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Abstract

Progress in modern neuroscience critically depends on our ability to observe the activity of

large neuronal populations with cellular spatial and high temporal resolution. However, two

bottlenecks constrain efforts towards fast imaging of large populations. First, the resulting

large video data is challenging to analyze. Second, there is an explicit tradeoff between

imaging speed, signal-to-noise, and field of view: with current recording technology we can-

not image very large neuronal populations with simultaneously high spatial and temporal

resolution. Here we describe multi-scale approaches for alleviating both of these bottle-

necks. First, we show that spatial and temporal decimation techniques based on simple

local averaging provide order-of-magnitude speedups in spatiotemporally demixing calcium

video data into estimates of single-cell neural activity. Second, once the shapes of individual

neurons have been identified at fine scale (e.g., after an initial phase of conventional imag-

ing with standard temporal and spatial resolution), we find that the spatial/temporal resolu-

tion tradeoff shifts dramatically: after demixing we can accurately recover denoised

fluorescence traces and deconvolved neural activity of each individual neuron from coarse

scale data that has been spatially decimated by an order of magnitude. This offers a cheap

method for compressing this large video data, and also implies that it is possible to either

speed up imaging significantly, or to “zoom out” by a corresponding factor to image order-of-

magnitude larger neuronal populations with minimal loss in accuracy or temporal resolution.

Author summary

The voxel rate of imaging systems ultimately sets the limit on the speed of data acquisition.

These limits often mean that only a small fraction of the activity of large neuronal
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populations can be observed at high spatio-temporal resolution. For imaging of very large

populations with single cell resolution, temporal resolution is typically sacrificed. Here

we propose a multi-scale approach to achieve single cell precision using fast imaging at

reduced spatial resolution. In the first phase the spatial location and shape of each neuron

is obtained at standard spatial resolution; in the second phase imaging is performed at

much lower spatial resolution. We show that we can apply a demixing algorithm to accu-

rately recover each neuron’s activity from the low-resolution data by exploiting the high-

resolution cellular maps estimated in the first imaging phase. Thus by decreasing the spa-

tial resolution in the second phase, we can compress the video data significantly, and

potentially acquire images over an order-of-magnitude larger area, or image at signifi-

cantly higher temporal resolution, with minimal loss in accuracy of the recovered neuro-

nal activity. We evaluate this approach on real data from light-sheet and 2-photon

calcium imaging.

This is a PLoS Computational Biology Methods paper.

Introduction

A major goal of neuroscience is to understand interactions within large populations of neu-

rons, including their network dynamics and emergent behavior. This ideally requires the

observation of neural activity over large volumes. Recently, light-sheet microscopy and geneti-

cally encoded indicators have enabled unprecedented whole-brain imaging of tens of thou-

sands of neurons at cellular resolution [1]. However, light-sheet microscopy generally suffers

from slow volumetric speeds (e.g. [2], but see also [3, 4]) and is usually applied to small and

transparent brains. In scattering brains, current technologies with single-neuron resolution

are usually based on slow, serially-scanned two-photon (2P) imaging methods that can only

sample from O(102 − 103) neurons simultaneously with adequate temporal resolution [5].

Recent advances have enabled faster light-sheet imaging in cortex [6] and fast volumetric 2P

imaging [7], but we must still contend with critical trade-offs between temporal and spatial res-

olution—and the need for even faster imaging of even larger neural populations.

Another critical challenge is the sheer amount of data generated by these large-scale imag-

ing methods. A crucial step for further neural analysis involves a transition from voxel-space

to neuron-source space: i.e., we must detect the neurons and extract and demix each neuron’s

temporal activity from the video. Simple methods such as averaging voxels over distinct

regions of interest (ROIs) are fast, but more statistically-principled methods based on con-

strained non-negative matrix factorization (CNMF) better conserve information, yield higher

signal-to-noise ratio, recover more neurons, and enable the demixing of spatially overlapping

neurons [8]. The methods described in [8] were not optimized for very large datasets, but

NMF is a key machine learning primitive that has enjoyed more than a decade of intensive

algorithmic optimization [9–12] that we can exploit here to scale the CNMF approach. We

find that a very simple idea leads to order-of-magnitude speedups: by decimating the data (i.e.,

decreasing the resolution of the data by simple local averaging [13]), we can obtain much faster

algorithms with minimal loss of accuracy.

Multi-scale approaches for neuronal population imaging
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Decimation ideas do not just lead to faster computational image processing, but also offer

prescriptions for faster image acquisition over larger fields of view (FOV), and for observing

larger neural populations. Specifically, we propose the following two-phase combined image

acquisition/analysis approach. In the first phase, we use conventional imaging methods to

obtain estimates of the visible neuronal locations and shapes. After this cell-identification

phase is complete we switch to low-spatial-resolution imaging, which in the case of camera-

based imaging simply corresponds to “zooming out” on the image, i.e., expanding the spatial

size of each voxel. This has the benefit of projecting a larger FOV onto the same number of

voxels; alternatively, if the number of voxels recorded per second is a limiting factor, then

recording fewer (larger) voxels per frame implies that we can image at higher frame-rates. We

are thus effectively trading off spatial resolution for temporal resolution; if we cut the spatial

resolution too much we may no longer be able to clearly identify or resolve single cells by eye

in the obtained images. However, we show that, given the high-spatial-resolution information

obtained in the first imaging phase, the demixing stage of CNMF can recover the temporal sig-

nals of interest even from images that have undergone radical spatial decimation (an order of

magnitude or more). In other words, CNMF significantly shifts the tradeoff between spatial

and temporal resolution, enabling us to image larger neuronal populations at higher temporal

resolution.

The rest of this paper is organized as follows. We first describe how temporal and spatial

decimation (along with several other improvements) can be used within the CNMF algorithm

to gain order-of-magnitude speed-ups in calcium imaging video processing. Next we investi-

gate how decimation can enable faster imaging of larger populations for light-sheet and 2P

imaging. We show the importance of the initial cell identification phase, quantitatively illus-

trate how CNMF changes the tradeoff between spatial and temporal resolution, and discuss

how spatially decimated imaging followed by demixing can be interpreted as a simple com-

pression and decoding scheme. We show that good estimates of the neural shapes can be

obtained on a small batch of standard-resolution data, corresponding to a short cell-identifica-

tion imaging phase. Finally we demonstrate that interleaved imaging that translates the pixels

by subpixel shifts on each frame further improves the fidelity of the recovered neural time

series.

Results

Order-of-magnitude speedups in demixing calcium imaging data

Constrained non-negative matrix factorization (see Methods) relies on the observation that

the spatiotemporal fluorescence activity (represented as a space-by-time matrix) can be

expressed in terms of a product of two matrices: a spatial matrix A that encodes the location

and shape of each neuron and a temporal matrix C that characterizes the calcium concentra-

tion within each neuron over time. Placing constraints on the spatial footprint of each neuron

(e.g., enforcing sparsity and locality of each neural shape) and on the temporal activity (model-

ing the observed calcium in terms of a filtered version of sparse, non-negative neural activity)

significantly improves the estimation of these components compared to vanilla NMF [8].

Below (cf. Fig 1), we describe a number of algorithmic improvements on the basic approach

described in [8]: an iterative block-coordinate descent algorithm in which we optimize for

components of A with C held fixed, then for C with A held fixed.

We begin by considering imaging data obtained at low temporal resolution, specifically a

whole-brain light-sheet imaging recording acquired at a rate of 2 Hz using nuclear localized

GCaMP6f in zebrafish. We restricted our analysis to a representative patch shown in Fig 2A,

extracted from a medial z-layer of the telencephalon (pallium). (Similar analyses were also

Multi-scale approaches for neuronal population imaging
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performed on patches from midbrain and hindbrain, with similar conclusions.) The neural

centers were detected automatically using the greedy method from [8]. To ensure that the

spatial components in A are localized, we constrained them to lie within spatial sub-patches

(dashed squares in Fig 2A; see also Methods).

The first algorithmic improvement follows from the realization that some of the constraints

applied in CNMF are unnecessary, at least during early iterations of the algorithm, when only

crude estimates for A and C are available. Specifically, [8] imposed temporal constraints on C
in each iteration: namely, C was modeled as a filtered version of a nonnegative neural activity

signal S—i.e., CG = S, for an invertible matrix G—and therefore CG is constrained to be non-

Fig 1. Speeding up CNMF. Mean-squared-error as a function of wall time. (A) The order in which coordinates in the block-coordinate

descent method are updated affects convergence speed. The dashed box indicates the zoomed in plot region of (B, C, D) (B) Temporal

decimation speeds up CNMF. Curves show the normalized mean square error (MSE; normalized so that at convergence the original CNMF

method reaches a value of 1) on the whole data after 30 initial iterations are performed on a smaller dataset obtained by temporally

decimating by different factors k—i.e., averaging each block of k frames into a single frame (color indicates k, cf. legend). The curve for

decimation factor 1 (i.e., no decimation) is identical to the one in (A). (C) Temporal decimation outperforms other compression schemes.

Compressing further after decimation (dashed lines) is not beneficial. The cyan and vermilion curve are the same as in (A,B). (D) Spatial

decimation (locally averaging over spatial blocks of size l × l in the image) yields further improvements, in particular a better (local) minimum

of the MSE. Curves show the results for 30 initial iterations on data that has been decimated temporally by a factor of 30 and spatially by the

factors l given in the legend. The solid cyan curve for spatial decimation factor 1×1 (i.e., no spatial decimation) is the same as in (B, C).

https://doi.org/10.1371/journal.pcbi.1005685.g001
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negative. We found that enforcing a simpler non-negativity constraint on C instead of CG
(and then switching to impose the constraint on CG only once the estimates of A and C were

closer to convergence) led to a simpler algorithm enabling faster early iterations with no loss

in accuracy.

Next we found that significant additional speed-ups in this simplified problem could be

obtained by simply changing the order in which the variables in this simplified block-coordi-

nate descent scheme are updated [12]. Instead of updating the temporal activity and spatial

shape of one neuron at a time (Fig 1A, black line) as in [8], which is known as hierarchical

alternating least squares (HALS, [9]) or rank-one residue iteration (RRI, [14]), it turned out

to be beneficial to update the activities of all neurons while keeping their shapes fixed, and

then updating all shapes while keeping their activities fixed (Fig 1A, vermilion line). The

ensuing method is a constrained version of the fast hierarchical alternating least squares (fast

HALS, [15]) for NMF; one major advantage of this update ordering is that in each iteration

we operate on smaller matrices obtained as dot-products of the data matrix Y with A or C,

and there is no need to compute the large residual matrix Y − AC (which is of the same size

as the original video) [10, 11]. (In the comparisons below we computed the residual to quan-

tify performance, but excluded the substantial time spent on its computation from the

reported wall time values.)

Next we reasoned that to obtain a good preliminary estimate of the spatial shape matrix A,

it is likely unnecessary to use the original data at full temporal resolution [13]. Thus we experi-

mented with the following approach: downsample temporally by a factor of k, then run con-

strained fast HALS (as described above) for 30 iterations, and then finally return to the original

(non-downsampled) data and run a few more iterations of fast HALS until convergence. We

Fig 2. CNMF with and without initial decimation to speed up CNMF. (A) Real data summary image obtained as max-projection along

time-axis. Squares indicate patches centered at suspected neurons. The three highlighted neurons are considered in the next panels. (B)

Extracted shapes of the three neurons highlighted in (A) using the same color code. The upper row shows the result with initial temporal

decimation by a factor of 30 and spatial decimation by 3×3, followed by five final iterations on the whole data. The algorithm ran for merely

1 s. The lower row shows the result without any decimation and running until convergence, yielding virtually identical results. (C) Extracted

time traces without (thick black) and with initial iterations on decimated data (color as in A) overlap well after merely 1 s. (D) They overlap

almost perfectly if the algorithm using decimation is run not only for 1 but 10 s.

https://doi.org/10.1371/journal.pcbi.1005685.g002
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experimented with three different downsampling methods: 1) selection of the k-th frame (this

could be considered a kind of stochastic update rule, since we are forming updates based only

on a subset of the data); 2) forming a median over the data in each block of k frames (applying

the median over each pixel independently); and 3) forming a mean over each block of k frames.

The mean approach (3) led to significantly more accurate and stable results than did the sub-

sampling approach (1), consistent with the results of [12], and was about an order of magni-

tude faster than the median approach (2) with similar accuracy, so we restrict our attention to

the mean approach (3) for the remainder of this work. (A further advantage of approach (3)

relative to (1) is that (1) can miss fast activity transients.) Fig 1B shows the results obtained for

a varying number of decimation factors k; we conclude that temporal decimation provides

another significant speedup over the results shown in Fig 1A. The starting point of each line is

the MSE for keeping the neural shapes obtained on decimated data fixed and solving for the

time series on the full data. Refining the shapes on the full data further decreases the MSE,

however by less then 1%, hence good shapes are obtained even using merely decimated data.

Besides downsampling methods, we also considered dimensionality reduction via struc-

tured random projections [16] or singular value decomposition (SVD, [17], see Methods). We

compressed the data by the same factor k = 30, but found that both of these dimensionality-

reduction methods were less efficient than simple decimation (Fig 1C). We further evaluated

whether we can gain improvements by further compressing the decimated data via SVD or

random projections, such that the reduced dimension is just slightly larger than the number of

neurons. However, we did not obtain any improvements beyond plain decimation. We found

this result to hold also for smaller patches that contained fewer neurons.

Further speed gains were obtained when applying spatial decimation (computing a mean

within l × l pixel blocks) in addition to temporal decimation over the 30 preliminary fast

HALS iterations (Fig 1C); see Algorithm 1 for full details. Strikingly, spatial decimation led not

only to faster but also to better solutions of the biconvex factorization problem (where solution

quality is measured by the residual sum of square errors, ||Y − AC||2, RSS), apparently because

the spatially-decimated solutions are near better local optima in the squared-error objective

function than are the non-decimated solutions.

In summary, by simplifying the early iterations of the CNMF algorithm (by removing the

temporal deconvolution constraints to use fast HALS iterations on temporally and spatially

subsampled data), we obtained remarkable speed-ups without compromising the accuracy of

the obtained solution, at least in terms of the sum-of-squares objective function. But how do

these modifications affect the extracted neural shapes and activity traces? We ran the algorithm

without decimation until convergence and with decimation for 1 and 10 s respectively. Fig 2

shows the results for three neurons with overlapping patches. Both shapes and activity traces

agree well even if the decimated algorithm is run for merely 1 s (Fig 2B and 2C) and are nearly

identical if run longer (Fig 2D); hence, decimation does not impair the final obtained accuracy.

Our focus has been on speeding up CNMF, one computational bottleneck of the entire pro-

cessing pipeline. For completeness, we report the times spent on each step of the pipeline in

Table 1 and compare to the previous CNMF version of [8]. After loading, the data was deci-

mated temporally by a factor of 30 to speed up the detection of the neural centers using the

greedy initialization method from [8]. We further decimated spatially and ran fast HALS for

30 iterations before finally returning to the whole data and performing five final fast HALS

iterations. Each trace was normalized by the fluorescence at the resting state (known as ΔF/F)

to account for baseline drift using a running percentile filter. Finally, the fluorescence traces

were denoised via sparse non-negative deconvolution, using the recently developed fast

method of [18], which eliminated another computational bottleneck present in the original

CNMF implementation (last row of Table 1).

Multi-scale approaches for neuronal population imaging
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Decimation can enable faster imaging of larger populations

We have shown that decimation leads to much faster computational processing of calcium

video data. More importantly, these results inspired us next to propose a method for faster

image acquisition or for imaging larger neural populations. The basic idea is quite simple: if

we can estimate the quantities of interest (A and C) well given decimated data, then why collect

data at the full resolution at all? Since spatial decimation by a factor of l conceptually reduces

the number of pixels recorded over a given FOV by a factor of l2 (though of course this situa-

tion is slightly more complex in the case of scanning two-photon imaging; we will come back

to this issue below), we should be able to use our newly-expanded pixel budget to image more

cells, or image the same population of cells faster.

As we will see below, this basic idea can be improved upon significantly: if we have a good

estimate for the spatial neural shape matrix A at the original spatial resolution, then we can

decimate more drastically (thus increasing this l2 factor) with minimal loss in accuracy of the

estimated activity C. This, finally, leads to the major proposal of this paper: first perform imag-

ing with standard spatial resolution via conventional imaging protocols. Next perform the ROI

detection and CNMF described above to obtain a good estimate of A. Then begin acquiring

spatially l-decimated images and use the C-estimation step of CNMF to extract and demix the

imaged activity. As we will see below, this two-phase imaging approach can potentially enable

the accurate extraction of demixed neural activity even given quite large decimation factors l,
with a correspondingly large increase in the resulting “imaging budget.”

Light-sheet imaging. We began by quantifying the potential effectiveness of this strategy

using the zebrafish light-sheet imaging data examined in the last section. We emulated the

decrease in spatial resolution by decimating the original imaging data as well as the neural

shapes we had obtained by the CNMF approach, with a variety of decimation factors l. Then

we used these decimated shapes Al to extract and demix the activities Cl from the correspond-

ing downscaled data Yl. The reconstruction based on A1 and Cl fits the original data Y well, as

measured by the RSS (Fig 3B, orange dashed line), whereas ‘single-phase’ imaging only fits the

decimated data Yl and thus does not capture the fine spatial structure present in Y. The

reported low RSS values indicate that we capture the original data well even when the fluores-

cence traces are obtained on decimated data. However, we are not interested per se in low RSS

values themselves (which could in general be undesirably achieved by overfitting), but in

extracting the time series signal of each neuron well. Therefore, we evaluated the resulting

Cl traces by comparing them to the original traces C1 obtained from the full original data Y.

Table 1. Timing of the entire pipeline for a zebrafish patch.

CNMF method [8] here & [18]

load data† 22 ± 1 22 ± 1

decimate N/A 33 ± 1

detect ROIs‡ 5,360 ± 20 135 ± 2

NMF 35,100 ± 400 990 ± 10

ΔF/F 410 ± 10 410 ± 10

denoise 17,900 ± 300 600 ± 20

Average computing time (± SEM) in ms over ten runs for individual steps of the processing pipeline on a

standard laptop. The 96×96 patch contained N = 46 neurons recorded for T = 3000 frames.
†Loading the whole data as single binary file; loading a frame at a time was an order of magnitude slower.
‡Using greedy initialization; group lasso initialization [8] was an order of magnitude slower.

https://doi.org/10.1371/journal.pcbi.1005685.t001
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(In our notation if l = 1 then no decimation is applied.) Fig 3A shows that similar fluorescence

traces are inferred even from quite heavily coarsened shapes Al. The correlation between C1

and Cl decreases gracefully with the decimation factor l (Fig 3B, orange solid line). (We report

Pearson correlation throughout this article as a basic similarity measure; using nonparametric

Spearman correlation did not affect the conclusions.) In contrast, this correlation drops pre-

cipitously for relatively small values of l in the ‘single-phase’ imaging setting (cyan solid line),

where we estimate the shapes Al directly from Yl, instead of estimating A1 from the full data Y
first and then decimating to obtain Al. The problem in this ‘single-phase’ imaging setting is

that ROI detection fails catastrophically once the pixelization becomes too coarse. Fig 3A fur-

ther shows traces (cyan) obtained in the ‘single-phase’ imaging setting, which markedly differ,

in particularly for closely overlapping neurons. The middle trace clearly shows contributions

from the upper trace, hence demixing these two neurons failed.

Thus the results are quite promising; with the two-phase imaging strategy we can effectively

increase our imaging budget (as measured by l2) by over an order of magnitude with minimal

loss in the accuracy of the obtained activity traces Cl, and we also observe clear advantages of

the two-phase over the single-phase decimation approaches. Finally, S1 Video illustrates the

results in video form; we see there that we can recover essentially all the relevant information

(at least visually) in the original video data Y from the spatially decimated video Yl, even with

quite large decimation levels l (l = 8 in S1 Video). Thus this decimation-then-demix approach

could also provide a trivial compression scheme (with the estimation of Cl from Yl and Al serv-

ing as the decoder; here the compression ratio is l2) that could be useful e.g. for wireless record-

ings, or any bandwidth- or memory-limited pipeline [19–21].

Two-photon imaging. Turning towards imaging data acquired at a faster frame-rate, we

next consider the case of a 2P calcium imaging dataset from mouse visual cortex acquired at 20

Hz. We chose ROIs based on the correlation image and max-projection image, cf. Fig 4A and

S2 Video, and then obtained neural shapes A1 and fluorescence activity C1 using CNMF. The

upper row in Fig 4 (and S2 Video) shows the raw data Y and its reconstruction A1 � C1 based

on CNMF, illustrating that all relevant ROIs have been detected and the matrix decomposition

computed by CNMF captures the data well. The lower row shows the spatially decimated data

Yl and the reconstruction A1 � Cl based on sparse demixing of Yl using knowledge of the neural

Fig 3. Low spatial resolution light-sheet imaging with previously identified cells. (A) Inferred traces for the three neurons in Fig 2.

Shapes were decimated by averaging 2×2, 4×4 or 8×8 pixels. The legend shows the resulting shapes Al as well as the correlation between

the calcium traces Cl inferred from the decimated data versus the original traces C1 obtained from the non-decimated data. Further, the

results obtained with merely 1-phase imaging for decimation by 8×8 pixels are shown as cyan traces. (B) Correlation (solid, left y-axis)

between Cl and C1 for all cells recovered from this patch. Thick lines show the median, thin lines and shaded region the interquartile range

(IQR). The correlation decays slowly as l increases for 2-phase imaging (orange) but drops abruptly if the shapes Al are estimated directly

from decimated data (cyan) instead of being decimated from the shapes A1 estimated from a standard-resolution imaging phase. Mean-

squared-error (dashed, right y-axis) normalized so that without decimation the value is 1.

https://doi.org/10.1371/journal.pcbi.1005685.g003
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shapes A1 from an initial cell identification imaging phase. As in the example in the last sec-

tion, this illustrates that sparse demixing paired with cell shape identification applied to deci-

mated data (panel D) captures the data virtually as well as CNMF without decimation (panel

B). See S2 Video for full details.

Fig 5 shows, analogously to Fig 3A, the traces Cl recovered from spatially decimated data

(using the 2-phase imaging approach) depend quite weakly on the decimation factor l, until l
becomes so large that the resulting pixel size is comparable to the size of individual somas. In

contrast, the traces recovered using the 1-phase imaging approach markedly differ from C1

Fig 4. Previously identified shapes allow reconstruction at high spatial resolution based on low resolution imaging (best seen in

S2 Video for full details). (A) Max projection image of the raw data Y with identified ROIs, i.e. neurons or activity hotspots. Contour lines

contain 90% of the energy of each neural shape. (B) Max projection image of the denoised estimate A1 � C1 (plus the estimated background).

(C) Max projection image for data obtained at lower spatial resolution, Yl; l = 16 here. (D) Reconstruction based on the low resolution data in

(C) and previously identified shapes, A1 � Cl. The reconstruction looks very similar to the denoised high-resolution data of (B). Note: contours

in (B-D) are not recomputed in each panel, but rather are copied from (A), to aid comparison.

https://doi.org/10.1371/journal.pcbi.1005685.g004
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even for small l. We also deconvolved the estimated calcium transients Cl into estimates of

neural activity Sl, using the sparse non-negative deconvolution method described in [8, 22]; we

see similarly weak dependence of the results on l when comparisons are performed on this

deconvolved activity. The ROIs were rank-sorted using a combination of maximal fluores-

cence intensity and a measure of the compactness of the neural shape (see Methods); we find

that the similarity between C1 and Cl is strongest for the highest-ranked ROIs.

We summarize the results over all neurons in this dataset in Fig 6. As in the examples

shown in Fig 5, we see that the mean correlation between C1 and Cl decreases gracefully with l
in the 2-phase imaging setting (orange lines). In contrast, the correlation decays much more

sharply if the shapes Al were obtained directly on low-resolution data (1 phase imaging; cyan

lines), similarly but more dramatically than in Fig 3B. Similar results hold for the deconvolved

activity S1 and Sl (dashed), though the correlation between S1 and Sl does decay more quickly

than does the correlation between C1 and Cl. Fig 6C shows that the decrease in correlation is

more pronounced for lower ranked ROIs; i.e., if we restrict attention to the most clearly-identi-

fied cells then we can safely spatially decimate even more aggressively. Smaller sized structures

are more sensitive to binning, as shown in S1 Fig, which depicts all neural footprints sorted by

increasing reconstruction loss for 16×16 decimation.

So far we have used the correlation between C1 and Cl (or S1 and Sl) to quantify the robust-

ness of signal recovery from the decimated data Yl. However, C1 and S1 should not be considered

Fig 5. Inferred denoised and deconvolved traces for ROIs with rank 1, 40, 80 and 120 (top to bottom) out of a total of N = 187 ROIs

in the 2P dataset. In each row, a denoised trace from Cl is shown above the corresponding deconvolved trace from Sl. Shapes were

decimated by averaging 4×4 or 16×16 pixels. The legend shows the resulting shapes Al as well as the correlation of the inferred denoised

fluorescence Cl versus the estimate C1 obtained without decimation. Further, the results obtained with merely 1-phase imaging for

decimation by 4×4 pixels are shown as cyan traces.

https://doi.org/10.1371/journal.pcbi.1005685.g005
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“ground truth”: these are merely estimates of the true underlying neural activity, inferred from

noisy data Y, and it is not surprising that C1 and Cl are close for small values of l. A more critical

question is the following: is Cl a significantly worse estimate of the true underlying neural activ-

ity C than C1? Of course ground truth neural activity is not available for this dataset, but we can

simulate data Ys and compare how well Cs
1

and Cs
l recover the simulated ground truth Cs. To

generate this simulated dataset, we started with As ≔A1 and Cs ≔ C1 recovered from the full-

resolution original data Y, and then generated a new simulated matrix Ys = AsCs + B + Rs, where

B represents background terms and Rs is chosen to match the statistics of the original residual

R = Y − A1C1 − B (specifically, for each pixel d we formed Rs
d by randomly re-ordering the origi-

nal corresponding residual time series Rd in that pixel while keeping the link between variance

and mean; see Methods. Adding Poisson noise instead of the reshuffled residual yielded similar

results, S2 Fig). Then we estimated As
1
, Cs

1
and Ss

1
from Ys, and Cs

l and Ss
l from decimated ver-

sions of Ys, and compared the results in Fig 6D–6F. We see some important differences com-

pared to Fig 6A–6C: the correlation curves no longer approach 1 as the decimation level l
decreases towards 1 (for example, the mean correlation between ground truth and recovered Ss

is about 0.8 even if no decimation is applied), and the correlation between ground truth and the

recovered Cs
l (or Ss

l ) now decreases much more slowly as a function of l—indicating that signal

recovery from spatially decimated data is even more robust than indicated in Fig 6A–6C. On the

other hand, we continue to observe similar strong differences in recovery when comparing the

1- and 2-phase imaging results.

Fig 6. Quantifying the impact of decimation for 2P data. (A) Summary of correlations between denoised traces C1 and Cl and

deconvolved traces S1 and Sl. Decimating in x and y direction. Thick lines show the median, thin lines and shaded region the IQR. The

correlation of denoised fluorescence (solid) decays slowly for 2 phase imaging (orange) and abruptly if the shapes Al are not inferred in the

pre-screening phase but are instead estimated directly from downscaled data (cyan). The same holds for the deconvolved traces (dashed).

(B) Analogous to (A), but with decimation applied just in the spatial horizontal direction. (C) Correlation of denoised fluorescence for each

ROI plotted individually. Rank of ROI indicated by color; better ranked ROIs are less susceptible to decimation errors. (D-F) Analogous to

(A-C), but comparing to simulated ground truth Cs instead of inferredCs
1
. Traces were obtained on decimated simulated data with reshuffled

residuals.

https://doi.org/10.1371/journal.pcbi.1005685.g006
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The autoregressive model for the calcium dynamics are of course not exact. Thus as a fur-

ther control simulation we generated another dataset that used Poisson noise and ground

truth fluorescence C obtained by convolving the spike trains and response kernels from a

study that combined electrophysiological recordings and calcium imaging with GCaMP6f or

GCaMP6s [23, 24] (see Methods). Although the real calcium responses do not exactly follow

the autoregressive assumptions, our model gives reasonable results, even in the context of spa-

tial decimation (S3 Fig).

In practice we envision that the first phase of cell identification will only be performed on a

small initial batch of the data (and maybe also at the end of the experiment to check for consis-

tency). Therefore we experimented with reducing the amount of data used to infer the neural

shapes from the full data (2,000 frames, 100 s) to 1,000 frames (50 s) and 500 frames (25 s)

respectively. Fig 7A shows the shapes inferred based on the full data (orange) or using only the

first half (blue) with a max projection of the first half of the data as background. While some

neural shapes are less well defined using less data, we only seem to miss two suspects entirely

(white arrows). However, closer inspection reveals that these ROIs are not missed neurons,

but rather are highly correlated with and actually part of the neuron indicated by the blue

arrow—so in this example 50 seconds was sufficient to identify all the necessary neural shapes.

(If there were neurons missed in the first phase, we could in principle incorporate a new-neu-

ron-detection step in the second phase, but this has not yet proven necessary in our experi-

ments.) Fig 7B and 7C report the correlation values measured only on the second half of the

data, using shapes A estimated just with the first half. The close proximity of the orange and

blue trace is further evidence that the shapes A can be estimated sufficiently in a short pre-

Fig 7. Estimating neural shapes on small initial batch of the data. (A) Shapes inferred on the full data (orange) or using only the first half

(blue). Two apparently lost suspected ROIs (white arrows) are actually part of another neuron (blue arrow) (B) Average correlation (±SEM)

between traces Cl obtained on decimated data and the reference C1 obtained without any decimation. Similar results hold for median and

IQR, but the resulting plot is too cluttered. (C) Comparing to simulated ground truth Cs. Traces were obtained on decimated data with

reshuffled residuals, otherwise analogous to (B).

https://doi.org/10.1371/journal.pcbi.1005685.g007
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screening phase. Interestingly, estimating the shapes based on merely 500 frames leads to some

slight overfitting; the correlation values shown here actually increase slightly for small decima-

tion factors because decimation serves to partially regularize the overfitted shapes.

Finally, we investigated whether it would be possible to further improve the recovery of Cl

from very highly decimated data via an interleaving strategy [25]. Instead of using the same

large pixels on each frame, e.g. the ones corresponding to the cyan grid in Fig 8A, we alternate

between imaging with the cyan pixelization and the half-shifted orange pixelization. This is

helpful, for example, in distinguishing the activity of neurons 20 and 39: based on merely cyan

pixels, these neurons contribute to only one and the same pixel and distinguishing their activ-

ity would therefore be impossible, whereas the information from the orange pixels afford their

separation. It is straightforward to generalize the demixing strategy to exploit the information

from the cyan and orange grids at alternating time points (see Methods); Fig 8B and 8C show

that this interleaving is indeed able to improve recovery at very large decimation levels l.

Discussion

The basic message of this paper is that standard approaches for imaging calcium responses in

large neuronal population—which have historically been optimized so that humans can clearly

see cells blink in the resulting video—lead to highly redundant data, and we can exploit this

redundancy in several ways. In the first part of the paper, we saw that we can decimate standard

calcium imaging video data drastically, to obtain order-of-magnitude speedups in processing

time with no loss (and in some cases even some gain) in accuracy of the recovered signals. In

the second part of the paper, we saw that, once the cell shapes and locations are identified, we

Fig 8. Interleaving improves accuracy of recovered Cl at low spatial resolution. (A) Interleaving alternates between pixels

corresponding to the cyan and orange grid. (B) Correlation between traces Cl obtained on decimated data and the reference C1 obtained

without any decimation. The average correlation (±SEM) decays faster without (cyan) than with interleaving (green). Similar results hold for

median and IQR, but the resulting plot is too cluttered. (C) Comparing to simulated ground truth Cs. Traces were obtained on decimated data

with reshuffled residuals, otherwise analogous to (B).

https://doi.org/10.1371/journal.pcbi.1005685.g008
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can drastically reduce the spatial resolution of the recording (losing the ability to cleanly identify

cells by eye in the resulting heavily-pixelated movies) but still faithfully recover the neural activ-

ity of interest. This in turn leads naturally to a proposed two-phase imaging approach (first,

identify cell shapes and locations at standard resolution; then image at much lower spatial reso-

lution) that can be seen as an effort to reduce the redundancy of the resulting video data.

We anticipate a number of applications of the results presented here. Regarding the first part

of the paper: faster computational processing times are always welcome, of course, but more

fundamentally, the faster algorithms developed here open the door towards guided experimen-

tal design, in which experimenters can obtain images, process the data quickly, and immediately

use this to guide the next experiment. With more effort this closed-loop approach can poten-

tially be implemented in real-time, whether for improving optical brain-machine interfaces

[26], or enabling closed-loop optogenetic control of neuronal population dynamics [27, 28].

Highly redundant data streams are by definition highly compressible. The results shown in

S1 and S2 Videos illustrate clearly that spatially-decimated image acquisition (the second

phase of our two-phase imaging approach) can be seen as a computationally trivial low-loss

compression scheme. Again, regarding applications of this compression viewpoint: reductions

in memory usage are always welcome—but more fundamentally, this type of compression

could for example help enable wireless applications in which bandwidth and power-budget

limitations are currently a significant bottleneck [21, 29–31].

Regarding applications of the proposed two-phase imaging approach: we can potentially

use this approach to image either more cells, or image cells faster, or some combination of

both. In most of the paper we have emphasized the first case, in which we ‘zoom out’ to image

larger populations at standard temporal resolution. However, a number of applications require

higher temporal resolution. One exciting example is the larval zebrafish, where it is already

possible to image the whole brain, but light-sheet whole-brain volumetric imaging rates are

low [1] and current efforts are focused on faster acquisition [3, 4, 32]. Higher temporal resolu-

tion is also needed for circuit connectivity inference [33, 34] or the real-time closed-loop appli-

cations discussed above, where we need to detect changes in activity as quickly as possible.

Finally, genetically encoded voltage indicators [35] may soon enable imaging of neuronal pop-

ulations with single-cell, millisecond-scale resolution; these indicators are still undergoing

intense development [36–39] but when more mature the resulting signals will be much faster

than currently-employed calcium indicators and significantly higher temporal resolution will

be required to capture these signals.

A number of previous papers can be interpreted in terms of reducing the redundancy of the

output image data. Our work can be seen as one example of the general theme of increasing

the ratio N/D, with N denoting the number of imaged neurons and D the number of observa-

tions per timestep, with demixing algorithms used post hoc to separate the overlapping contri-

butions of each cell to each observed pixel. In a compressed sensing framework, [40] proposed

to image randomized projections of the spatial calcium concentration at each timestep, instead

of measuring the concentration at individual locations. In [41], [42], and [43], information is

integrated primarily across depth, either by creating multiple foci, axially extended point

spread functions (PSFs), or both, respectively. In contrast to these methods, [7] instead

scanned an enlarged near-isotropic PSF, generated with temporal focusing, to quickly interro-

gate cells in a single plane at low spatial resolution. This approach is closest in spirit to the one-

phase spatially decimated imaging approach analyzed in Figs 6–8, and could potentially be

combined with our two-phase approach to achieve further speed/accuracy gains.

We expect that different strategies for increasing N/D will have different advantages in dif-

ferent situations. One advantage of the approach developed here is its apparent simplicity—at

least at a conceptual level, we just need to ‘zoom out’ without the need for radically new
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imaging hardware. Throughout this work we have remained deliberately agnostic regarding

the physical implementation of the spatial decimation; all of the decimation results presented

here were based on software decimation after acquisition of standard-resolution images. Thus

to close we turn now to a discussion of potential experimental caveats.

One critical assumption in our simulations is that the total recorded photon flux per frame

is the same for each decimation level l. This is a reasonable assumption for light-sheet imaging

(assuming we are not limited by laser power or by the peak or average light power on the sam-

ple): in this case, increasing the effective pixel size could be achieved easily, either isotropically

with a telescope, or anisotropically, with a cylindrical lens or anamorphic prism pair. However,

faster whole-brain light-sheet imaging requires faster shifts of the light sheet and imaged focal

plane. This challenge can be solved by extended depth-of-field (EDoF) pupil encoding [3, 4,

32], remote focusing [44], or with an electrically tunable lens [45]. Higher light-sheet imaging

rates can also be obtained with swept confocally-aligned planar excitation (SCAPE) micros-

copy [6]. In short, we believe our proposed two-phase imaging approach fits well with a variety

of proven light sheet methods; for similar reasons, the two-phase approach would also fit well

with light-field imaging methods [46–48].

In traditional two-photon imaging the situation is more complicated. The image is created

by serially sweeping a small, diffraction limited point across the sample. Along the “fast” axis,

the beam moves continuously, and the integrated signal across a line is constant, regardless

of detection pixelation—the signal is simply partitioned into more or fewer bins. Along the

“slow” axis, however, the galvonometers are moved in discrete steps, and low pixel numbers

generally mean that portions of the image are not scanned, increasing frame speed, but con-

comitantly these ‘missed’ areas generate no signal. This consequently reduces the total number

of photons collected. Thus to achieve the same photon flux over the larger (lower spatially sam-

pled) pixels, while maintaining the same SNR, we require an enlarged PSF, which maps a

larger sampled volume to each pixel. This approach was recently demonstrated to be effective

in [7]; alternative strategies for enlarging the PSF could involve fixed diffractive optical ele-

ments [49] or spatial light modulator (SLM) systems [50]. Programmable phase-only SLMs

offer the additional benefit of being able to dynamically change the size and shape of the excita-

tion PSF, even between frames, which may help disambiguate closely spaced sources, and

effectively control the recorded source sparsity.

In any instantiation, maximal imaging speed will be limited by the time required to collect

enough photons for adequate SNR, which in turn is limited by photophysics and the light tol-

erance of the sample. In future work we plan to pursue both light-sheet and 2P implementa-

tions of the proposed two-phase imaging approach, to quantify the gains in speed and FOV

size that can be realized in practice.

We also expect techniques for denoising, demixing, and deconvolution of calcium imaging

video to continue to improve in the near future, as more accurate nonlinear, non-Gaussian

models for calcium signals and noise are developed; as new demixing methods become avail-

able, we can easily swap these methods in in place of the CNMF approach used here. We

expect that the basic points about temporal and spatial decimation discussed in this paper will

remain valid even as newer and better demixing algorithms become available.

Methods

Ethics statement

Light-sheet imaging of zebrafish was conducted according to protocols approved by the

Institutional Animal Care and Use Committee of the Howard Hughes Medical Institute,

Janelia Research Campus. Two-photon imaging of mouse was carried out in accordance
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with animal protocols approved by the Columbia University Institutional Animal Care and

Use Committee.

Neural data acquisition

The calcium fluorescence of the whole brain of a larval zebrafish was recorded using light-

sheet imaging. It was a transgenic (GCaMP6f) zebrafish embedded in agarose but with the

agarose around the tail removed. The fish was in a fictive swimming virtual environment as

described in [51]. The closed loop setting, characterized by visual feedback being aligned with

the recorded motor activity, was periodically interrupted by open loop phases. Whole-brain

activity was recorded for 1,500 seconds with a rate of 2 volumes per second.

In vivo two-photon imaging was performed in a transgenic (GCaMP6s) mouse through a

cranial window in visual cortex. The mouse was anesthetized (isoflurane) and head-fixed on a

Bruker Ultima in vivo microscope with resonant scanners, and spontaneous activity was

recorded. The field of view extended over 350 μm × 350 μm and was recorded for 100 seconds

with a resolution of 512×512 pixels at 20 frames per second.

Constrained non-negative matrix factorization

In the case of 2P imaging, the field of view contained N = 187 ROIs. It was observed for a total

number of T = 2,000 timesteps and had a total number of D = 512×512 pixels. We restricted

our analysis of the zebrafish data to a representative patch of size D = 96×96 pixels containing

N = 46 ROIs, extracted from a medial z-layer of the whole-brain light-sheet imaging recording

of T = 3,000 frames. The observations at any point in time can be vectorized in a single column

vector of length D; thus all the observations can be described by a D × T matrix Y. Following

[8], we model Y as

Y ¼ AC þ bf > þ E ð1Þ

where A 2 RD�N
þ

is a spatial matrix that encodes the location and shape of each neuron,

C 2 RN�T
þ

is a temporal matrix that characterizes the calcium concentration of each neuron

over time, b 2 RD
þ
; f 2 RT are nonnegative vectors encoding the background spatial structure

and global intensity, respectively, and E is additive Gaussian noise with mean zero and diago-

nal covariance. Our model assumes a linear relationship between fluorescence and calcium

concentration as well as Gaussian noise. As emphasized in [8], more elaborate models for C
can be incorporated in the alternating updates, but we did not pursue this generalization here.

For the zebrafish data we ensured that the spatial components are localized, by constraining

them to lie within spatial patches (which are not large compared to the size of the cell body)

around the neuron centers, thus imposing sparsity on A by construction. Because of the low

temporal resolution of these recordings, the inferred neural activity vectors are not expected to

be particularly sparse, and therefore we do not impose sparsity in the temporal domain. This

leads to the optimization problem

minimize
A;b;C;f

kY � AC � bf >k

subject to : A; b;C � 0; Aðd; nÞ ¼ 0 8d =2 Pn

ð2Þ

where Pn denotes the n-th fixed spatial patch. This problem is biconvex, i.e. solving for C and f
with fixed A and b is a convex problem; likewise solving for A and b with fixed C and f is con-

vex. As discussed in the Results section, we solve this problem by block-coordinate descent,

first applied to much smaller decimated data and then using this solution as a warm start for
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the optimization on the full data. In the resulting Algorithm 1 we appended for concision b
and f as an additional column or row to A and C respectively.

The matrix products A>Y and CY> in Algorithm 1 are computationally expensive for the

full data. These matrix products can also be performed on GPU instead CPU; whereas for the

comparatively small 96×96 patches we did not obtain any speed-ups using a GPU, we verified

on patches of size 256×256 that some modest overall speedups (a factor of 1.5–2) can be

obtained by porting this step to a GPU.

For the decimated data the matrix products are cheap enough to iterate just once over all

neurons and instead alternate more often between updating shapes and activities (instead of

performing many iterations within HALSACTIVITY or HALSSHAPE in Algorithm 1). In early iter-

ations our estimates of A and C are changing significantly and it is better to perform just one

block-coordinate descent step for each neuron to update A (and similarly for C); for later itera-

tions, and on the full data where it is more expensive to compute A>Y and CY>, we increase

the inner iterations in HALSACTIVITY or HALSSHAPE.

Algorithm 1. NMF algorithm using localization constraints and spatio-temporal decimation

Required: data Y 2 RD�T
þ

, N neuron centers, number of iterations ~I and I

1: successively take mean of e.g. 30 frames ⊳ operateon decimated data

2: initialize centersusing greedy (or group lasso)method from [8]

3: downscale spatiallyusing local mean: Y ! ~Y 2 R~D�~T
þ

4: generatepatches ~P around centers

5: initialize spatialbackground as 20% percentile, neural shapes as Gaussians within
patch: ~A 2 R~D�ðNþ1Þ

þ

6: initialize temporalbackground as 1~T, neuralactivities as data at centers:
~C 2 RðNþ1Þ�~T

þ

7: for i = 1, . . ., ~I do

8: ~C  HALSACTIVITY(~Y ; ~A ; ~C)

9: ~A  HALSSHAPE(~Y ; ~A ; ~C ; ~P)

10: initialize activities C 2 RðNþ1Þ�T
þ

as mean of ~C for each neuron ⊳ back to full data

11: initialize shapes A 2 RD�ðNþ1Þ

þ
by zero-order-holdupsampling of ~A

12: generate patchesP

13: for i = 1, . . ., I do

14: C HALSACTIVITY(Y, A, C, 5) ⊳ note the increased inner iterations

15: A HALSSHAPE(Y, A, C, P, 5)

16: denoiseC using OASIS [18]

17: returnA, C

1: functionHALSACTIVITY(Y, A, C, I = 1) 1: function HALSSHAPE(Y, A, C, P, I = 1)

2: U = A>Y 2: U = CY>

3: V = A>A 3: V = CC>

4: for i = 1, . . ., I do 4: for i = 1, . . ., I do

5: for n = 1, . . ., N do 5: for n = 1, . . ., N + 1 do

6: Cn;:  maxð0;Cn;: þ
Un;: �
P

j
Vn;jCj;:

Vn;n
Þ 6: An;:  Pn;: � maxð0;An;: þ

Un;: �
P

j
Vn;jA

>
j;:

Vn;n
Þ

7: CNþ1;:  CNþ1;: þ
UNþ1;: �

P
j
VNþ1;jCj;:

VNþ1;Nþ1

7:

8: return C 8: return A

https://doi.org/10.1371/journal.pcbi.1005685.t002
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Algorithm 1 is a constrained version of fast HALS. To further improve on fast HALS, [52]

suggested to replace cyclic variable updates with a greedy selection scheme focusing on non-

zero elements. This was unnecessary here because most nonzero elements are prespecified by

the patches Pn; i.e., we are already focusing on the nonzero elements.

Because for the 2P data the observed imaging rate is much higher than the decay rate of the

calcium indicator, we constrain the temporal traces C to obey the calcium indicator dynamics,

to enable further denoising and deconvolution of the data. As in [8], we approximate the cal-

cium concentration dynamics using an autoregressive process of order 2 (AR(2)),

Cðn; tÞ ¼ g1Cðn; t � 1Þ þ g2Cðn; t � 2Þ þ Sðn; tÞ; ð3Þ

where S(n, t) is the number of spikes that neuron n fired at timestep t. This equation can be

conveniently expressed in matrix form as S = CG for a suitable sparse matrix G. We estimate

the noise level of each pixel σd by averaging the power spectral density (PSD) over a range of

high frequencies, and estimate the coefficients of the AR(2) process for each cell following

[22]. Then we solve for A, b, C, f using the following iterative matrix updates:

minimize
A;b

kAk1;

subject to : A; b � 0; kYðd; :Þ � Aðd; :ÞC � bðdÞf >k� sd

ffiffiffiffi
T
p

8d 2 f1; 2; :::;Dg
ð4Þ

minimize
C; f

kCG k1;

subject to : CG � 0; kYðd; :Þ � Aðd; :ÞC � bðdÞf >k� sd

ffiffiffiffi
T
p

8d 2 f1; 2; :::;Dg:
ð5Þ

These updates are initialized with the results from constrained fast HALS (Alg 1). They impose

sparsity on the spatial as well as temporal components, using the estimates of the noise variance

as hard constraints to derive a parameter-free convex program. Following the approach in [53]

the spike signal S is relaxed from nonnegative integers to arbitrary nonnegative values. The basis

pursuit denoising problems in Eqs (4 and 5) can be solved with one of the methods described in

[8]. However, a faster update of the temporal matrix C is achieved by using OASIS [18].

Normalization and ranking of the obtained components

Every spatial component in A was normalized to have unit ℓ2-norm, with the corresponding

temporal component scaled accordingly. Following [8] we then sort the components accord-

ing to the product of the maximum value that the temporal component attains and the ℓ4-

norm of the corresponding spatial footprints, to penalize overly broad and/or noisy spatial

shapes.

In order to calculate the ΔF/F values we divided the fluorescence trace C(n, :) of each neu-

ron by its baseline fluorescence that was obtained by projecting the rank-1 background bf>

onto the shape A(:, n) of the neuron, DF
F

� �

t ≔
Að:;nÞ>Að:;nÞCðn;tÞ

Að:;nÞ>bf ðtÞ
. While we normalized A and C such

that A(:, n)>A(:, n) = 1, the ΔF/F values do not depend on this specific normalization because

the scaling factor cancels out.

Compression details

To compress the data using truncated SVD in Fig 1C, we followed [17] and computed the

eigenvectors V 2 RM�T belonging to the M largest eigenvalues of the time by time covariance

matrix Y>Y, which were then used to obtain the compressed data YV>. This method was

faster than the randomized method due to [54]. The spatial background b for the compressed
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data was again initialized as 20% percentile of the original data and the temporal background

as ~f ¼ V1T . Because the compressed data and temporal traces can be negative we did not

enforce the non-negativity constraint of ~C and ~f , which was crucial as enforcing it indeed

yielded worse results.

Random compression was performed as described in [16]. We applied the structured ran-

dom compression algorithm [54] to Y and Y> to obtain L 2 RD�M and R 2 RM�T . Specifically,

we drew a Gaussian random matrix O 2 RT�M and performed the QR decomposition of YO to

obtain an orthonormal basis L. Analogously we obtained R for Y>. The iterated alternating fast

HALS updates were C HALSACTIVITY(L>Y, L>A, C) and A HALSSHAPE(YR>, A, CR>),

with L>Y and YR> computed once initially.

Decimation details

Applying the code of [55] to the raw data we identified the neural shape matrix A1 and spatial

background b1. We use the convention that the presence of a lower index l signifies an estimate

and its value the decimation factor, i.e. index l = 1 denotes an estimate inferred without deci-

mation. Further, we also obtained the denoised and deconvolved traces C1, S1 as well as f1. To

emulate imaging with lower spatial resolution, spatial decimation was performed by convert-

ing A1 back into a 512 × 512 × N tensor (Y into a 512 × 512 × T video tensor) and calculating

the average of non-overlapping patches of size l × l or l × 1 pixels for each of the N neural

shapes (T timesteps). Converting the tensors back to matrices yielded the decimated neural

shapes Al (data Yl). We proceeded analogously for the spatial background to obtain bl. The cor-

responding temporal traces were estimated by solving Eq (5) (with Yl replacing Y, Cl replacing

C, etc.), initializing Cl and fl with the result of plain NMF that does not impose temporal con-

straints, i.e. solving minimizeCl ;f l
kYl � AlCl � blf

>

l k subject to Cl� 0.

In order to obtain the results for 1-phase imaging without previous shape identification we

solved Eq (4) for the decimated data Yl, initializing Al, bl by decimating A1, b1 and setting the

temporal components to C1, f1. With increasing decimation factors an increasing number of

shapes got purged and absorbed in the background, reflecting the fact that it would have been

difficult to detect all ROIs on low resolution data in the first place. Using the obtained remain-

ing shapes we again solved Eq (5) as above. The correlation values for purged neurons were set

to zeros for the mean values reported in Fig 6.

To obtain some form of ground truth (Figs 6D–6F, 7C and 8C) we generated a simulated

dataset Ys by taking the inferred quantities as actual ground truth: As ≔ A1, bs ≔ b1, Cs ≔ C1,

f s ≔ f1. We calculated the residual Y − AsCs − bsf s> and reshuffled it randomly but signal depen-

dent for each pixel in time. We partitioned the residual for each pixel into 200 strata according

to signal size and reshuffled it within each strata, thus retaining any potential link between noise

variance and signal mean. The simulated dataset Ys was obtained by adding the reshuffled resid-

ual to AsCs + bsf s> and the same analysis as for the original data was performed.

We performed additional control simulations that also took the inferred quantities as actual

ground truth, Y� :¼ A1C1 þ b1f
>

1
, but did not rely on a reshuffling procedure. Instead, we

either added Gaussian noise, YN
d;t � N ðY�d;t; s

2Þ, or Poisson noise nþ YP
d;t � Pðnþ Y�d;tÞ,

where ν is the photon count that is not due to calcium fluorescence (but rather dark counts

and background light). Whereas the Gaussian noise had fixed variance σ2, the Poisson model

results in heteroscedastic noise because its variance grows with the mean. The variance of

the Gaussian noise was chosen to be equal to the average variance of the Poisson noise. The

results shown in S2 Fig agree with those obtained by reshuffling the residual and are similar

for Gaussian and Poisson noise, at least on average, though there is some spread if individual
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traces are considered (S2C Fig). Whereas the model (Eq 1) assumes Gaussian noise, it never-

theless performs well under Poisson noise, consistent with the results of [53].

Another control simulation merely took A1, b1 and f1 as ground truth. However, instead of

taking the denoised fluorescence traces C1, which by construction followed the autoregressive

model, the fluorescence traces CD were obtained from two datasets that combined electrophys-

iological recording and calcium imaging with GCaMP6f (11 cells) or GCaMP6s (9 cells) [23].

The calcium response kernel k̂ for each recorded cell was determined by solving the linear

regression problem k̂ ¼ arg mink ky � s � kk2 where y is the noisy fluorescence data of a neu-

ron, s its spike counts per bin, and � denotes convolution. Because only few cells were recorded,

but for a longer duration than the 100 s of our two-photon dataset, we assigned to each of our

ROIs the ground truth fluorescence trace by randomly selecting a recorded cell, taking a 100 s

interval of its spike train that included at least three spikes, and convolving it with the cell’s ker-

nel k. The trace was scaled such that its maximum value was equal to the maximal value of

the inferred trace C1. Poisson noise was added, nþ YD � Pðnþ A1CD þ b1f
>

1
Þ, as described

above. Results are shown in S3 Fig.

Interleaving details

Projecting the noise of each pixel onto the neural shapes yields the noise of each neural time

series. In practice the latter is estimated based on the noisy trace obtained by projecting the

fluorescence data onto the shapes. For interleaved imaging (Fig 8) the shape of each neuron

differs between alternating frames due to the varying pixelization. Therefore, instead of using

one noise level for all timesteps, we estimated two noise levels σodd and σeven based on the PSD

for all odd and even frames respectively. The residuals in the noise constraint of the non-nega-

tive deconvolution were weighted accordingly by the inverse of the noise level.

minimize
c

kGck1;

subject to : Gc � 0;
kyodd � coddk

2

s2
odd

þ
kyeven � cevenk

2

s2
even

� T
ð6Þ

where y is the noisy fluorescence data of a neuron (cell index suppressed) obtained by subtract-

ing the contribution of all other neurons as well as the background from the spatio-temporal

raw pixel fluorescence data and projecting the odd and even frames of the result onto the con-

sidered neuron’s shapes aodd and aeven respectively. yodd and yeven denote the vectors obtained

by taking only every second component of y starting with the first/second respectively. The

denoised fluorescence c is denoted analogously. For simplicity we estimated the coefficients of

the AR(2) process based on all frames without separating by noise level.

Computing environment

All analyses were performed on a MacBook Pro with Intel Core i5-5257U 2.7 GHz CPU and

16 GB RAM. We wrote custom Python scripts that called the Python implementation [55] of

CNMF [8]. Our scientific Python installation included Intel Math Kernel Library (MKL) Opti-

mizations for improved performance of vectorized math routines.

Supporting information

S1 Fig. Neural footprints sorted by increasing reconstruction loss for 16×16 decimation.

Structures that are smaller in size are more sensitive to binning.

(PDF)
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S2 Fig. Decimation for ground truth data generated using Gaussian or Poisson noise.

The simulated ground truth traces were obtained on decimated simulated data with Poisson

(orange) or Gaussian (cyan) noise instead of reshuffling (Fig 6). (A) Correlations between

denoised traces and ground truth generated from the light-sheet data. Thick lines show the

median, thin lines and shaded region the IQR. (B) Correlations between denoised (solid) and

deconvolved (dashed) traces and ground truth generated from the two-photon data. (C) Scat-

ter plot showing the correlation values with ground truth for the individual traces summarized

in (B). Spatial decimation was performed by averaging 16×16 pixels.

(PDF)

S3 Fig. Decimation for ground truth data generated using Poisson noise and calcium

responses from [23]. The simulated ground truth traces were obtained on decimated simu-

lated data with Poisson noise and calcium responses that were not modeled as AR process, but

instead obtained from real data using (A) GCaMP6f or (B) GCaMP6s, as discussed in the

methods text. Thick lines show the median, thin lines and shaded region the IQR for denoised

(solid) and deconvolved (dashed) traces.

(PDF)

S1 Video. Illustration of CNMF and decimation for zebrafish light-sheet imaging data.

The supplementary video shows in the upper row the raw data, its reconstruction based on

CNMF, and the residual. It illustrates that all relevant ROIs have been detected and the matrix

decomposition afforded by CNMF captures the data well. The lower row shows spatially deci-

mated raw data, corresponding to data acquisition at lower resolution, its reconstruction

based on CNMF and knowledge of the neural shapes from an initial cell identification imaging

phase, and the residual. It illustrates that demixing paired with cell shape identification cap-

tures the data virtually as well as CNMF without decimation, i.e. based on data of low resolu-

tion it enables its reconstruction at higher resolution.

(MP4)

S2 Video. Illustration of CNMF and decimation for mouse 2P imaging data. All panels of

the supplementary video are analogous to S1 Video.

(MP4)
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metric calcium imaging across multiple cortical layers using sculpted light. Nat Methods. 2016; 13

(12):1021–1028. https://doi.org/10.1038/nmeth.4040 PMID: 27798612

8. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, et al. Simultaneous Denoising,

Deconvolution, and Demixing of Calcium Imaging Data. Neuron. 2016; 89(2):285–299. https://doi.org/

10.1016/j.neuron.2015.11.037 PMID: 26774160

9. Cichocki A, Zdunek R, Amari SI. Hierarchical ALS algorithms for nonnegative matrix and 3D tensor fac-

torization. In: Independent Component Analysis and Signal Separation. Springer; 2007. p. 169–176.

10. Kim J, He Y, Park H. Algorithms for nonnegative matrix and tensor factorizations: a unified view based

on block coordinate descent framework. J Global Optim. 2014; 58(2):285–319. https://doi.org/10.1007/

s10898-013-0035-4

11. Gillis N. The why and how of nonnegative matrix factorization. In: Regularization, Optimization, Kernels,

and Support Vector Machines. Chapman & Hall/CRC; 2014. p. 257–291.

12. Yu HF, Hsieh CJ, Si S, Dhillon IS. Parallel matrix factorization for recommender systems. Knowl Inf

Syst. 2014; 41(3):793–819. https://doi.org/10.1007/s10115-013-0682-2

13. Gillis N, Glineur F. A multilevel approach for nonnegative matrix factorization. J Comput Appl Math.

2012; 236(7):1708–1723. https://doi.org/10.1016/j.cam.2011.10.002

14. Ho ND, Van Dooren P, Blondel VD. Descent methods for nonnegative matrix factorization. In: Numeri-

cal Linear Algebra in Signals, Systems and Control. Springer; 2011. p. 251–293.

Multi-scale approaches for neuronal population imaging

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005685 August 3, 2017 22 / 24

https://doi.org/10.1038/nmeth.2434
https://doi.org/10.1038/nmeth.2434
https://doi.org/10.7554/eLife.12741
https://doi.org/10.7554/eLife.12741
https://doi.org/10.1016/j.cell.2015.11.061
http://www.ncbi.nlm.nih.gov/pubmed/26687363
https://doi.org/10.1364/OL.41.000855
https://doi.org/10.1364/OL.41.000855
http://www.ncbi.nlm.nih.gov/pubmed/26974063
https://doi.org/10.1038/nphoton.2014.323
https://doi.org/10.1038/nmeth.4040
http://www.ncbi.nlm.nih.gov/pubmed/27798612
https://doi.org/10.1016/j.neuron.2015.11.037
https://doi.org/10.1016/j.neuron.2015.11.037
http://www.ncbi.nlm.nih.gov/pubmed/26774160
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1007/s10115-013-0682-2
https://doi.org/10.1016/j.cam.2011.10.002
https://doi.org/10.1371/journal.pcbi.1005685


15. Cichocki A, Phan AH. Fast local algorithms for large scale nonnegative matrix and tensor factorizations.

IEICE Trans Fundam Electron Commun Comput Sci. 2009; 92(3):708–721. https://doi.org/10.1587/

transfun.E92.A.708

16. Tepper M, Sapiro G. Compressed Nonnegative Matrix Factorization is Fast and Accurate. IEEE Trans

Signal Process. 2016; 64(9):2269–2283. https://doi.org/10.1109/TSP.2016.2516971
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