, the genes uncovered in 

human patients have already provided tremendous insights into the basic mechanisms 

underlying cardiac development.

Going forward, there is still much work to be done. Studies to date have at most defined the 

cause of 45–50% of CHD. Current analysis protocols are possibly underestimating the CNV 

and SNV contributions due to detection limitations and difficulty predicting whether 

identified variants are pathogenic or not. In addition, it is highly likely that some CHD is due 

to multi-locus inheritance, and that some is caused by mutations in non-coding DNA. As 

larger cohorts of CHD patients are being evaluated with progressively more comprehensive 

sequencing, it appears ever more likely that we will be able to identify the genetic 

underpinning of the majority of CHD, and to translate these findings into precision medicine 

for the care of CHD patients from infants to adults.
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Non-standard abbreviations and acronyms

CHD Congenital Heart Disease

CTD Conotruncal Defects

LVO Left-ventricular outflow defects

HTX Heterotaxy-associated defects

NDD Neurodevelopmental Disabilities

RV Right Ventricle

LV Left Ventricle

ASD Atrial Septal Defect

HLHS Hypoplastic Left Heart Syndrome

CoA Coarctation of the Aorta

BAV Bicuspid Aortic Valve
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TOF Tetralogy of Fallot

AVSD Atrio-ventricular Septal Defect

CNV Copy Number Variation

WES Whole-Exome Sequencing

WGS Whole Genome Sequencing

LOF Loss of Function

ASE Allele Specific Expression

VUS Variant of Unknown Significance

PCD Primary Ciliary Dyskinesia
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Figure 1. 
A Outline of human heart development. The X axis displays days of human and mouse 

gestation. B The spectrum of congenital heart disease from mild to severe. The lesions 

indicated as “severe” are expected to require intervention in the first year of life. ASD-Atrial 

Septal Defect, VSD-Ventricular Septal Defect, CoA- Coarctation of the Aorta, TOF-

Tetralogy of Fallot, TGA- Transposition of the Great Arteries, HLHS- Hypoplastic Left 

Heart Syndrome. Classes of CHD based on proposed developmental-genetic mechanisms 
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are indicated in parentheses; LVO-Left Ventricular Outflow Obstruction, CTD- Cono-

Truncal Defect, HTX- Heterotaxy. C Genetic causes of CHD identified to date.
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Figure 2. 
Chromatin remodeling genes in CHD. A Chromatin remodeling genes with mutations 

identified in CHD patients to date, highlighting the overlap between CHD and NDD genes. 

Nucleosomes with H3K4, H3K9, H3K27, H3K36 and H4K20 methylation and/or 

acetylation, and H2BK120 ubiquitylation are shown (adapted from Homsy et al, Science 
2015). B Syndromes associated with chromatin remodeling gene mutations and their 

associated CHD and neurodevelopmental abnormalities.
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Figure 3. 
NOTCH signaling in CHD A outline of NOTCH signaling pathway showing signal-sending 

cell in yellow, and signal receiving cell in green. B Syndromes and CHD associated with 

NOTCH pathway gene mutations.
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Figure 4. 
Cilia in CHD A Diagram of a cilium, showing the ciliary axoneme (blue) based on the 

mother centriole (gray) and linked via the transition zone (orange). B Syndromes and CHD 

linked to human cilia mutations.
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Figure 5. 
Outline of proposed clinical genetic testing for patients with CHD
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