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Abstract

Glaucoma is a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma 

(POAG), the most common type, is a complex inherited disorder that is characterized by 

progressive retinal ganglion cell death, optic nerve head excavation, and visual field loss. The 

discovery of a large, and growing, number of genetic and chromosomal loci has been shown to 

contribute to POAG risk, which carry implications for disease pathogenesis. Differential gene 

expression analyses in glaucoma-affected tissues as well as animal models of POAG are enhancing 

our mechanistic understanding in this common, blinding disorder. In this review we summarize 

recent developments in POAG genetics and molecular genetics research.
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1. Introduction of Primary Open-Angle Glaucoma

Glaucoma is a heterogeneous group of optic neuropathies that are characterized by the 

progressive loss of retinal ganglion cells (RGC), optic atrophy, and visual field loss 

(Allingham et al., 2009; Allingham and Shields, 2011). Glaucoma is the most common 

cause of irreversible blindness that affects more than 70 million people worldwide (Quigley, 

2011; Quigley and Broman, 2006; Tham et al., 2014). Primary open-angle glaucoma 

(POAG) is the most common type of glaucoma that is defined by characteristic 

glaucomatous retinal, optic nerve, and clinical findings without an identifiable secondary 

cause. Risk factors for POAG include increasing age, elevated intraocular pressure (IOP), 

and a positive family history. POAG has been identified in all populations studied to date. 

The prevalence of POAG varies between populations, but is notably more common in 
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persons of African and Hispanic descent (Budenz et al., 2012a; Budenz et al., 2012b; 

Chopra et al., 2008; Emanuelli et al., 2005; Memarzadeh et al., 2010; Quigley et al., 2001; 

Rodriguez et al., 2002; Tielsch et al., 1991). Elevated IOP is arguably the most important 

risk factor for developing POAG, and is often used to categorize patients into “high” or 

“normal” tension subtypes (HTG or NTG, respectively). While a cut-off between HTG and 

NTG may be useful for clinical or research purposes, the specific threshold (≥ 22 mmHg or 

≤21 mmHg) is arbitrary. IOP is the only modifiable risk factor that is lowered with 

medications or surgeries to treat glaucoma patients in the clinic to delay the progression of 

vision loss due to glaucoma. While higher IOP confers greater risk for glaucoma, glaucoma 

can develop at a statistically normal or elevated IOP. POAG frequently remains undiagnosed 

or unrecognized by patients until visual field loss is clinically advanced.

POAG is a complex inherited trait. In this article, we will present an updated, comprehensive 

review of the genetic developments in POAG.

2. Genetic Approaches used in Glaucoma Research

Investigations into the inheritance of POAG have benefitted greatly from the development 

and integration of many genetic approaches to identify regions in the genome that are 

associated with a specific phenotype, or in some cases determine the specific genetic 

variants that are responsible. Family-based genetic linkage analysis was the first used to 

identify chromosomal locations for Mendelian forms of POAG. This approach has led to the 

identification of many POAG-associated loci and, less often, specific causative genes. 

Genetic mutations for POAG have been identified in three genes – myocilin (MYOC), 

optineurin (OPTN), and TANK-binding kinase 1 (TBK1) (Fingert et al., 2017; Fingert et al., 

2011; Rezaie et al., 2002; Sarfarazi et al., 1998; Sheffield et al., 1993; Stone et al., 1997).

Next generation, high-throughput DNA sequencing technology is increasingly being used to 

sequence the complete coding sequence of the human genome (exome) or the human 

genome in its entirety (Zheng et al., 2015). These technologies offer a powerful approach to 

identify causal genetic variants for many rare and common genetic disorders, including 

POAG.

The genome-wide association studies (GWAS), based on high-throughput DNA genotyping, 

are currently the most powerful, broadly used approach to identify genomic regions 

associated with a specific disease or phenotype. GWAS utilize up to several million single 

nucleotide polymorphisms (SNPs) from an individual sample for analysis. The number of 

subjects in clinical datasets for GWAS may number from hundreds to hundreds of 

thousands. This approach has been used to identify the location of thousands of inherited 

disorders or phenotypes (Welter et al., 2014). In ophthalmology, the first successful GWAS 

identified the association of complement factor H (CFH) with age-related macular 

degeneration (AMD) (Edwards et al., 2005; Hageman et al., 2005; Haines et al., 2005; Klein 

et al., 2005). Similarly, GWAS have been used to identify many genetic associations for 

POAG (Bailey et al., 2016; Burdon et al., 2011; Chen et al., 2014; Gharahkhani et al., 2014; 

Hysi et al., 2014; Lu et al., 2013; Springelkamp et al., 2014; Springelkamp et al., 2017; 

Springelkamp et al., 2015b; Thorleifsson et al., 2010; Wiggs et al., 2012).
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In addition, the analysis of DNA copy number variants (e.g. genomic deletion and 

duplication) and differential expression analysis of mRNA and proteins have added to our 

understanding of human genetic disorders. Altogether, these technological innovations have 

advanced our understanding of POAG genetic etiology.

3. Genetic Linkage Analyses of POAG

Genetic linkage analysis is a family-based method used to localize chromosomal regions that 

are associated with a specific phenotype within related family groups. Genetic linkage is 

used for Mendelian traits, or traits with high heritability that are typically caused by 

mutations in a single gene. Genetic linkage analyses have been used to identify many 

genomic loci associated with POAG, designated GLC1A through GLC1P, and in some cases 

the gene within the locus (Table 1, Figure 1). Genes identified in these loci are discussed 

below.

3.1 MYOC

Mutations in the MYOC gene, located in chromosome 1q24, were first identified in families 

with autosomal dominant POAG linked to the GLC1A locus (Sheffield et al., 1993; Stone et 

al., 1997). Mutations in MYOC are primarily associated juvenile-onset POAG (Fingert, 

2011; Fingert et al., 2002; Hewitt et al., 2008). The phenotype for glaucoma with MYOC-

associated mutations is generally severe, typically IOP is highly elevated and surgical 

management is often required for treatment (Fingert et al., 1999). MYOC-associated 

glaucoma accounts for 3–5% of POAG cases worldwide (Liu and Allingham, 2011). The 

MYOC gene contains three exons and encodes a protein with 504 amino acids (OMIM 

601652). Most mutations are located in the third exon, which codes for the olfactomedin-

like domain. The crystal structure of the olfactomedin (OLF) domain shows that it is a 

member of a small protein family characterized by a high affinity calcium binding site with a 

five-bladed β-propeller structure (Donegan et al., 2015; Donegan et al., 2012). Several 

MYOC mutations are located within or near this binding site (Donegan et al., 2012). 

Although MYOC is widely expressed in ocular and non-ocular tissues, glaucoma is the only 

reported association with a clinical disease (Kwon et al., 2009).

Over 100 POAG-associated mutations have been identified in the MYOC gene 

(www.myocilin.com summary data by December 18, 2016). The most prevalent mutation 

produces a premature termination of the myocilin protein (Q368X). This mutation causes an 

older-adult age of onset form of glaucoma that is clinically less severe than that seen with 

other MYOC mutations (Allingham et al., 1998; Alward et al., 1998; Fingert, 2011; Kwon et 

al., 2009). Genetic screening and counseling should be considered for affected family 

members in families where MYOC-associated glaucoma has been found. Since mutations 

are autosomal dominant, highly penetrant, clinically severe, and usually present early in life, 

carriers can be identified in early stages of glaucoma or screening can be initiated in those 

without evidence of disease (Gharahkhani et al., 2015; Hewitt et al., 2008; Souzeau et al., 

2013; Souzeau et al., 2014; Souzeau et al., 2015).

The primary effect of pathogenic mutations in MYOC, which is invariably associated with 

elevated IOP, appears to be on the trabecular meshwork (TM) and aqueous humor outflow 
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function. Reduced, complete loss (haploinsufficiency), or overexpression of MYOC protein 

does not cause glaucoma in animal models (Gould et al., 2004a; Kim et al., 2001; Kwon et 

al., 2009; Resch and Fautsch, 2009; Tamm, 2002; Zillig et al., 2005). The lack of a 

discernable ocular phenotype in these transgenic mice suggests that myocilin is not required 

for normal IOP or normal ocular morphology and therefore, haploinsufficiency is not the 

primary mechanism for POAG patients with MYOC mutations. Instead, pathology from 

these mutations in humans is likely caused by gain of function. Transgenic mice with the 

human or mouse Tyr437His develop features of glaucoma including elevated IOP, 

progressive RGC loss and axonal degeneration (Chou et al., 2014; Gould et al., 2006; 

Senatorov et al., 2006; Zhou et al., 2008; Zillig et al., 2005; Zode et al., 2012; Zode et al., 

2011). Transgenic mice do not secrete myocilin into the aqueous humor; rather abnormal 

myocilin accumulates intracellularly. In addition to RGC loss, these mice demonstrate 

function loss measured by pattern electroretinogram (PERG) (Chou et al., 2014; Zhou et al., 

2008).

Secretion of myocilin protein into the aqueous humor is significantly reduced in patients 

with POAG-associated mutations in MYOC (Jacobson et al., 2001; Resch and Fautsch, 

2009; Resch et al., 2010). MYOC may enter the aqueous humor in MYOC-containing 

exosomes, which may help regulate aqueous outflow in the TM (Dismuke et al., 2015; 

Hardy et al., 2005; Hoffman et al., 2009; Liu et al., 2016; Perkumas et al., 2007; Stamer et 

al., 2011). It has been proposed that glaucoma-associated MYOC protein interferes with 

protein trafficking, receptor-mediated endocytosis, programmed cell death, myelination of 

the optic nerve, and stress to the endoplasmic reticulum (ER) (Koch et al., 2014; Kwon et 

al., 2013; Kwon et al., 2014; McKay et al., 2013; Zode et al., 2011).

Mutations of MYOC have been reported in juvenile open-angle glaucoma and primary 

congenital glaucoma (Chakrabarti et al., 2005; Kaur et al., 2011; Kaur et al., 2005; 

Mookherjee et al., 2012; Vincent et al., 2002). MYOC may interact with CYP1B1 through a 

digenic mechanism with CYP1B1 acting as a modifier for MYOC (Kaur et al., 2011). It has 

been reported that CYP1B1 mutations with <10% enzymatic activity may increase the level 

of endogenous myocilin in human trabecular meshwork cells due to the lack of 17β estradiol 

metabolizing activity with CYP1B1 mutation (Mookherjee et al., 2012). However, the 

interaction between MYOC and CYP1B1 with POAG pathogenesis remains poorly 

understood.

3.2 OPTN and TBK1

OPTN and TBK1 are discussed together since they share cellular, molecular, and biological 

pathways. In addition, genetic variants in both of these genes cause NTG, and in some cases 

they are both associated with degenerative disorders of the central nervous system.

OPTN is located in the POAG-linked locus GLC1E on chromosome 10p13. Clinically, 

mutations in OPTN lead to NTG. This contrasts sharply with patients who have MYOC- 

associated POAG, which is consistently hypertensive (Ariani et al., 2006; Charlesworth et 

al., 2006; Hauser et al., 2006b; Rezaie et al., 2002). Among all OPTN mutations, E50K has 

been most clearly shown to cause glaucoma (Aung et al., 2005). POAG patients harboring 
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the E50K mutation have an earlier age of onset, more advanced optic nerve cupping, and 

more frequently reqire surgical intervention (Aung et al., 2005).

OPTN mutations have been reported in patients with amyotrophic lateral sclerosis (ALS), 

which has prompted broad interest in the functional role of OPTN in neural disorders 

(Cirulli et al., 2015; Maruyama et al., 2010). OPTN is involved in membrane trafficking, 

protein secretion, cell division, autophagy, and host defense against pathogens (Kachaner et 

al., 2012; Wild et al., 2011). OPTN interacts with many other proteins, such as TBK1, 

RAB8 (Rab protein 8), myosin VI, transferrin receptor, and autophagosomal protein LC3. 

OPTN inhibits TNFα-induced NF-κB activation and affects apoptotic threshold (Kachaner 

et al., 2012; Morton et al., 2008; Sahlender et al., 2005; Tumbarello et al., 2012; Zhu et al., 

2007). In addition, OPTN is an autophagy receptor that functions in removal of damaged 

mitochondria and proteins (Heo et al., 2015; Lazarou et al., 2015; Richter et al., 2016; Shen 

et al., 2015; Slowicka et al., 2016; Wong and Holzbaur, 2014).

Glaucoma-associated mechanisms caused by the E50K OPTN mutation are under intense 

study. Interaction of OPTN with TBK1 may be enhanced by overexpression of E50K 

(Minegishi et al., 2013; Morton et al., 2008). In addition, a wide variety of molecular and 

cellular effects have been reported (Chi et al., 2010a; Gao et al., 2014; Kryndushkin et al., 

2012; Minegishi et al., 2013; Nagabhushana et al., 2010; Park et al., 2010; Shen et al., 2015; 

Shim et al., 2016; Vaibhava et al., 2012). However, it is unclear whether these effects result 

from overexpression of OPTN or from the mutation itself (Minegishi et al., 2016). An 

important step forward has been the development of an E50K transgenic mouse model that 

demonstrates an age-dependent decrease in RGCs and visual function in the absence of 

elevated IOP (Tseng et al., 2015).

TBK1 is located in the GLC1P POAG linkage locus on chromosome 12q14. TBK1 encodes 

a serine/threonine kinase. It plays an essential role in the regulation of inflammatory 

responses to foreign agents (Fingert, 2011). A duplication of the TBK1 gene has been 

identified in approximately 1% of normal tension POAG cases (Awadalla et al., 2015; 

Fingert et al., 2014; Fingert et al., 2011; Kawase et al., 2012; Liu et al., 2014b; Ritch et al., 

2014; Seo et al., 2013). As discussed above, OPTN interacts with TBK1 and may share a 

common pathway in glaucoma pathogenesis (Heo et al., 2015; Morton et al., 2008). Like 

OPTN, mutations in TBK1 have been identified in patients with CNS disorders including 

ALS and frontotemporal dementia (Bettencourt and Houlden, 2015; Cirulli et al., 2015; 

Freischmidt et al., 2015; Gijselinck et al., 2015). RGC-like neurons derived from a patient 

with TBK1-associated NTG reportedly have increased levels of LC3-II protein and 

activation of LC3-II, which suggests that autophagy may be dysregulated in patients with 

TBK1-associated NTG (Tucker et al., 2014). This observation is consistent with reports that 

TBK1 and OPTN regulate autophagy of damaged mitochondria (Matsumoto et al., 2015; 

Moore and Holzbaur, 2016; Pilli et al., 2012; Richter et al., 2016). Transgenic mice that have 

a duplication of the human TBK1 gene develop progressive RGC loss at 3 months of age 

and are normotensive (Fingert et al., 2017). However, it remains to be determined if or how 

abnormalities in autophagy contribute to NTG pathogenesis in patients with genetic variants 

in TBK1 and OPTN (Pilli et al., 2012; Tucker et al., 2014).
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3.3 WD repeat domain 36 (WDR36)

WD repeat domain 36 (encoded by WDR36) is a nucleolar protein involved in the 

maturation of 18s rRNA. It is located in the POAG linkage locus GLC1G on chromosome 

5q22. The role of WDR36 mutations in the pathogenesis of POAG is controversial. 

Mutations in WDR36 were originally reported in 1.6% to 17% of POAG patients (Monemi 

et al., 2005). However, subsequent studies have failed to replicate these findings. More 

recent studies suggest that genetic variants of WDR36 may alter POAG risk (Blanco-

Marchite et al., 2011; Fan et al., 2009; Fingert et al., 2007; Frezzotti et al., 2011; 

Gallenberger et al., 2011; Hauser et al., 2006a; Hewitt et al., 2006; Janssen et al., 2013; 

Kramer et al., 2006; Miyazawa et al., 2007; Mookherjee et al., 2011; Pasutto et al., 2008; 

Ramdas et al., 2011a; Weisschuh et al., 2007). Knockdown of Wdr36 in zebrafish reportedly 

reduces levels of 18S rRNA, activates the p53 stress-response pathway, and is associated 

with ocular abnormalities (Skarie and Link, 2008). WDR36 mutations reportedly affect 

RGC axon growth that may lead to progressive peripheral retinal degeneration with normal 

IOP in transgenic mice (Chi et al., 2010b). WDR36-related variations in expression have 

been reported to delay the formation of 18S rRNA and up-regulate BAX, TP53, and 

CDKN1A, and lead to apoptotic cell death in human TM cells (Gallenberger et al., 2011). 

However, heterozygous WDR36-deficient mice do not demonstrate ocular structure 

abnormalities, changes in IOP, or reduced optic nerve axons (Gallenberger et al., 2014). 

Currently, evidence to support a major role for POAG-risk associated with the WDR36 locus 

is limited.

3.4 Other Genetic Loci Identified by Linkage Analysis

Several other genes, listed in Table 1, have been identified as POAG candidate genes within 

loci found using genetic linkage approaches. These include NTF4 (Neurotrophin 4), ASB10 
(Ankyrin Repeat and SOCS Box Containing 10), EFEMP1 (EGF containing fibulin-like 

extracellular matrix protein 1), and IL20RB (Interleukin 20 receptor subunit beta).

NTF4 is located within the POAG linkage locus GLC1O on chromosome 19q13.33. 

Interestingly, NTF4 was initially evaluated as a candidate gene for POAG without family-

based studies or a linkage analysis (Pasutto et al., 2009). Using a case-control POAG dataset, 

seven heterozygous mutations in NTF4 were found in 1.7% of POAG patients of European 

origin (Pasutto et al., 2009). Expression of the most prevalent NTF4 variant reportedly 

decreases activation of tyrosine kinase receptor B (TrkB). This has been proposed as a 

possible mechanism for POAG risk in patients with NTF4 variants (Pasutto et al., 2009). To 

date, follow-up studies in the US, India, and China have not replicated this observation 

(Chen et al., 2012; Huang et al., 2014; Liu et al., 2010; Rao et al., 2010).

ASB10 is located within the POAG linkage locus GLC1F on chromosome 7q36 (Murakami 

et al., 2010). A mutation affecting an exon splice enhancer (c.765C>T, p.Thr255Thr) has 

been identified in a large POAG family (Pasutto et al., 2012). Additional sequence analysis 

in 1172 cases and 461 controls has identified mutations in 6% POAG cases compared to 

2.8% of controls. ASB10 is highly expressed in TM, RGC, and ciliary body (Pasutto et al., 

2012). Knock-down of ASB10 transcription in perfused anterior segment organ culture 

reduced aqueous humor outflow facility by 50% (Pasutto et al., 2012). Functional studies in 
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primary human TM cells have suggested that ASB10 may play a role in ubiquitin-mediated 

degradation pathways through an interaction with HSP70 and the α4 subunit of the 20s 

proteasome (Keller et al., 2013). The up-regulation of ASB10 expression by TNFα and 

IL-1α in TM cells provides further support for a role in glaucoma (Keller and Wirtz, 2017). 

Replication studies for the association of ASB10 variants with POAG have been mixed 

(Fingert et al., 2012; Micheal et al., 2015).

EFEMP1 is a juvenile-onset POAG candidate located in the GLC1H locus on chromosome 

2p16. A missense mutation (p.Arg140Trp) was found in a 3-generation autosomal dominant 

African-American family with adult-onset, POAG (Mackay et al., 2015). EFEMP1 is 

expressed highly in mouse ciliary body and cornea, at lower levels in the retina. The 

p.Arg140Trp mutation is located in the first of six calcium-binding EGF-like domains and 

may lead to abnormal accumulation of the mutant protein in the cell (Mackay et al., 2015). 

Mutations in EFEMP1 have been associated other ocular disorders including Doyne 

honeycomb retinal dystrophy and Malattia Leventinese (Hulleman, 2016; Marmorstein, 

2004; Stone et al., 1999; Takeuchi et al., 2010). Variants in EFEMP1 are associated with 

reduced optic nerve disc area (Springelkamp et al., 2015b). EFEMP1 expression in mouse 

retina is activated after optic nerve crush injury (Templeton et al., 2013). Expression of 

EFEMP1 is inhibited by TGF-β2, a cytokine that is elevated in POAG, in primary human 

TM cells, which suggests a potential role in glaucoma (Fuchshofer et al., 2009).

IL20RB is a POAG gene that is located in the GLC1C locus on chromosome 3q21. A 

specific IL20RB mutation T104M (rs367923973) has been identified in a large POAG 

family (Keller et al., 2014). Although the mutation was not present in all affected family 

members, there is supportive evidence that suggests its role in POAG pathogenesis. The 

T104M mutation lies within an active binding site of IL20RB with IL-20 subfamily cytokine 

members IL-19, IL-20, and IL-24 (Wirtz and Keller, 2016). IL20RB is expressed in human 

primary TM cells, which is upregulated in response to IL-20, IL-19, or IL-24. The 

expression of IL-24, but not IL-20 or IL20RB, is significantly upregulated in the retina of 

DBA/2J mice with moderate axon damage (Howell et al., 2011), which suggests a 

mechanism for IL-20 cytokines in glaucoma pathogenesis.

4. Association Studies in POAG

GWAS have advanced our understanding of the genetic architecture of numerous genetic 

disorders and traits. Since the first GWAS for POAG was performed in 2009 (Nakano et al., 

2009), many genomic loci have been associated with POAG risk (Table 2). All reported 

genome-wide associations for POAG including their genomic locations are found in Figure 

2. It is important to note that a large number of GWAS have been performed in populations 

of Asian and European derivation. However, at the time of this publication, no GWAS have 

been reported for POAG or other forms of glaucoma in populations of African ancestry or 

their diaspora, including African Americans. In addition to disease-associated studies for 

POAG, GWAS have been performed on quantitative traits that are associated with POAG 

and glaucoma. These traits include IOP, optic cup-disc ratio, optic disc area, central cornea 

thickness (CCT) and others. GWAS have been performed in many populations including the 

European, Chinese, and Japanese. POAG-associated genetic loci include CDKN2B-AS1, 
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TMCO1, CAV1/CAV2, SIX1/SIX6, LRP12/ZFPM2, ABCA1, AFAP1, GMDS, GAS7, 

PMM2, ARHGEF12, TGFBR3, TXNRD3, ATXN2, FOXC1, and C12ORF23. Importantly, 

the first common, functional POAG-associated variant in the gene SIX6 (Asn141His) has 

been reported in European and Asian populations (Carnes et al., 2014; Cheng et al., 2015; 

Kuo et al., 2015; Skowronska-Krawczyk et al., 2015). As additional functional variants are 

found, a clearer picture of the underlying molecular and cellular interactions that cause 

POAG will emerge.

4.1 Caveolin 1 and 2 (CAV1/CAV2)

The CAV1 and CAV2 genes, encoding caveolins, are located on chromosome 7q31. 

Caveolins are involved in transcellular transport, endocytosis, mechanotransduction, cell 

proliferation, membrane lipid homeostasis, and signal transduction (Gu et al., 2017). The 

associated SNP (rs4236601), located in the intergenic region between CAV1 and CAV2, was 

first reported in the Icelandic population and replicated in others (Kato et al., 2013; Kim et 

al., 2015; Loomis et al., 2014; Micheal et al., 2014; Rong et al., 2016; Thorleifsson et al., 

2010; Wiggs et al., 2011). Two reports found a stronger association in women (Loomis et al., 

2014; Wiggs et al., 2011). Variants in the CAV1/CAV2 region are associated with IOP (Chen 

et al., 2015a; Hysi et al., 2014; Kim et al., 2015; Ozel et al., 2014; van Koolwijk et al., 

2012). CAV1 and CAV2 are expressed in human and mouse retina, ciliary muscle, TM, and 

Schlemm canal (Gu et al., 2014; Kuehn et al., 2011; Li et al., 2012; Surgucheva and 

Surguchov, 2011).

CAV1 and CAV2 are expressed in TM cells cultured from POAG and non-glaucoma donor 

eyes (Surgucheva and Surguchov, 2011). Expression of CAV1 in these primary cells was 

induced by dexamethasone and inhibited by TGF-β2 (Surgucheva and Surguchov, 2011). 

Expression levels of both CAV1 and CAV2 are up-regulated in Schlemm canal endothelial 

cells derived from POAG compared to non-glaucoma donor eyes (Cai et al., 2015; Liu et al., 

2013a). CAV1/CAV2 knock down has been shown to alter aqueous outflow resistance in 

anterior segment perfusion culture (Aga et al., 2014). Cav1 knockout mice develop elevated 

IOP and reduced conventional outflow facility via increased eNOS activity (Elliott et al., 

2016; Gu et al., 2017; Lei et al., 2016). These data suggest that CAV1 and/or CAV2 may 

influence risk of POAG through an effect on IOP.

4.2 CDKN2B antisense RNA 1 (CDKN2B-AS1)

CDKN2B-AS1 (cyclin-dependent kinase inhibitor 2B antisense RNA 1) is located within the 

CDKN2B-CDKN2A gene cluster on chromosome 9p21. Sequence variants in this locus are 

associated with vertical cup-disc ratio and POAG-risk in multiple non-African populations 

worldwide (Bailey et al., 2016; Burdon et al., 2012; Burdon et al., 2011; Cao et al., 2012; 

Chen et al., 2015b; Fan et al., 2011; Li et al., 2015; Liu et al., 2013b; Mabuchi et al., 2012; 

Osman et al., 2012; Ramdas et al., 2010; Ramdas et al., 2011b; Vishal et al., 2014; Wiggs et 

al., 2012). The association of CDKN2B-AS1 appears to be strongest in POAG patients with 

normal tension, especially in females (Bailey et al., 2016; Burdon et al., 2012; Chen et al., 

2015b; Ng et al., 2016; Pasquale et al., 2013a; Takamoto et al., 2012; Wiggs et al., 2012).
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CDKN2B-AS1 is a long non-coding functional RNA that interacts with polycomb repressive 

complex -1 (PRC1) and -2 (PRC2). CDKN2B-AS1 is expressed in multiple human eye 

tissues including ciliary body, retina, and optic nerve (Burdon et al., 2011). The CDKN2B 
protein (aka p15(INK4B)) is localized to the inner retinal nuclear and ganglion cell layers 

and the corneal epithelium and TM in rat and human eyes (Chidlow et al., 2013). Transgenic 

mice that are heterozygous for a 70kb deletion of the CDKN2B-AS1 genomic region have a 

significant reduction of CDKN2B, but have normal RGC representation in the retina (Gao 

and Jakobs, 2016; Visel et al., 2010). However, mice that are homozygous for this deletion 

are more susceptible to RGC loss in response to elevated IOP (Gao and Jakobs, 2016). In 

addition to POAG, variants in the CDKN2B-AS1 locus are also associated with a variety of 

non-ocular disorders including myocardial infarction, intracranial aneurysm, diabetes, breast 

cancer, endometriosis, and gliomas (Kathiresan et al., 2009; Shete et al., 2009; Turnbull et 

al., 2010; Uno et al., 2010; Wrensch et al., 2009; Zeggini et al., 2007). It is not known if 

there is a relationship between POAG-risk and other disorders that are associated with the 

CDKN2B-AS1 locus.

4.3 SIX homeobox 6 (SIX6)

Sequence variants located in the SIX1-SIX6 locus (chromosome 14q23) have been 

associated with vertical cup-to-disc ratio (VCDR), myopia, and POAG (Burdon et al., 2015; 

Chen et al., 2015b; Fan et al., 2011; Osman et al., 2012; Philomenadin et al., 2015; Ramdas 

et al., 2010; Ramdas et al., 2011b; Sang et al., 2016; Verhoeven et al., 2013; Wiggs et al., 

2012). SIX6 protein in humans is homologous to the “sine oculis” protein in Drosophila 

(Carnes et al., 2014; Iglesias et al., 2014). Both SIX6 genes in human and Drosophila 

encode homeobox proteins that play a critical role in ocular development. Mutations in SIX6 
can cause anophthalmia, an ocular phenotype observed in mice and humans (Gallardo et al., 

1999; Li et al., 2002; Ruf et al., 2004). SIX1 mutations lead to deafness and branchio-oto-

renal syndrome in humans (OMIM 113650). Currently, it is considered that genetic variants 

of SIX6, a highly conserved gene, are responsible for POAG risk within this locus.

SIX6 is expressed in the developing retina, optic nerve, cornea, and TM as well as the 

developing and adult mouse brain (Conte et al., 2005; Gallardo et al., 1999). Further 

sequencing and fine mapping have identified two missense variants rs33912345 

(His141Asn) and rs146737847 (Glu129Lys) in SIX6 that are highly associated with VCDR 

and POAG (Carnes et al., 2014; Iglesias et al., 2014).

Animal models and human studies provide support for a functional role of SIX6 variants in 

POAG pathogenesis. POAG-associated SIX6 coding variants affect eye size and optic nerve 

volume in the zebrafish model (Carnes et al., 2014; Iglesias et al., 2014) (Figure 3). In 

humans His141, the POAG-risk variant for SIX6, located in a highly conserved region, is 

associated with reduced retinal nerve fiber layer (RNFL) thickness measured by OCT. The 

effect on RNFL thickness is observed in European and Asian populations (Carnes et al., 

2014; Cheng et al., 2015; Kuo et al., 2015). Similarly, this SIX6 variant is associated with 

RNFL thickness in non-glaucomatous Singapore Chinese individuals (Cheng et al., 2015). 

Thinner RNFL is primarily observed in the superior and inferior RNFL sectors, a pattern 

that is similar to that observed in human glaucoma (Carnes et al., 2014; Cheng et al., 2015; 
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Kuo et al., 2015). A gene dosage effect has been observed in POAG and non-POAG 

subjects, meaning reduction in mean RNFL thickness for individuals homozygous (two 

copies) for the POAG-risk variant have significantly thinner RNFL thickness than persons 

who are heterozygous (one copy) (Cheng et al., 2015; Kuo et al., 2015). The gene dosage 

effect has been seen in populations of Asian and European ancestry (Cheng et al., 2015; Kuo 

et al., 2015).

Recent evidence supports interaction between the Asn141His SIX6 variant with genes 

within another major POAG-risk locus, CDKN2B-AS1. Over-expression of the POAG-risk 

His141 SIX6 variant in cell models elevates expression of CDKN2B (aka p16(INK4A)). 

Further in human fetal RGCs, the rate of cellular senescence is increased in cells with the 

POAG-risk SIX6 variant compared to cells transfected with the protective Asn141 variant 

(Skowronska-Krawczyk et al., 2015). Increased expression of SIX6 and CDKN2B 

associated with RGC senescence was also observed in a mouse glaucoma model with 

elevated IOP (Skowronska-Krawczyk et al., 2015). The SIX6 His141 risk allele also leads to 

increased CDKN2B-AS1 expression and subsequent RGC cellular senescence in a mouse 

model with elevated IOP and in human POAG eyes. These data, which remain to be 

corroborated, suggest that SIX6 and elevated IOP play a role in RGC loss through a 

mechanism that includes increased expression of CDKN2B-AS1.

The protective SIX6 variant, Asn141, is found only in humans (Blanchette et al., 2004). All 

mammals, including mice and most vertebrates, are monomorphic for the His141 SIX6 
genotype. Therefore, it is not possible to compare or analyze expression pattern and 

phenotype data that result from His141Asn, or any other SIX6 variant, in currently available 

animal models (Blanchette et al., 2004; Skowronska-Krawczyk et al., 2015). Interestingly, 

the His141 risk variant is essentially monomorphic in the West and South African 

populations, or conversely, the protective Asn141 variant is essentially absent (Liu et al., 

2013b; Williams et al., 2015). While the VCDR is greater and POAG prevalence is 

reportedly higher in populations of West African ancestry, for reasons just cited the effect of 

the His141Asn SIX6 variant in these populations is challenging to test (Girkin, 2008; Girkin 

et al., 2010; Knight et al., 2012). Current preliminary evidence, based on population 

genetics, suggests that the protective Asn141 variant arose in East Africa prior to Man’s 

migration out of the continent. This supports observed Asn141 population allele frequencies 

(Tishkoff and Allingham, unpublished data). It is currently unknown if the protective 

Asn141 variant has experienced positive selection pressure. Regardless, the presence of this 

common, functional variant provides a valuable new tool to explore molecular mechanisms 

responsible for POAG risk and protection.

4.4 Transmembrane and coiled-coil domains 1 (TMCO1)

TMCO1, an ER transmembrane protein, is evolutionally conserved and plays an active role 

in maintaining ER Ca2+ storage (Wang et al., 2016; Zhang et al., 2010). TMCO1 undergoes 

reversible homotetramerization to form a Ca2+-selective ion channel in response to ER Ca2+ 

overloading or depletion (Wang et al., 2016).

Genetic sequence variants in TMCO1 are associated with POAG risk and IOP, an important 

glaucoma-related quantitative trait (Bailey et al., 2016; Burdon et al., 2011; Burdon et al., 
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2015; Chen et al., 2015b; Gibson et al., 2012; Hysi et al., 2014; Micheal et al., 2014; Ozel et 

al., 2014; Scheetz et al., 2016; van Koolwijk et al., 2012). It has been reported that POAG 

patients that are homozygous for the TMCO1 POAG-risk allele (rs4656461, allele G) 

develop glaucoma 4–5 years earlier than those without the risk allele (Sharma et al., 2012). 

Recently, a genetic study of subjects enrolled in the Ocular Hypertension Treatment Study 

(OHTS) found that non-Hispanic white subjects with TMCO1 risk alleles were at increased 

risk (12%) to develop POAG than subjects without these risk alleles after 13 years follow-up 

(Scheetz et al., 2016). In addition, the presence of glaucoma-risk associated TMCO1 alleles 

increased relative risk of glaucoma by 1.7 fold per allele, which is comparable to other 

glaucoma risk factors (i.e., elevated IOP and aging) (Scheetz et al., 2016). TMCO1 protein is 

expressed in most human ocular tissues, including TM and retina (Sharma et al., 2012). The 

mechanistic relationship between variants in the TMCO1 locus and IOP remains to be 

determined.

4.5 Actin filament associated protein 1 (AFAP1)

The AFAP1 gene is located on chromosome 4 and encodes actin filament associated protein 

1. Variants within the AFAP1 gene locus have been associated with POAG in populations of 

European ancestry (Bailey et al., 2016; Gharahkhani et al., 2014). AFAP1 mRNA and 

protein are expressed in many human ocular tissues including retina, optic nerve, and 

cultured TM cells (Gharahkhani et al., 2014). POAG-associated SNPs within this region are 

correlated with the expression level of AFAP1 and AFAP1-AS1 in non-ocular human tissues 

including skin, fibroblast cells, brain, and whole blood (Consortium, 2015). The mechanistic 

role that AFAP1 variants play in POAG risk remains to be determined.

4.6 ATP binding cassette subfamily A member 1 (ABCA1)

The ABCA1 gene encodes a membrane-associated protein that is a member of the ATP-

binding cassette (ABC) transporter family. This protein complex transports various 

molecules across extra- and intracellular membranes. ABCA1 acts as a cholesterol efflux 

pump in the cellular lipid removal pathway. Mutations in ABCA1 gene have been associated 

with Tangier’s disease and familial high-density lipoprotein deficiency. Variants located 

upstream of the ABCA1 gene are associated with POAG and IOP in multiple populations 

(Chen et al., 2014; Gharahkhani et al., 2014; Hysi et al., 2014; Luo et al., 2015). ABCA1 

mRNA and protein are expressed in human TM, iris, ciliary body, cornea, optic nerve, and 

retina; especially in the ganglion cell layer (Chen et al., 2014; Gharahkhani et al., 2014; 

Tserentsoodol et al., 2006). The expression of ABCA1 protein is similar in glaucoma and 

non-glaucoma eyes (Gharahkhani et al., 2014). The IOP-related variant rs2472493 is 

associated with ABCA1 transcript levels in lymphoblastoid cell lines (Gharahkhani et al., 

2014; Hysi et al., 2014). ABCA1 may regulate neuroinflammation and neurodegeneration in 

the mouse brain, which could potentially play a role in retinal and POAG pathogenesis.

4.7 Thioredoxin reductase 2 (TXNRD2)

The TXNRD2 gene, located on chromosome 22, encodes a mitochondrial protein that is 

required for redox homeostasis (Chen et al., 2006). Sequence variants in the TXNRD2 
region have been associated with POAG (Bailey et al., 2016). TXNRD2 mRNA and protein 

are found in retina and optic nerve tissue (Bailey et al., 2016). Oxidative stress is known to 
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cause RGC dysfunction in glaucoma models and clinical glaucoma samples (Chrysostomou 

et al., 2013). TXNRD2 regulates the cellular redox environment by scavenging reactive 

oxygen species in mitochondria. Overexpression of thioredoxin, produced by TXNRD2, is 

protective for; RGCs after optic nerve axotomy, pharmacologically induced oxidative stress 

in vitro, and in an animal model (rat) of glaucoma (Caprioli et al., 2009). Further, 

computational analysis indicates that POAG-associated SNPs may locate within enhancers 

to regulate the expression of TXNRD2 gene (Bailey et al., 2016). These data are consistent 

with the suspected role of oxidative damage in POAG pathogenesis and, more specifically, 

the contribution by pathways that include TXNRD2 that are related to mitochondrial 

biology.

4.8 FOXC1/GMDS

The gene Forkhead Box C1 (FOXC1) is physically located next to GDP-mannose 4,6-

dehydratase (GMDS) on chromosome 6. Mutations in FOXC1 have been associated with 

primary congenital glaucoma and developmental glaucoma including Axenfeld-Rieger’s 

syndrome, Peter’s anomaly, and iridogoniodysgenesis (Gould et al., 2004b; Liu and 

Allingham, 2012; Nishimura et al., 2001; Sowden, 2007). GMDS encodes an enzyme that 

converts GDP-mannose to GDP-4-keto-deoxymannose and is ubiquitously expressed in 

human eye tissues (Gharahkhani et al., 2014). Sequence variants within the GMDS gene 

have been associated with advanced POAG (Gharahkhani et al., 2014) while variants located 

upstream of FOXC1 have also been associated with POAG (Bailey et al., 2016). Although 

these loci are near each other, a conditional analysis suggests that the associations are 

independent (Bailey et al., 2016). The most associated genetic variant, SNP rs2745572, near 

FOXC1 is associated with the expression of a long noncoding RNA – RP11-157J24.2 
(ELF2P2, E74-like factor 2 pseudogene 2) (Consortium, 2015).

4.9 Ataxin 2 (ATXN2)

The gene Ataxin 2 (ATXN2), located on chromosome 12, encodes a membrane protein 

located in the ER and plasma membrane. This protein is involved in endocytosis and 

modulates mTOR signals that modify ribosomal translation and mitochondrial function. The 

association of genetic variants in the ATXN2 locus with POAG has been reported in subjects 

of European ancestry (Bailey et al., 2016). ATXN2 is expressed in normal human cornea, 

TM, ciliary body, retina, and optic nerve while the protein is expressed in mouse RGC and 

optic nerve (Bailey et al., 2016). Long expansions of CAG repeats within ATXN2 are 

associated with spinocerebellar ataxia 2 with optic atrophy while intermediate length 

expansions of this repeat are a strong risk factor for ALS (Lattante et al., 2014). Mutations in 

OPTN and TBK1, as previously discussed, also contribute to POAG and ALS. The 

relationship between these POAG-risk associated genes lends further support for the 

presence of a biological relationship between POAG and disorders of the central nervous 

system.

4.10 Other POAG-associated Loci

There are many other reported associations between various genetic loci and POAG that are 

supported by recent GWAS and summarized in Table 2 and are briefly described here. 

SRBD1 variants have been associated with POAG, especially NTG, in multiple studies 
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(Gibson et al., 2012; Kanemaki et al., 2013; Mabuchi et al., 2011, 2015; Meguro et al., 

2010). LRP12/ZFPM2 variants have been associated with NTG in multiple studies (Bailey et 

al., 2016; Wiggs et al., 2012). Variants in the FNDC3B, GAS7, and ARHGEF12 are 

consistently associated with POAG and IOP, a quantitative trait (Luo et al., 2015; Micheal et 

al., 2014; Ozel et al., 2014; Sharma et al., 2012; van Koolwijk et al., 2012). Variants in 

PMM2 and CDC-TGFBR3 are associated with POAG while variants in C12ORF23 have 

been associated with NTG (Bailey et al., 2016; Chen et al., 2014; Li et al., 2015). A variant 

in the MIR182 gene has been associated with POAG, especially in those with elevated IOP 

(Drewry et al., 2016; Liu et al., 2016). Interestingly, elevated expression of miR-182 has 

been reported to contribute to stress-induced premature senescence in human TM cells (Li et 

al., 2009).

4.11 Populations, GWAS and POAG

To date GWAS for POAG have primarily been limited to European and Asian populations. 

Currently, there are a growing number of GWAS in populations of African ancestry. Two 

African American studies are in progress or have been reported (Charlson et al., 2015; 

Hoffmann et al., 2014). Surprisingly, a recent GWAS of POAG in a west continental African 

(Ghana and Nigeria) and African American dataset found no association with either variants 

in CDKN2B-AS1 or TMCO1, genetic loci highly associated with POAG in Asian and 

European populations (Hauser et al., 2017). To date, no genome-wide associations for 

POAG have been reported in populations of African descent. However, because of the 

unique ancestral relationship between populations of Sub Saharan Africa and all other global 

populations, this information is likely to be highly informative and of great scientific 

interest.

4.12 Copy number variants (CNV)

DNA copy number variants (CNVs), i.e. genomic duplications and deletions, have been 

increasingly associated with a variety of human genetic disorders, including ocular disorders 

like hereditary benign epithelial dyskeratosis (HBID) (Allingham et al., 2001; White and 

Nelson, 1975), AMD (Cantsilieris et al., 2012; Grassmann et al., 2016; Park et al., 2012; 

Sawitzke et al., 2011; Schmid-Kubista et al., 2009; Sivakumaran et al., 2011), uveitis (Hou 

et al., 2015) and non-ocular conditions like autism and schizophrenia (Alkan et al., 2011). 

CNVs are defined as changes in DNA copy number of a specific genomic region when 

compared to a reference genome.

A number of CNVs have been reported in POAG cases. Davis and colleagues performed a 

study of 400 cases/500 non-glaucoma controls that suggested rare CNVs may play a role in 

the development of POAG (Davis et al., 2011). A study of POAG in subjects of Indian and 

European ethnicity reported rare large genomic deletions that were highly enriched in POAG 

patients (Kaurani et al., 2014). Deletions on chromosome 5q21.2 that contained the gene 

RAB9BP1, a gene that has been associated with IOP, was associated with higher IOP but 

was not associated with high tension POAG (Nag et al., 2013). In another study individuals 

heterozygous for a deletion of the GALC gene (galactosylceramidase) had 5 fold increased 

risk of POAG (Liu et al., 2011a). Interestingly, Krabbe disease, a rare generally fatal 

disorder of the myelin sheath that includes progressive optic neuropathy and vision loss 
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occurs when both copies of GALC are nonfunctional (Wenger, 1993; Wenger et al., 1997; 

Wenger et al., 2000; Wenger et al., 1999). As discussed earlier, a CNV consisting of 

duplications in the TBK1 are associated with NTG (Awadalla et al., 2015; Fingert et al., 

2017; Fingert et al., 2016; Fingert et al., 2011; Kawase et al., 2012; Ritch et al., 2014). A 

study of DNA copy number variations in approximately 1,600 POAG cases and 1,500 

controls identified the presence of rare genomic deletions/duplications in a large number of 

POAG-associated genes (Liu et al., 2014b). These data further support the role of CNVs as 

another contributor to POAG pathogenesis.

4.13 POAG-associated Molecular Pathways

POAG is a complex genetic disorder, which in most cases has contributions from multiple 

genetic factors that participate in a wide variety of cellular signaling pathways (Abu-Amero 

et al., 2015; Cooke Bailey et al., 2013; Fan and Wiggs, 2010; Janssen et al., 2013; Libby et 

al., 2005; Wang and Wiggs, 2014; Weinreb et al., 2014). MYOC mutations reportedly affect 

the ER stress response, which has been implicated in the pathogenesis of glaucoma 

(Chrysostomou et al., 2013; Zode et al., 2012; Zode et al., 2011). ER stress pathways also 

appear to play a role in the pathogenesis of POAG in the retina based on mouse models of 

optic nerve injury or transgenic mutated myocilin (Carbone et al., 2011; Hu et al., 2012; 

Yang et al., 2016a; Zode et al., 2012; Zode et al., 2011). Mitochondrial-related pathways 

have also been implicated in POAG pathogenesis. A genetic pathway analysis of 

mitochondrial genetic variations suggests a relationship between lipid and carbohydrate 

metabolism and POAG risk (Khawaja et al., 2016). Targeted pathway analyses have suggest 

the contribution of genes involved in pathways related to vascular tone and estrogen 

metabolism in women (Dewundara et al., 2016; Kang et al., 2014; Pasquale et al., 2013b).

A genome-wide hypothesis-independent pathway analysis implicated gamma-aminobutyric 

acid (GABA) and acetyl-CoA metabolism in glaucoma pathogenesis (Bailey et al., 2014). 

Multiple genetic and molecular studies indicate the important contribution of autophagy to 

the pathogenesis of POAG (Frost et al., 2014; Hirt and Liton, 2017; Liton, 2016; Minegishi 

et al., 2016; Porter et al., 2015; Porter et al., 2013; Porter et al., 2014; Slowicka et al., 2016; 

Tucker et al., 2014; Wong and Holzbaur, 2014). As discussed earlier, a number of genetic 

factors are involved in or associated with the pathogenesis of POAG. Since a single genetic 

factor can play a role in multiple molecular pathways, several have been discussed here, any 

of which may play an important role in POAG pathogenesis (Janssen et al., 2013).

In addition to molecular pathways, interaction between glaucoma-associated genes may also 

contribute to pathogenesis of POAG. For example, interactions between MYOC and 

CYP1B1, OPTN and TBK1, and SIX6 with CDKN2B have been reported (Kaur et al., 2005; 

Minegishi et al., 2013; Minegishi et al., 2016; Mookherjee et al., 2012; Morton et al., 2008; 

Richter et al., 2016; Seo et al., 2013; Shen et al., 2015; Skowronska-Krawczyk et al., 2015; 

Vincent et al., 2002). A gene-based SNP-SNP interaction analysis identified several gene-

gene interactions with POAG. These include interactions between ZNF385B and ELMO1, 

ALX4 and RBFOX1, OPCML and RYR3, ROBO1 and HTR2A, and CTNND2 with NRG3 
(Verma et al., 2016). Current and future genetic will help unravel POAG’s complex 

inheritance.
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5. Genetic Analyses of POAG-associated Traits (Endophenotypes)

Endophenotypes, a term coined by Bernard John and Kenneth Lewis in studies of 

grasshopper distribution, are defined as heritable, stable traits that coexist in families and are 
not state dependent, so often exist whether illness is present or not (John and Lewis, 1966). 

In other words, though endophenotypes may be related to a disease, they are not disease 

dependent. Endophenotypes are typically quantitative traits. Quantitative traits, by their very 

nature, are frequently more amenable to analysis. Association analysis of endophenotypes 

can be a useful approach to dissect an inherited disease, for example psychiatric disorders, 

where a disease phenotype may be vague or difficult to define. Well-known and studied 

endophenotypes for POAG include IOP, CCT, VCDR, and RNFL thickness. Heritability of 

ocular traits, the variation in a phenotypic trait that is attributable to genetic factors, can be 

high. For example, estimates for the heritability of IOP is 0.29–0.50, VCDR is 0.48–0.80, 

CCT is 0.71–0.95 and RNFL thickness is 0.48 (Chang et al., 2005; Charlesworth et al., 

2010; Klein et al., 2004; Levene et al., 1970; Schwartz et al., 1975; Toh et al., 2005; van 

Koolwijk et al., 2007; Vitart et al., 2010a; Zheng et al., 2008). These traits, used to study and 

dissect a variety of ocular disorders, are individually addressed below.

5.1 IOP

IOP reduction is currently the only clinically validated treatment for glaucoma. Family-

based genome-wide linkage analyses have identified several genomic loci (chr5q22, 14q22, 

and 10q22) that contribute to variation in IOP (Axenovich et al., 2011; Charlesworth et al., 

2005; Duggal et al., 2005; Lee et al., 2010; Rotimi et al., 2006). GWAS have identified a 

large number of IOP-associated genetic variants near or within genetic loci. These loci 

include TMCO1, GAS7, CAV1/CAV2, GLCCI1/ICA1, MVB12B (aka FAM125B), 

ARHGEF12, FNDC3B, ABCA1, ABO, ADAMTS8, and chr11p11.2 (Blue Mountains Eye 

and Wellcome Trust Case Control, 2013; Chen et al., 2015a; Hysi et al., 2014; Nag et al., 

2014; Ozel et al., 2014; Springelkamp et al., 2015a; Springelkamp et al., 2017; van Koolwijk 

et al., 2012). Not surprisingly most IOP-associated variants are associated with POAG, the 

only exceptions in this list are ABO (blood group) and ADAMTS8 loci. Most IOP-

associated genes are expressed in adult human ocular tissues. Interestingly, when combined 

these loci accounts for less than 2% of the phenotypic variability observed in IOP, which 

leaves the vast majority of IOP heritability unexplained (Hysi et al., 2014). In addition to 

finding new IOP-associated loci, identifying rare variants that that lie in IOP-associated loci 

and contribute a large effect on IOP may account for some of the “missing” inheritance. IOP 

reduction is currently the only proven, effective therapy for glaucoma. Determining the 

mechanisms that underlie this quantitative trait will improve our understanding its 

contribution to glaucoma pathogenesis and will likely provide novel therapeutic targets.

5.2 CCT

CCT is a highly heritable trait that is estimated between 0.71–0.95 and is influenced by 

ethnicity (Aghaian et al., 2004; Charlesworth et al., 2010; Toh et al., 2005; Zheng et al., 

2008). CCT is reportedly thinner in people of African ancestry (Chua et al., 2014; Sample et 

al., 2009). Although the mechanism is unclear, thinner CCT has been reported as a strong 

predictor of POAG risk (Deol et al., 2015; Gordon et al., 2002; Sng et al., 2017). Thicker 
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CCT is associated with ocular hypertension and glaucoma suspect status in adults and 

children (Gordon et al., 2002; Muir et al., 2004). GWAS have identified a large number of 

CCT-associated sequence variants near or within many genes. These include ZNF469-
BANP, FOXO1, COL5A1, RXRA-COL5A1, AVGR8, AKAP13, COL8A2, WNT7B, 
WNT10A-USP37, NR3C2, GPR15, TIPARP, LCN12-PTGDS, CWC27-ADAMTS6, 
GLT8D2, SMAD3, VKORC1L1, COL4A3, FAM46A-IBTK, LPAR1, ARID5B, TBL1XR1-
KCNMB2, ARHGAP20-POU2AF1, C7ORF42, MPDZ-NF1B, FGF9-SGCG, TJP1, 
LRRK1, CHSY1, HS3ST3B1-PMP22, and FNDC3B (Cuellar-Partida et al., 2015; Gao et 

al., 2013; Hoehn et al., 2012; Lu et al., 2010; Lu et al., 2013; Ulmer et al., 2012; Vitart et al., 

2010b; Vithana et al., 2011). A pathway analysis of CCT in a population of European 

ancestry found that genes involved in collagen and extracellular matrix metabolism, collagen 

fibril organization, and myosin binding were enriched (Lu et al., 2013). However, similar to 

IOP, the combined genetic effect of these loci accounted for only a small portion (10%) of 

heritability (Charlesworth et al., 2010; Lu et al., 2013; Toh et al., 2005; Zheng et al., 2008). 

The relationship between CCT and POAG risk has been a subject of considerable discussion. 

Although CCT is considered a risk factor for POAG, the only genetic locus that is associated 

with CCT and POAG risk is FNDC3B (Lu et al., 2013). CCT has been inversely associated 

with oxygen levels in the human anterior chamber angle (Siegfried et al., 2015). This is 

consistent with the long-held belief that damage to components of the aqueous outflow 

pathways by reactive oxygen species (ROS) contributes to elevated IOP, a common feature 

observed in POAG (Siegfried et al., 2015). In other studies a correlation between CCT, optic 

nerve head topography, and visual field damage was found (Cankaya et al., 2008; Coman et 

al., 2014; Iester et al., 2012; Insull et al., 2010; Kaushik et al., 2006; Mokbel and Ghanem, 

2010; Pakravan et al., 2007; Papadia et al., 2007; Saenz-Frances et al., 2015; Sullivan-Mee 

et al., 2005). The relationship between POAG risk and CCT is complex and poorly 

understood.

5.3 VCDR and RNFL

VCDR is a continuous variable that is used clinically as a measure of optic nerve head 

cupping to diagnose and follow disease status in glaucoma cases. It is a relatively simple and 

moderately robust method to approximate loss of neuroretinal rim in glaucoma patients 

(Foster et al., 2002). Optic nerve head and retinal parameters measured by high resolution 

imaging technologies like OCT, scanning laser polarimetry, and scanning laser topography 

are far more accurate and robust (Fallon et al., 2017). A number of genetic loci have been 

associated with optic nerve head and retinal parameters. These VCDR-associated variants 

are located near or within many genetic loci, including CDKN2B-AS1, SIX6, ATOH7-
PBLD, FRMD8-SCYL1, CDC7-TGFBR3, DCLK1, CHEK2, COL8A1, DUSP1, EXOC2, 

HSF2, PLCE1, SSSCA1, ADAMTS8, RPAP3, TMTC2, SALL1, BMP2, CHEK2, RERE, 

RPE65, F5, PDZD2, RREB1, DGKB, VCAN, PSCA, ENO4, RBM23, and CARD10 
(Nannini et al., 2017; Ramdas et al., 2010; Springelkamp et al., 2014; Springelkamp et al., 

2017). Variants in or near CDC42BPA, CRISPLD1, FAM169B, CDKN1A, COL8A1, 

ATOH7, PLCE1, TMTC2, ASB7, CHEK2, SIX6, CDKN2B-AS1, SSSCA1, ADAMTS8, 

DCLK1, BMP2, FLNB, FAM101A, RERE, TRIB2, DUSP1, DDHD1, SALL1, BCAS3, 

EFEMP1/PNPT, TRIOBP, and HSF2 are associated with cup area (Springelkamp et al., 

2014; Springelkamp et al., 2017; Springelkamp et al., 2015b). Variants in or near ATOH7, 

Liu and Allingham Page 16

Exp Eye Res. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TMTC2, CHEK2, CDC7-TGFBR3, SALL1, ELP4-PAX6, CARD10, CDC42BPA, F5, 

DIRC3, RARB, ABI3BP, COL8A1, DCAF4L2, TMTC2, PRDM16, UGT8, CTNNA3, 

GADD45A, VGLL4, ASB7, and HORMAD2, have been associated with optic disc area, 

which is the area of the oval scleral opening where the retinal ganglion cell axons exit the 

eye (Gasten et al., 2012; Ramdas et al., 2010; Springelkamp et al., 2015b). Variants in or 

near CDKN2B-AS1, SIX6, ATOH7, CDC7-TGFBR3, and CDKN1A are associated with 

POAG (Carnes et al., 2014; Iglesias et al., 2014; Li et al., 2015; Liu et al., 2013b; Ramdas et 

al., 2011b; Skowronska-Krawczyk et al., 2015; Springelkamp et al., 2017; Wiggs et al., 

2012). It is interesting to note that there are two well-known long noncoding RNAs 

(lncRNAs), NEAT1 (nuclear paraspeckle assembly transcript 1) and MALAT1 (metastasis 

associated lung adenocarcinoma transcript 1), are located in the genomic region between 

FRMD8 and SCYL1 genes. lncRNA MALAT1 has been associated with retinal 

neurodegeneration and diabetic retinopathy (Liu et al., 2014a; Yan et al., 2014; Yang et al., 

2016b; Yao et al., 2016; Zhou et al., 2015). It is not known if these lncRNAs contribute to 

the development of POAG.

Family-based linkage analysis in a large Dutch pedigree identified two loci for RNFL 

thickness at chr3p22.2 (DCLK3 locus) and 14q22–q23 (SIX6 locus) (Axenovich et al., 

2011). A quantitative analysis of rs33912345, a SIX6 coding variant and a variant in strong 

linkage disequilibrium with this variant, rs10483727, have been associated with RNFL 

thickness (Cheng et al., 2015; Kuo et al., 2015). Both variants have been associated with 

POAG risk. As discussed earlier, there is strong evidence that the SIX6 coding variant 

rs33912345 has a functional effect that influences RNFL thickness.

6. Differential Expression Tissue Studies in POAG

Microarray or next generation sequencing –based gene expression studies are used to 

identify disease-related genes and pathways (Jakobs, 2014). Expression profiling in normal 

and glaucoma-affected ocular tissues offers valuable new information that has advanced our 

genetic and molecular understanding of POAG. Due to the size of the field the focus of this 

review will be limited to studies that have used normal and/or glaucomatous human ocular 

tissues. There are excellent reviews of expression analyses in cell culture and animal models 

for glaucoma (Jakobs, 2014; Libby et al., 2005; Tezel, 2014; Yang and Zack, 2011). 

Expression profiling of normal human eye tissues has been performed for TM, ciliary body, 

iris, cornea, optic nerve head, RGC layer, and retina (Carnes et al., 2016; Diehn et al., 2005; 

Drewry et al., 2016; Farkas et al., 2013; Janssen et al., 2012; Karali et al., 2016; Kim et al., 

2006; Liu et al., 2011b; Miao et al., 2008; O’Brien et al., 2014; Pinelli et al., 2016; Wagner 

et al., 2013; Whitmore et al., 2014). These studies have generated extensive, tissue specific 

information for baseline gene expression. These datasets and related databases are excellent 

tools for use by glaucoma researchers. These include The Ocular Tissue Database 

(genome.uiowa.edu/otdb), sSyTE (bioinformatics.udel.edu/research/isyte), NEIBank 

(neibank.nei.nih.gov), and EyeBrowse (https://hpcwebapps.cit.nih.gov/eyebrowse) (Lachke 

et al., 2012; Wagner et al., 2013; Wistow et al., 2008). Many of these datasets can be found 

and downloaded from NCBI Gene Expression Omnibus (GEO) repository 

(www.ncbi.nlm.nih.gov/gds).
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TM tissues obtained from glaucoma cases, post-mortem or post-surgical, have been used for 

differential gene/protein expression studies to identify pathways that contribute to POAG. 

These pathways include those related to inflammation, cell adhesion, extracellular matrix, 

and exosome-related pathways in POAG (Borras, 2003; Diskin et al., 2006; Liton et al., 

2006; Liu et al., 2013a; Micera et al., 2016; Wang et al., 2008). Expression analysis with 

glaucoma-affected human Schlemm canal endothelial cells suggests the contribution of cell 

adhesion, heparin binding, glycosaminoglycan binding, and extracellular matrix remodeling 

pathways in the pathogenesis of POAG (Cai et al., 2015; Overby et al., 2014). Microarray 

analyses in astrocytes obtained from optic nerve head tissue have demonstrated the 

involvement of a variety of biological processes in glaucoma, which include cell adhesion 

and proliferation, cell motility, extracellular matrix synthesis and degradation, neurosteroids, 

and signal transduction (Agapova et al., 2003; Hernandez et al., 2002; Lukas et al., 2008; 

Ricard et al., 1999). Expression analysis of primary lamina cribrosa cells has implicated 

involvement of TGF-β, extracellular matrix, and fibrosis in POAG (Kirwan et al., 2009). 

Proteomics analysis using human retina has identified the differential regulation of 

complement activation related to oxidative stress in glaucomatous retina (Tezel et al., 2010) 

as well as pathways related to cellular development, stress, and cell death (Funke et al., 

2016).

Proteomic studies of tears from patients with POAG provide additional support for the role 

of inflammation in POAG (Pieragostino et al., 2013; Pieragostino et al., 2012). Elevated 

levels of zymosterol and glucopyranosyl cholesterol and decreased levels of 

galactosylceramide and glucosylceramide in glaucomatous aqueous humor suggest the 

potential contribution of glycoceramide in glaucoma (Aljohani et al., 2013; Aribindi et al., 

2013), which is consistent with involvement of GALC in glaucoma (Liu et al., 2011a). 

Proteomic studies of aqueous humor from POAG patients in comparison to non-glaucoma 

controls have found elevated concentrations of transthyretin, TGF-β1, TGF-β2, IL-6, IL-8, 

IL-10, IL-12, TNF-α;, IFN-γ, and HGF (Balaiya et al., 2011; Chua et al., 2012; Cvenkel et 

al., 2010; Duan et al., 2010; Freedman and Iserovich, 2013; Grus et al., 2008; Hu and Ritch, 

2001; Inatani et al., 2001; Janciauskiene et al., 2011; Kuchtey et al., 2010; Min et al., 2006; 

Ochiai and Ochiai, 2002; Ozcan et al., 2004; Picht et al., 2001; Sawada et al., 2010; Takai et 

al., 2012; Trivedi et al., 2011; Yamamoto et al., 2005). It is interesting that transthyretin, an 

abundant protein found in cerebrospinal fluid (CSF), has been shown to form amyloid 

deposits (Saraiva, 2001). The elevated level of transthyretin in glaucomatous aqueous humor 

may promote the formation of amyloid deposit in the eye while elevated levels of serum 

amyloid A has been identified in glaucomatous TM and aqueous humor (Takai et al., 2012; 

Wang et al., 2008). In summary, differential gene/protein expression analyses support 

evidence that processes involved in inflammation, extracellular matrix metabolism, cell 

adhesion, TGF-β, and cell motility in POAG pathology.

7. Conclusion

The rapid development in genome technology has accelerated the identification of POAG-

related genetic factors using genome-wide association studies in glaucoma patients. Striking 

progress has been made toward our understanding of Mendelian and complex inherited 

forms of POAG. The identification of associations for disease- or endophenotype- related 
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genetic factors has generated new opportunities to investigate the cellular and molecular 

mechanisms that contribute to factors related to glaucoma. For example, the discovery of 

common and functional genetic variants for POAG (SIX6) will enable targeted 

investigations into POAG-associated pathways.

During the last few years, significant genomic resources including the ENCODE project 

(Encyclopedia of DNA Elements, www.encodeproject.org) (Kellis et al., 2014) and the 

GTEx project (Genotype-Tissue Expression project, www.gtexportal.org) (Consortium, 

2015) have dramatically promoted “post-GWAS” research for a broad array of human 

disorders, such as cardiovascular disease, diabetes, cancer, and many neurodegenerative 

disorders. This has highlighted the need to expand the availability of human ocular tissues in 

health and disease that has slowed progress in the study of many human eye disorders 

including glaucoma. Specifically, it is of central importance to have access to surgical and 

postmortem human ocular samples with detailed clinical information for future research on 

functional genomics and epigenetics. The Duke-Miracles in Sight Program located in 

Durham, NC, and others have implemented mechanisms to obtain clinically documented 

ocular tissues that are necessary for high level ophthalmic research (Williams et al., 2016a; 

Williams et al., 2016b). Ultimately our advanced understanding of glaucoma development 

provided by these efforts will lead to more effective preventive, diagnostic and therapeutic 

options for patients with this common leading cause of irreversible blindness.
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Figure 1. 
Genome plot of Mendelian genes for POAG that have been identified through genetic 

linkage analysis.
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Figure 2. 
Manhattan plot of current genome-wide genetic associations for POAG (through January, 

2017). The red line represents the cut-off for genome-wide significant association (5 × 

10−8). This figure is was generously provided by Chiea Chuen Khor, MD, PhD at the 

Genome Institute of Singapore.
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Figure 3. 
Functional evaluation of SIX6 variants on the volume of the optic nerve.

Representative whole mount images of acetylated-tubulin expression in the heads of 

zebrafish embryos injected with a control or six6a morpholino, rescued by co-injection with 

human non-risk SIX6 transcript or a transcript containing the Leu205Arg hypomorphic 

variant (A). Acetylated-tubulin staining is restricted primarily to axon tracts and can be used 

to visualize the optic nerve. Relative to the control morphants, volumetric regions of interest 

(ROI) along the optic nerve in six6a morphants were reduced significantly. Co-injection of 
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human variants revealed a hypomorphic (Leu205Arg, Asn141His) or benign (Glu93Gln) 

role of the variants on the optic nerve (B). Sample size for all injection paradigms ranged 

from 7–9 and p-values are plotted for each comparison (*** p<0.001; ** p<0.01). No 

significant changes in the volume of other axonal tracts in the head (marked by an asterisk) 

were detected. Standard error of the mean is shown and white scale bars = 20 um. (Figure 

adapted from (Carnes et al., 2014)).
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Table 1

POAG chromosomal Loci identified through linkage analysis

Locus Name Chromosomal Location POAG Phenotype Candidate Gene References

GLC1A 1q24.3 JOAG, Adult-onset MYOC (Sheffield et al., 1993; Stone et al., 1997)

GLC1B 2cen-q13 Adult-onset (Akiyama et al., 2008; Charlesworth et al., 2006; 
Stoilova et al., 1996)

GLC1C 3q21–q24 Adult-onset IL20RB (Keller et al., 2014; Kitsos et al., 2001; Samples et al., 
2004; Wirtz et al., 1997)

GLC1D 8q23 Adult-onset (Trifan et al., 1998)

GLC1E 10p13 Adult-onset, NTG OPTN (Rezaie et al., 2002; Sarfarazi et al., 1998)

GLC1F 7q36.1 Adult-onset ASB10 (Pasutto et al., 2012; Wirtz et al., 1999)

GLC1G 5q22.1 Adult-onset WDR36 (Monemi et al., 2005)

GLC1H 2p16.3–p15 JOAG, Adult-onset EFEMP1 (Lin et al., 2008; Mackay et al., 2015; Suriyapperuma et 
al., 2007)

GLC1I 15q11–q13 Adult-onset (Allingham et al., 2005; Crooks et al., 2011; Wiggs et 
al., 2000; Woodroffe et al., 2006)

GLC1J 9q22 JOAG (Wiggs et al., 2004)

GLC1K 20p12 JOAG (Wiggs et al., 2004)

GLC1L 3p22–p21 Adult-onset (Baird et al., 2005)

GLC1M 5q22.1–q32 JOAG (Fan et al., 2007; Pang et al., 2006)

GLC1N 15q22–q24 JOAG (Wang et al., 2006)

GLC1O 19q13.33 Adult-onset NTF4* (Liu et al., 2010; Pasutto et al., 2009; Vithana et al., 
2010)

GLC1P 12q14 NTG, adult-onset TBK1 (Bennett et al., 1989; Fingert et al., 2011; Ritch et al., 
2014)

*
NTF4 gene in the GLC1O locus was evaluated as a candidate gene for POAG without family-based studies or linkage analysis.
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