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Abstract

Rationale and Objectives—This study aimed to determine whether mammographic features 

assessed by radiologists and using computer algorithms are prognostic of occult invasive disease 

for patients showing ductal carcinoma in situ (DCIS) only in core biopsy.

Materials and Methods—In this retrospective study, we analyzed data from 99 subjects with 

DCIS (74 pure DCIS; 25 DCIS with occult invasion). We developed a computer-vision algorithm 

capable of extracting 113 features from magnification views in mammograms and combining these 

features to predict whether a DCIS case will be upstaged to invasive cancer at the time of 

definitive surgery. In comparison, we also built predictive models based on physician-interpreted 

features, which included histologic features extracted from biopsy reports and Breast Imaging 

Reporting and Data Systems (BI-RADS) related mammographic features assessed by two 

radiologists. The generalization performance was assessed using leave one out cross validation 

with the receiver operating characteristic (ROC) curve analysis.

Results—Using the computer-extracted mammographic features, the multivariate classifier was 

able to distinguish DCIS with occult invasion from pure DCIS, with an area under the curve for 

ROC (AUC-ROC) equal to 0.70 (95% CI: 0.59–0.81). The physician-interpreted features including 

histologic features and BI-RADS related mammographic features assessed by two radiologists 

showed mixed results, and only one radiologist’s subjective assessment was predictive, with AUC-

ROC equal to 0.68 (95% CI: 0.57–0.81).
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Conclusion—Predicting upstaging for DCIS based upon mammograms is challenging, and there 

exists significant inter-observer variability among radiologists. However, the proposed computer-

extracted mammographic features are promising for the prediction of occult invasion in DCIS.
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Introduction

Ductal carcinoma in situ (DCIS) is a preinvasive tumor confined within the ducts of the 

mammary glands [1], and it lies along the breast cancer continuum between atypical ductal 

hyperplasia and invasive ductal carcinoma. The incidence of DCIS has increased 

substantially since the introduction of mammographic screening with over 60,000 women in 

the United States diagnosed with DCIS every year, representing approximately 20% of all 

new breast neoplasm diagnoses [2]. However, despite the increased incidence of DCIS there 

has not been a concomitant decrease in invasive breast cancer [3]. Since the risk of 

progression from DCIS to invasive cancer is unclear, with estimates ranging from 14% to 

53% [4], there is a growing debate about overdiagnosis and consequent overtreatment of 

DCIS. Furthermore, among DCIS-only cases diagnosed at core biopsy, approximately 26% 

will be shown to contain invasive ductal carcinoma at surgical excision [5]. This upstaging, 

specifically from DCIS diagnosed at core biopsy to invasive ductal carcinoma at excision, 

has important consequences for patient management.

Many studies have sought to predict the occult invasion in DCIS. Different factors or 

markers, including immunohistochemical biomarkers, histological features, and 

mammographic or sonographic findings, have been described and associated with outcomes 

in DCIS [5–11]. However, none of these factors have been accepted as a definitive predictor 

of this upstaging or is sufficiently reliable for clinical use. Overall, it still remains a difficult 

task and unmet need to accurately predict occult invasive disease in DCIS.

Breast microcalcifications (MCs) appear in 30–50% of mammographically detected cancers 

[12], and over 90% of women with DCIS have suspicious MCs on mammography [13]. 

There has been much work using computer-aided detection (CAD) and diagnosis (CADx) 

for mammography including microcalcification clusters [14–20]. Other CAD/CADx studies 

have focused on DCIS [21–24], but those studies have not utilized the diagnostic 

magnification views routinely available during the workup of suspicious calcifications, 

which offer additional details not appreciable on routine full-field screening mammographic 

views. In this work, we hypothesize that computer vision techniques as well as various 

mammographic features developed for screening detection or diagnosis can be used to help 

predict the presence of occult invasive disease associated with DCIS. We have, therefore, 

developed a computer-vision algorithm based approach to extract mammographic features 

for patients with DCIS, and built a classification model relying on these features to 

distinguish between pure DCIS and DCIS with occult invasive disease.
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Materials and Methods

The processing pipeline to analyze the digital mammography magnification views is shown 

in Fig. 1. A core component of our prediction model is a computer-vision algorithm based 

approach to extract mammographic features (denoted as computer vision features in the 

remaining sections). In addition, we also extracted and evaluated some histologic features 

and BI-RADS (Breast Imaging Reporting and Data Systems) related mammographic 

features that have been used in the literature [1, 5, 6, 25–29](denoted as physician-

interpreted features in the remaining sections), and compared their predictive power for 

occult invasive disease in DCIS with the computer vision features.

Subject selection

This study was approved by the institutional review board of XXX. All procedures were 

compliant with the Health Insurance Portability and Accountability Act. Our subjects 

included women age 40 and older who underwent stereotactic core needle biopsy and were 

diagnosed with pure DCIS that presented as calcifications only, and for whom at least one 

digital magnification view was available. Exclusion criteria included the presence of any 

masses, asymmetries, or architectural distortion on a mammogram; history of breast cancer 

or prior surgery; and presence of microinvasion at the time of initial biopsy. The excluded 

subjects were deemed to be already at high risk for invasion and therefore not appropriate 

for this study. Overall, 99 subjects from our institution with biopsy-proven DCIS only were 

retrieved from 2009–2014. Of those, 25 were upstaged to invasive cancer at the time of 

definitive surgery. All magnification views were produced by GE Senographe Essential 

systems, with either 1.5X or 1.8X magnification.

Detection of individual microcalcifications and clusters

A computer-vision algorithm based approach was used to segment individual MCs and 

clusters within the DCIS lesion followed by extraction of mammographic features from the 

segmented areas to predict the upstaging of DCIS. To accomplish this, calcification regions 

of interest (ROIs) were first identified by an expert radiologist. Following this manual step, 

we applied an automatic algorithm described below:

i. Mammogram enhancement:

We first enhanced the detectability of MCs through contrast-limited adaptive 

histogram equalization with a 1mm by 1mm local tile size. Then, a dual-

structural element based morphological operator followed by a top-hat transform 

[20] was applied to further suppress non-relevant background noise. Fig. 2 shows 

the process of this enhancement procedure.

ii. Coarse detection of microcalcifications:

Calcifications occur as bright points in a complex background with 

heterogeneous intensity and texture. Thus, we proposed a locally adaptive, triple-

thresholding technique to detect the potential microcalcification candidates. 

Considering the size of MCs, we defined a 1mm by 1mm local window. Then, a 

local intensity mean image Flocal -mean and a local intensity standard deviation 
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image Flocal-STD were constructed from the previously enhanced image F by 

assigning each pixel with the average intensity value and intensity standard 

deviation computed within the local window. Next, we conducted histogram 

thresholding independently on these three images F, Flocal -mean, Flocal-STD, with 

top 1%, 2% and 2% pixels kept respectively. All three thresholdings were applied 

within the DCIS ROI area pre-delineated by an expert breast radiologist. In the 

end, the overlaps of the resulted three thresholded areas were both globally and 

locally bright small spots, which were regarded as detected MC candidates.

iii. False positive reduction:

We further eliminated the false positives from the MC candidates based on their 

morphologic characteristics. Candidates were removed if they were smaller than 

0.1 mm2 or larger than 4 mm2; had circularity within the range 0.9 – 1.1 and area 

larger than 1mm2, (large, obviously benign calcifications); or had axis ratio 

larger than 5 (rod-like shapes). By removing those false positives, we obtained 

the final refined segmentation for individual MCs.

iv. Detection of cluster boundary:

Starting from the center of each detected MCs, a weighted graph was built by 

connecting all the pairs of MCs that are less than 10 mm from each other and 

removing the isolated ones. The boundary of the cluster was generated using the 

convex hull algorithm. Fig. 3 shows the final segmentation results for the same 

example as in Fig. 2.

Feature extraction

Computer vision features—For this task, we built a comprehensive feature set similar to 

that described by Bria et al. [14]. Specifically, from the segmented MCs and clusters, we 

extracted three types of mammographic features: (i) shape features to describe 

heterogeneous morphology and size of MC and clusters; (ii) topological features capturing 

the topological relations between MCs from the weighted graphs associated with the 

clusters; (iii) texture features obtainable from the original magnification views, such as MC 

pixel values, background values and statistical measures of gray level co-occurrence 

matrices (GLCM). Individual MC-level features were computed for all MCs belonging to 

the same cluster. From these values, four global statistical measures (Mean, STD, Min, and 

Max) were computed to describe the cluster. For each cluster, we obtained 113 features: 100 

individual MC-level and 13 cluster-level features, which are shown in Table. 1. We denote 

this feature set as computer vision features. For more detailed description of these features, 

we refer readers to [14].

Physician-interpreted features—Prior studies suggested relationships between 

outcomes of DCIS and histologic features from pathology reports [1, 5, 6, 27, 29] or BI-

RADS mammographic features [5, 25–28]. Although not intended for the present task, those 

features nonetheless may have predictive value. Therefore, we recorded another set of 

features (denoted as physician-interpreted features) to compare to the computer vision 

features. From the core biopsy pathology reports, two histologic features were identified: the 
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nuclear grade (low, intermediate, or high) and the presence or absence of comedo type 

necrosis. Each case was reviewed independently by two fellowship-trained, dedicated breast 

radiologists, who were blinded to whether invasive disease was eventually found. One of the 

radiologists (denoted as Radiologist-A in the remaining sections) has 3 years of experience 

in breast imaging; the other radiologist (denoted as Radiologist-B) has 20 years of 

experience in breast imaging. By following the terminology of BI-RADS, the following 

mammographic features were obtained independently from two radiologists: calcification 

description, distribution, and BI-RADS assessment (4a, 4b, 4c, and 5). Since radiologists 

were aware that all included subjects had biopsy-proven DCIS, their BI-RADS assessments 

should all be within category 4a, 4b, 4c, or 5. In addition, we recorded the patient’s age and 

lesion size as well. The lesion size was measured from each radiologist’s outline of the 

lesion on the best magnification view by both 2D area and the major axis length. For the 

description and distribution of calcifications, the options were further ranked with the order 

of increasing risk of being abnormal, similar to [30]. Furthermore, the radiologists were also 

asked to provide another ranking score (between 1–100) as their overall judgment of the 

probability of occult invasion. In total, nine different types of physician-interpreted features 

were extracted, as shown in Table 2.

Building and evaluating predictive models

We developed predictive models for both computer vision features as well as physician-

interpreted features using univariate and multivariate analyses.

To assess the performance of individual computer vision features, we directly used their 

normalized numerical values as the posterior probability of being invasive. In the 

multivariate setting, a logistic regression classifier was utilized with sequential floating 

forward feature selection (SFFS) [31] nested within leave-one-out cross validation 

(LOOCV).

For the physician-interpreted features, in univariate setting we performed the Student’s t-test 

for the continuous features (i.e., age, size of lesion), chi-squared analysis for the nominal 

feature (i.e., subtype of DCIS), and Mann-Whitney U-test for the other ordinal features. The 

significance level was 0.05. For multivariate analysis, all features were converted into 

numeric form (0–1) and then modeled with logistic regression with LOOCV.

The generalization performance of the predictive model was assessed using ROC analysis. 

To analyze whether the area under the curve of different ROC curves differ significantly, 

comparisons of AUCs were performed using DeLong’s method [32] implemented in the 

pROC package [33] with R (V.3.3.1).

Results

Univariate performance

Computer vision features—The AUC-ROC performance for individual computer vision 

features is shown in Fig. 4. Overall, the AUC-ROC performance averaged over all 113 

computer vision features is 0.58 ± 0.06, with 25 out of 113 features performing better than 

chance (p<0.05) at predicting occult invasive disease. Specifically, for individual cluster-
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wise features (features indexed between 1–13 in Fig.4), the averaged AUC-ROC 

performance cluster-wise features is 0.61 ± 0.07, with 7 out of 13 features in this group 

performing better than chance (p<0.05); for individual MC-level features using “mean” 

statistic (features indexed between 14–38 in Fig.4), the averaged AUC-ROC performance is 

0.54 ± 0.05, with 3 out of 25 features in this group performing better than chance (p<0.05); 

0.58 ± 0.05 for individual MC-level features using “standard deviation” statistic (features 

indexed between 39–63 in Fig.4), with 5 features performing better than chance (p<0.05); 

0.57 ± 0.04 for individual MC-level features using “minimum” statistic (features indexed 

between 64–88 in Fig.4), with 3 features performing better than chance (p<0.05); 0.60 

± 0.04 for “maximum”, with 7 features performing better than chance (p<0.05).

Physician-interpreted features—Results of the statistical analysis on physician-

interpreted features are presented in Table 2. Between the pure DCIS and the invasive 

groups, there was no statistically significant difference in patient age and histologic features, 

i.e., nuclear grade, subtype of DCIS. For both radiologists, the morphology and distribution 

of calcifications showed no statistically significant difference between the pure DCIS and 

the invasive groups. However, the major axis length of DCIS lesion and BI-RADS levels of 

suspicion reached statistical significance for both radiologists (Radiologist-A: p ≤ 0.0496, p 

≤ 0.0247; Radiologist-B: p ≤ 0.0345, p ≤ 0.0321). The lesion area was significant for only 

Radiologist-B (p ≤ 0.0305). The radiologist’s subjective score of being invasive was 

significant for only Radiologist-A (p ≤ 0.0052). Since this unique feature is directly 

associated with our specific task, we further assessed the inter-observer variability using 

intraclass correlation coefficients (ICC) (1-way model, consistency definition). The ICC 

showed a fair correlation of 0.53 (95% CI: 0.37–0.66) between the two radiologists.

Multivariate performance

Fig. 5 shows the ROC curves of the proposed predictive model using different features. For 

the physician-interpreted features, given that just Radiologist-A’s assessment was 

significant, only his BI-RADS related features were utilized. Using that subjective 

assessment as the posterior probability of being invasive achieved a univariate AUC-ROC of 

0.68 (95% CI: 0.57–0.81), which performed significantly better than random chance with 

AUC-ROC of 0.5 (p<0.05) at predicting occult invasive disease. However, in multivariate 

modeling, building a logistic regression classifier by combining Radiologist-A’s three 

statistically significant features as shown in Table 2 only achieved AUC-ROC of 0.59 (95% 

CI: 0.45–0.73), compared to 0.52 (95% CI: 0.38–0.67) by combining all nine physician-

interpreted features. Both of these two multivariate predictive models failed to reject the null 

hypothesis of random chance with AUC-ROC of 0.5.

By using the computer vision features, the proposed multivariate predictive model of using 

sequential floating forward feature selection (SFFS) and logistic regression classifier 

achieved AUC-ROC of 0.70 (95% CI: 0.59–0.81). Note that this corresponds to the best of 

the models that we implemented in our analysis; more details are included in the discussion. 

This multivariate model based on computer vision features significantly outperformed 

random chance (p<0.05), but shows no statistically significant difference with the univariate 

model of Radiologist-A’s subjective assessment (p>0.05).
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We also plotted the histogram of feature selection frequency when using SFFS method, as 

shown in Fig. 6. The selection frequencies for the 113 computer vision features were 

obtained by normalizing the overall 99 folds in LOOCV. The features among the top picks 

are associated with certain textural properties within clusters (features indexed at 63, 59, 37), 

the MC density of the cluster (feature indexed at 29), and the size and shape of the MCs 

(features indexed at 42 and 65).

Discussion

Our study is the first of its kind to examine the feasibility of using computer-extracted 

mammographic features to predict occult invasive disease in patients with core needle 

biopsy proven DCIS that presents as mammographic calcifications. In univariate analysis, 25 

computer vision features out of total 113 showed significantly better-than-chance predictive 

power for detecting occult invasive disease. In comparison, there were mixed results among 

the radiologist interpreted features: the subjective assessments by two radiologists led to 

different results, with only one radiologist’s subjective score being predictive, although the 

DCIS lesion size measured in the major axis and the BI-RADS level of suspicion assessed 

by both radiologists showed statistically significant difference between the pure DCIS and 

the invasive groups. On multivariate modeling, the computer vision features significantly 

outperformed random chance (p<0.05), but with an AUC-ROC of 0.70 that showed only 

marginal improvements over Radiologist-A’s subjective assessment. This emphasizes the 

difficult nature of predicting the presence of invasive cancer in this setting.

In this initial exploratory analysis, we applied computer-vision features previously utilized 

in CAD systems, which were designed primarily for the detection of cancer [34–38]. While 

a useful starting point, the task of identifying a suspicious abnormality is different from 

discriminating between known DCIS and occult invasive disease. This likely explains in part 

why the AUC-ROC values achieved in our study are low, although still better than chance. 

Interestingly the textural features, which describe the heterogeneity of DCIS lesions, had 

better predictive power when analyzed in conjunction with the shape or topological features. 

Tumoral heterogeneity at the genetic level has been described as being associated with 

invasive potential [39], but the relationship between imaging features and genetics, termed 

radiogenomics, has not been adequately explored. Further investigation into the relationship 

between genetic heterogeneity and phenotypic manifestations in the form of calcifications at 

mammography are needed. These results indicate that computer-vision extracted 

mammographic features associated with microcalcifications and clusters show potential to 

predict invasive disease and if features can be designed specifically for the task of predicting 

upstaging the performance metrics will also likely improve.

The physician-interpreted features in our study showed mixed results for the prediction of 

upstaging. Common features such as BI-RADS morphology and distribution, which are 

associated with the risk of malignancy, were not useful in stratifying the risk of occult 

invasive disease. The pathology features including nuclear grade and presence of comedo 

type necrosis were also not associated with upstaging, despite a prior meta-analysis by 

Brennan et al. [5] which demonstrated an association with invasive cancer; however, this 

may be due in part to the smaller sample size included in our study. Previous investigators 
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have looked at the predictive power of individual histologic or pathologic features [5, 6, 9, 

25, 27–29], but only Park et al. [9] constructed a nomogram to predict the occult 

invasiveness of DCIS patients, and obtained an AUC-ROC of 0.71 on their validation set. 

Although similar in performance to our current study, the previous study included DCIS 

patients with microinvasion, and the overall underestimation rate of DCIS patients by 

preoperative biopsy was 42.6% (145/340), both of which significantly decreased the 

difficulty of the prediction task. A unique feature of our study is the inclusion of the 

radiologist’s subjective score of being invasive, which did show an association with 

upstaging for one of the two radiologists. This suggests that the radiologist might be able to 

identify predictive features that are not expressed in the BI-RADS descriptors, and provides 

an opportunity for computer-vision features to attempt to quantify and potentially improve 

upon what the radiologist is interpreting. This is especially important because when included 

into a multivariate model, the physician-interpreted features did not perform better than 

random chance.

The current study has several limitations. First, the sample size is relatively small because of 

the single-institution design and the strict exclusion criteria. This affects the performance of 

our predictive model, especially considering the high-dimensional computer-vision feature 

set we extracted. Due to this, a robust and effective feature selection method is necessary. 

We investigated several different methods and found the sequential floating forward feature 

selection method with the area under the precision-recall curve as the optimization measure 

[40] provided the best result (the range of AUC-ROC for other tested feature selection 

methods are [0.55 ~0.7]). Second, we did not conduct a thorough inter-observer analysis for 

radiologist-interpreted features, because the main purpose of this study was to explore the 

feasibility of building an automated model based on computer-extracted mammographic 

features. However, since the current two radiologists showed interestingly different 

performance in predicting occult invasive disease in DCIS, a comprehensive inter-observer 

analysis that includes more radiologists is warranted. Finally, this preliminary study was an 

unblinded, retrospective study. We were intentionally conservative with feature selection and 

modeling algorithms, as well as limiting the number of trials. However, our reported results 

were not adjusted by a multiple-hypothesis testing correction procedure, so there is still 

potential for overfitting bias.

Conclusions

In conclusion, our study demonstrates the feasibility of using computer-vision algorithms to 

predict occult invasive disease in DCIS. As a preliminary investigation, this work directly 

utilized CAD techniques and features not specifically designed for this task, and the size of 

the data set used is also relatively small, thus we were intentionally conservative with feature 

selection and modeling so as to minimize overfitting bias. In spite of these constraints, we 

were able to statistically predict occult invasive disease better than chance. Future work 

includes building upon these promising results in order to both refine and design new 

computer vision features specifically targeted towards detecting occult invasive disease, with 

the goal of improving the predictive power of our algorithm. In addition, we are also 

planning to include more subjects into this study via collaboration with other institutions for 

a better-justified validation of our model. Since the successful prediction of occult invasive 
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disease in patients with newly diagnosed DCIS could notably change clinical management, 

therapeutic decision making, and discussions regarding patient outcomes, there is great 

potential for this line of inquiry.
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Figure 1. 
Flowchart of the proposed methodology.
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Figure 2. 
Result of mammogram enhancement: (a) the original digital magnification view; (b) 

enhanced image by contrast-limited adaptive histogram equalization and dual-structural 

element based morphology approach; (c) final enhanced image after applying top-hat 

transform.
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Figure 3. 
Example result of segmentation of individual MCs and detection of cluster boundary: (a) 

DCIS ROI mask delineated by radiologist; (b) segmented by the algorithm.
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Figure 4. 
The AUC-ROC performance of individual computer vision features. The red line indicates 

chance behavior for AUC-ROC being 0.5. The feature groups are cluster level (black) and 

summary statistics of individual calcification features: mean (green), standard deviation 

(blue), minimum (yellow), and maximum (cyan).
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Figure 5. 
ROC curves showing the classification performance using different features. The ROC curve 

for Radiologist-B’s subjective assessment achieved AUC-ROC of 0.55 (95% CI: 0.41–0.68) 

and showed no statistically significant difference from random chance and was thus not 

plotted.
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Figure 6. 
The histogram of feature selection frequency using computer vision features and SFFS 

across the cross validation. These feature groups are cluster level (black) and summary 

statistics of individual calcification features: mean (green), standard deviation (blue), 

minimum (yellow), and maximum (cyan).
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Table 1

Computer vision features extracted from individual MCs and cluster.

Category Feature Description

Individual MCs Shape MC perimeter (p) Length of MC contour

MC area (Amc) Number of pixels for a MC × pixel area (µm2)

MC circularity 4π*Amc/p2, a measure of “roundness”

MC eccentricity Another measure of “roundness”

MC major axis Length of major axis of MC region

MC minor axis Length of minor axis of MC region

MC Hu’s moments *7 Descriptive weighted averages of intensities

Topological MC distance2centroid Distance to cluster centroid

MC distance2closest Distance to nearest MC neighbor

MC degree Number of edges incident to MC

MC normalized degree Sum of normalized weights of MC degree

Texture MC background *2 Mean and std. of background pixel intensities

MC foreground *2 Mean and std. of MCs’ pixel intensities

MC GLCM * 4 Measures computed from GLCMs

Cluster Shape MCCs area (Ac) Area of cluster

MCCs eccentricity Eccentricity of cluster

Topological MCCs number (n) Number of MCs in cluster

MCCs density 2E/n*(n-1): E is number of graph edges

MCCs coverage sum(Amc/Ac)

Texture Cluster background *2 Mean and std. of background pixel intensities in cluster

Cluster foreground *2 Mean and std. of MCs’ pixel intensities in cluster

Cluster GLCM * 4 Measures computed from GLCMs for whole cluster
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