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Abstract

White matter tract integrity (WMTI) can characterize brain microstructure in areas with highly 

aligned fiber bundles. Several WMTI biomarkers have now been validated against microscopy and 

provided promising results in studies of brain development and aging, as well as in a number of 

brain disorders. Currently, WMTI is mostly used in dedicated animal studies and clinical studies of 

slowly progressing diseases but has not yet emerged as a routine clinical tool. To this end, a less 

data intensive experimental method would be beneficial by enabling high resolution validation 

studies, and ease clinical applications by speeding up data acquisition compared to typical 

diffusion kurtosis imaging (DKI) protocols utilized as part of WMTI imaging.

Here, we evaluate WMTI based on recently introduced axially symmetric DKI which has lower 

data demand than conventional DKI. We compare WMTI parameters derived from conventional 

DKI to those calculated analytically from axially symmetric DKI. We employ numerical 

simulations, as well as data from fixed rat spinal cord (1 sample) and in vivo human (3 subjects) 

and rat brain (4 animals). Our analysis shows that analytical WMTI based on axially symmetric 

DKI with sparse data sets (19 images) produces WMTI metrics that correlate strongly with 

estimates based on traditional DKI data sets (60 images or more). We demonstrate the preclinical 

potential of the proposed WMTI technique in in vivo rat brain (300 μm isotropic resolution with 

whole brain coverage in a one hour acquisition). WMTI parameter estimates are subject to a 

duality leading to two solution branches dependent on a sign choice which is currently debated. 

Results from both of these branches are presented and discussed throughout our analysis. The 

proposed fast WMTI approach may be useful for preclinical research and e.g. clinical evaluation 

of patients with traumatic white matter injuries or symptoms of neurovascular or 

neuroinflammatory disorders.
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Detailed white matter evaluation (WMTI) from scarce diffusion kurtosis data sets and axial 

kurtosis is presented and evaluated. Our analysis employs extensive numerical simulations and 

experimental evaluation based on data from fixed spinal cord, normal human brain, and in vivo rat 

brain. Strong correlations to standard estimation methods are found even with analysis based on 

merely 19 images. The fast WMTI method may be useful for high resolution preclinical studies or 

for clinical settings where scan time is a constraint.
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Introduction

Diffusion kurtosis imaging (DKI) (1,2) quantifies the leading deviation from Gaussian 

diffusion. Since this deviation is a consequence of tissue microstructure’s influence on the 

water diffusion profile, DKI has increased sensitivity to tissue microstructure over diffusion 

tensor imaging (DTI). DKI yields a number of parameters that have been shown to be 

sensitive to subtle changes in brain tissue organization, either as a consequence of disease 

such as demonstrated for stroke (3,4), Alzheimer’s disease (5), multiple sclerosis (6), head 

trauma (7–9) (and reviewed in (10)), or natural effects such as development and aging 

(11,12). This sensitivity is present in both gray and white matter (WM). However, in WM, 

more information is available when diffusion and kurtosis tensors are used in combination 

with modeling as in the white matter tract integrity (WMTI) technique (13). In suitable WM 

regions (typically selected based on indices describing the diffusion tensor shape), WMTI 

extracts detailed information about WM fiber bundle composition, such as intra- and extra-

axonal diffusivities, axonal water fraction (AWF), and the tortuosity, α, of the extra-axonal 

space.

The WMTI technique has been applied to normal brain development and aging (14,15) as 

well as diseases including Alzheimer’s disease (16,17), mild head trauma (18), multiple 

sclerosis (19), autism (20), and stroke (3). More recently, DKI based indices of WM 

microstructure have compared favorably with histology and electron microscopy (21–24) 

confirming the ability of WMTI to extract microstructural changes in highly aligned WM. A 

recent study found WMTI to have broader applicability than other DKI-based tissue models 

(25). However, the widespread clinical application of WMTI awaits not only a firm 
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understanding of its cytoarchitectural correlates, but also ways of reducing acquisition and 

image processing time demands, in that WMTI requires a full DKI acquisition, typically 

including 60 images (13) or more (26), and computationally demanding post-processing.

Recently, a strategy for reducing the number of parameters in the DKI signal expression 

from 22 to 8 was proposed and evaluated in the context of fast estimation of radial and axial 

kurtosis (27). This simplification of the signal expression was achieved by imposing axial 

symmetry on both the diffusion and kurtosis tensors. This symmetry assumption was shown 

to have little effect on directional DKI parameter estimates, even in regions unlikely to have 

axial symmetry in reality and when the axially symmetric tensors were determined from 

small data sets containing only 19 images.

The primary aim of this study is to evaluate axisymmetric DKI as a strategy for reducing the 

data requirement for WMTI. With fewer parameters to determine, axisymmetric DKI might 

allow acceleration of the data acquisition for WMTI which would alleviate some of the 

experimental challenges currently associated with validation, clinical exploration and 

application. For instance, in preclinical studies, accelerated WMTI would allow acquisition 

of data sets with higher spatial resolution or higher signal to noise ratio (SNR) (more 

averages) in the same amount of time as a traditional DKI acquisition for WMTI. In the 

clinic, the major benefit of such rapid acquisitions would be more widespread use and 

exploration of WMTI. The smaller data requirement might also be a benefit for imaging in 

critically ill patients, or where the subject has difficulty lying still during a lengthy 

examination, e.g. the young and elderly. Short WMTI acquisitions may also be useful in 

body DKI where motion is often a more severe problem, for example for evaluation of spinal 

cord (SC) or peripheral nerve.

The most recent version of WMTI does not assume strict axial symmetry (13). Then, the 

axonal water fraction is determined by numerically maximizing the apparent kurtosis over a 

large number of directions in each pixel followed by maximization over a local 

neighborhood of (assumed) homogenous tissue. By assuming axial symmetry, we can 

employ a faster strategy, by which all parameters can be analytically determined from mean, 

axial and radial diffusivity and kurtosis. This WMTI estimation strategy is similar to an 

earlier version of WMTI (28), which however, did not employ axially symmetric DKI as is 

done here.

We evaluate the parameter fidelity of these strategies through simulations and compare our 

WMTI estimates to a (simplified) implementation of conventional WMTI using 

experimental data from a range of systems. We also investigate estimation precision when 

based on either large or small data sets made possible by the compact axisymmetric DKI 

signal representation. Rapid, optimal protocols for accelerated WMTI based on 

axisymmetric DKI may exist but are not the subject of this study. Instead we focus on data 

acquired with the 1-9-9 strategy for fast kurtosis imaging (27,29–31) and assess performance 

of the analytical WMTI variant based on such acquisitions. In the first part of our analysis, 

numerical simulations are used to compare the performance of conventional WMTI to the 

proposed analytical strategy based on axially symmetric DKI when axial symmetry is not 

fulfilled. We then analyze high resolution data from rat SC acquired at 16.4T, and data from 
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three human volunteers acquired at 3T. These data acquisitions are constructed to allow 

analysis with WMTI as well as the analytical variants (either based on a large data set or a 

small subset of 19 images), for direct method comparison. Finally, we present examples of 

analytical WMTI based on 19 images acquired at 9.4T in four rats in vivo with whole brain 

coverage at an isotropic resolution of 300 μm. This serves to illustrate the preclinical 

potential of the proposed methods. Based on our analysis we discuss parameter behavior in 

the two solution branches produced by an inherent sign ambiguity related to the relative 

magnitude of intra-and extra-axonal diffusivity. This duality is currently a matter of interest 

(13,32) and we therefore provide histograms of the affected diffusivities from both branches 

in all investigated systems and discuss branch estimates in the context of their expected 

physical parameter behavior.

Theory

DKI

The standard expression for the DKI signal is (1):

(1)

Here S0 = S(b = 0) is the signal normalization and b is the diffusion weighting applied along 

a direction n̂ = (nx,ny,nz). In this notation, subscripts label Cartesian components (e.g. i = 

x,y,z) and Einstein notation for summation is used. D denotes the diffusion tensor (33), and 

definitions of the kurtosis tensor W and apparent excess kurtosis K(n̂) are adopted from (1). 

Here, as in the rest of the paper, overbar denotes mean value i.e. D̄ is mean diffusivity. 

Typical DKI acquisitions contain about 60 images in total: 30 directions at two non-zero b-

values (typically 1.0 ms/μm2 and 2.0–2.5 ms/μm2) and a few additional unweighted images 

for signal normalization, which are used to estimate D and W by fitting to Eq. (1). Typically, 

DKI is acquired with single diffusion encoding (SDE) (34), but double diffusion encoding 

(DDE) DKI has been considered (35,36).

WMTI

From D and W, metrics of white matter tract integrity (WMTI) can be derived based on 

modeling described in (13). The WMTI model describes the intra-axonal space as sticks 

with an effective radius of zero (valid for clinical diffusion gradients, see discussion). 

Furthermore, water is assumed not to exchange between the intra- and extra-axonal spaces. 

Diffusion in each compartment is approximated with anisotropic Gaussian diffusion. 

Although individual axons behave as sticks for clinical diffusion times, the presence of 

multiple non parallel populations (or dispersion) may cause the intra-axonal tensor to have 

three non-vanishing eigenvalues (13). Hence, the signal expression for this two-compartment 

system becomes:

(2)
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where Da and De are diffusion tensors belonging to the intra-axonal and extra-axonal space 

respectively, f is the MR visible axonal water fraction (AWF), and the intra- and extra axonal 

diffusion tensors are (subscript numbers refer to sorting of eigenvalues by magnitude):

(3)

From the cumulant expression of this model, the measured diffusion and kurtosis tensors can 

be expressed in terms of the model parameters. Based on these relations, WMTI provides 

estimates of the (MR visible) axonal water fraction (AWF), axonal diffusivity (Da = Tr(Da), 

extra-axonal parallel and radial diffusivities (De,|| = De,1 and De,⊥ = (De2+ De3)/2)), and the 

tortuosity (α = De,||/De,⊥) of the extra-axonal space, all obtained from a DKI data set where 

AWF estimation would otherwise require significantly higher b-values (13,37). If the axonal 

space consists of more than one fiber population the framework was shown to be robust for 

small intersection angles (<30°) because such axonal arrangements look essentially 

Gaussian for typical a DKI protocol (13). The estimation procedure relies on optimizing a 

lower bound, i.e. an inequality rather than an equality, which is carried out by numerically 

maximizing the apparent kurtosis K(n̂) over a large number of directions. If the fiber bundles 

are non-coplanar, an improved estimation method additionally entails averaging over a local 

neighborhood of homogeneous tissue.

Axially symmetric DKI

All previous WMTI studies have used the full representation of the DKI signal in Eq. (1) for 

estimation of D and W, without any symmetry forced on the tensors (22 parameters) (1,2). 

Recently it was shown (27), that the apparent kurtosis W(n̂) can be expressed by only three 

independent parameters if one assumes the system to possess axial symmetry. This 

simplification was found to yield reliable estimates of directional kurtosis and diffusion 

metrics even if axial symmetry is unlikely to apply in reality. Choosing ẑ to be parallel to the 

axis of symmetry, W(n̂) is characterized by W̄ (29), W|| (parallel kurtosis, the apparent 

kurtosis along ẑ) and W⊥ (radial kurtosis, apparent kurtosis along any direction in the xy-

plane). The axis of symmetry must be specified as well (two angles with respect to the lab 

frame), resulting in a total of only 5 degrees of freedom for an axially symmetric kurtosis 

tensor. The axially symmetric diffusion tensor shares the symmetry axis of W and hence 

adds only two parameters. With normalization, the number of parameters for axially 

symmetric DKI therefore adds up to eight (27).

In this axially symmetric system, the apparent kurtosis along an arbitrary direction is 

characterized by the polar angle θ:

(4)

and similarly for the apparent diffusivity, D(θ):
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(5)

If the direction of diffusion weighting is not well defined, e.g. when imaging gradients add 

significant cross terms, explicit, coordinate independent tensor forms are required:

(6)

(7)

Here u is a unit vector along the axis of symmetry. The definitions of the tensors P,  and Q 

are (subscripts again label Cartesian components):

(8)

Both terms needed for computing the signal (see Eq. (1)) can then be calculated:

(9)

(10)

In the above, b is the experimental b-matrix, ⊗ denotes the tensor direct product such that 

for two second order tensors A and B, A⊗B is fourth order with Cartesian components 

(A⊗B)ijkl = AijBkl. Using the expressions in Eqs. (6)-(10), we here estimate the tensors D 

and W with nonlinear least squares fitting to the signal. In the following we show how the 

axially symmetric tensors provide parameters that can be used directly to determine the 

axially symmetric WMTI parameters analytically.

Analytical expressions for the WMTI parameters for parallel fibers

We exploit the relationship found in (2) for 2-compartment Gaussian systems:

(11)
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Evaluated along the radial and axial directions, and averaged over all directions these yield 

directional diffusivities and kurtoses from which closed form solutions for AWF, Da, De,⊥, 

and De,|| can be derived:

(12)

Here, the mean (of the) kurtosis tensor (MKT or W̄) is defined as in (29):

(13)

Tr is the trace. Radial and axial kurtosis are defined as in (27):

(14)

where v1, v2 and v3 are diffusion tensor eigenvectors in decreasing order of the eigenvalues. 

Hence, the left-hand sides of Eq. (12) are readily determined from both the general DKI fit 

and axially symmetric DKI.

Equation (12) consists of five equations with only four unknowns, due to the assumption of 

axons as parallel sticks, leaving a choice for which equation to omit - in fact, only 4 of the 

equations are independent. Noting that W̄ is more robustly estimated from 1-9-9 than W|| (as 

shown in (27)), we here employ Eq. (12e) rather than Eq. (12d) involving the noisier W||. 

Equations (12) can then be inverted to find expressions for the WMTI parameters:

(15)

The notation in Eqs. (15) reflects our implementation and shows the interdependence of the 

parameters. As in standard WMTI, a sign ambiguity exists, which is rooted in the 
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appearance of diffusion coefficients squared in Eq. (12). This demands a choice between two 

branches yielding solutions with Da ≤ De,|| or Da > De,||. Since this cannot be decided 

without independent information, and is an important topic in the current debate (32,38) we 

report affected parameters (De,||, Da, and α) for both branches. We refer to these branches as 

Branch 1 (yielding Da ≤ De,||) and Branch 2. Note also that the solutions for branch 2 in 

axially symmetric WMTI are much more obvious than conventional WMTI, where the 

choice of sign can depend on diffusion direction.

Comparison strategies

We evaluate two axisymmetric WMTI strategies although more strategies are possible. We 

compare these methods to conventional WMTI (merely WMTI from here on) based on 

estimates of D and W obtained from a fit of Eq. (1) to suitable data sets. Our first method is 

analytically evaluated WMTI based on an axisymmetric DKI fit to data sets identical to 

those we use for WMTI. We refer to this WMTI strategy as axisymmetric WMTI (aWMTI). 

Our second method is identical to the first, except it exploits the lower data demand for 

axisymmtric DKI. With only eight parameters in the axisymmetric DKI signal representation 

the aWMTI strategy may also be applied to sparse data sets. Optimal protocols may exist, 

but here we employ the 1-9-9 protocol as an example of a compact kurtosis measurement 

scheme and for consistency with our previous work (27,31,39). In this protocol, one b=0 

image is acquired followed by nine distinct encoding directions at each of two b-values b1 

and b2; due to this sampling design we refer to the protocol as the 1-9-9 protocol for fast 

kurtosis imaging (31). The nine directions needed for this scheme are provided in tables 

elsewhere (27,31). We refer to this WMTI variant as fast axisymmetric WMTI (faWMTI) 

where the axisymmetric DKI fit parameters from a 1-9-9 data set are used directly with the 

analytical expressions. We emphasize, that the axisymmetric WMTI method can be used 

with any compact DKI acquisition with eight or more data points acquired along non-

collinear encoding directions. Our method of evaluation therefore uses a two-step approach 

comparing first WMTI to aWMTI (to assess the isolated effect on WMTI of imposing axial 

symmetry on the DKI signal expression) and then aWMTI to faWMTI to show the effect of 

a reduced data foundation. This allows users interested in employing aWMTI (which has 

reduced processing time due to the WMTI parameters being evaluated analytically) to 

conventional DKI data to assess method performance while also showing method 

performance using a sparse sampling scheme such as 1-9-9 protocol.

Methods

Throughout, the signal to noise ratio (SNR) at b=0 prior to preprocessing is reported. The 

SNR was calculated as the average signal in a uniform region in the object divided by the 

standard deviation (std) in a signal free background region corrected for Rayleigh 

distribution in a standard fashion.

16.4T MRI of rat SC

An approximately 15 week old Long-Evans rat was perfused intracardially with 4% 

paraformaldehyde (PFA). Following perfusion, the cervical enlargement of the SC was 

isolated. The animal experiment was performed in accordance with EU directive 
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2010/63/EU, and with approval from the animal ethics committee at the Champalimaud 

Centre for the Unknown (Lisbon, Portugal). Prior to imaging, the SC was washed in 

phosphate buffered saline (PBS). For imaging, the sample was positioned in a 5mm NMR 

tube and placed upright in a vertical bore 16.4T Bruker Aeon Ascend magnet with isotropic 

gradient strength of 3T/m (Bruker Biospin, Ettlingen, Germany). Diffusion weighted images 

were acquired axially with a pulsed gradient spin echo (PGSE) sequence with echo-planar 

readout and partial k-space coverage (70%) to accelerate acquisition. Image resolution was 

36×36 μm2 in-plane with a slice thickness of 1 mm. Diffusion encoding used the 9 directions 

needed for fast DKI (29,31). Nine non-zero b-values were acquired with nominal values 

linearly distributed between 0.6 ms/μm2 and 5.4 ms/μm2. In addition, 10 b=0 images were 

acquired for normalization. The remaining imaging parameters were TR/TE = 4000/35 ms, 4 

averages, diffusion timings (Δ/δ) were 10ms/2ms. SNR > 60 at b=0. Sample temperature 

was maintained at 20 °C throughout the acquisition.

3T MRI of human brain

Human data was acquired in three normal volunteers and acquired with permission from the 

Ethics Committee of the Central Region, Denmark. Informed consent was obtained prior to 

data collection. Imaging was performed using a Siemens Trio 3T equipped with a 32 channel 

head coil. A twice refocused spin echo DW EPI sequence was used (diffusion time 

approximately 50 ms). Inversion recovery (inversion time of 2100 ms) was used to suppress 

cerebrospinal fluid (CSF) signal as per (40). Head motion during the acquisitions was 

avoided by inserting padding between the coil and the subject’s head. The acquisition 

consisted of one b=0 image and 33 directions on 14 b-value shells between 0.2–3.0 ms/μm2. 

The 33 direction sampling scheme was constructed by combination of a 3D 24 point 

spherical design (41) and the 9 directions identified previously (29). In all subjects, 19 

consecutive slices were acquired at 2.5 mm isotropic resolution with TR=7200 ms, TE=116 

ms, yielding an SNR of 39 at b=0.

9.4T MRI of in vivo rat brain

Data was acquired in four male Long Evans rats of equal age. Prior to imaging, each animal 

was anesthetized with isoflurane and placed in an animal cradle compatible with the rat 

brain cryocoil employed here. Once on the bed, anesthesia was maintained using isoflurane 

(1.5–2.5%) supplied through a nose cone. Animal respiration rate and temperature was 

monitored during the entire experiment. Animal temperature was maintained at 37°C using a 

heated water blanket. Positioning of the animal was done outside of the magnet using a 

transparent cryocoil replica ensuring that the animal is correctly positioned when inserted 

under the actual cryoprobe which is bore-mounted rendering direct animal positioning 

unfeasible. The experiment was approved by the Danish Animal Experiments Inspectorate 

(Dyreforsøgstilsynet permit no.: 2014-15-2934-01026). All animal handling was done in 

accordance with EU directive 2010/63/EU for animal experiments. Once the animal 

temperature and respiration rate had stabilized after positioning in the cradle, the animal was 

transferred to the scanner. Data was acquired using a Bruker Biospec 9.4T imaging system 

equipped with BGA-12HP gradients capable of 650 mT/m. We used a cross-coil setup with 

a 76 mm quadrature coil for excitation and a four element rat brain cryo-surface coil for 

reception. Gradients and all radio frequency coils were manufactured by Bruker Biospin 
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(Ettlingen, Germany). The diffusion protocol consisted of a 1-9-9 acquisition using a 

segmented EPI sequence (four segments), diffusion times (Δ/δ) of 14ms/6ms, b-values 1.0 

and 2.5 ms/μm2; 3 b=0 images were acquired. Remaining scan parameters were: TE=27 ms, 

TR = 2237 ms, resolution 300 μm isotropic, 40 slices, matrix size 128×64, 20 averages were 

acquired resulting in a total scan time of 1h2m. SNR at b=0 was approximately 22.

Postprocessing

All data sets were denoised (42,43), Rice-floor adjusted (44), and corrected for Gibbs 

ringing effects (45). Following this, the data was inspected visually for quality (artifacts, 

subject/sample movement, and field drift). Due to careful padding around the head of each 

human subject, image registration was found to be unnecessary. Eddy current correction was 

performed in FSL (46), but was found to introduce an unsatisfactory amount of image 

movement, causing image registration to become necessary where it was not before. This 

correction step was therefore abandoned to avoid the blurring of the images that would be 

caused by motion correction. Image registration was also found to be unnecessary for the rat 

SC data due to the sample being tightly held in the NMR tube. The in vivo rat data showed 

very little movement due to the anesthetized rat being fastened to the animal bed for correct 

and stable placement under the cryocoil. This motion was corrected using linear registration 

to the b=0 volume in Matlab® (Natick, MA, USA).

Data analysis employed nonlinear least squares fitting performed with the Levenberg–

Marquardt algorithm implemented in Matlab® (Natick, MA, USA). DKI analysis of the 

human data included only b-values up to 2.6 ms/μm2. In the case of fitting to the axially 

symmetric DKI model, a good initial value for the axis of symmetry is crucial. For this, we 

used the primary eigenvector of D obtained from a diffusion tensor fit preceding the 

axisymmetrical DKI fit. Scripts for axisymmetrical DKI analysis are freely available from 

our group homepage (http://cfin.au.dk/cfinmindlab-labs-research-groups/neurophysics/

software). The axially symmetric DKI representation was applied both to the full data sets, 

and to 1-9-9 subsets of the full data acquisition. For the rat SC data set, a 1-9-9 subset was 

extracted with b1=1.3 ms/μm2 and b2=5.5 ms/μm2 shells as in (27). For the human data, the 

1-9-9 data set used b1=1.0 ms/μm2 and b2=2.6 ms/μm2 as per (31). All analysis steps are 

identical for aWMTI and faWMTI analysis. In this study, we adopt the criteria for inclusion 

of WM pixels used in (13) based on the Westin indices (47). Thus, for each data set a mask 

was generated based on the Westin indices of linearity (cL = (λ1 − λ2)/λ1≥0.4), planarity (cP 

= (λ2 − λ3)/λ1≤0.2), and sphericity (cS = λ3/λ1≤0.35), where λ1,λ2,λ3 are the eigenvalues 

of D in descending order. These indices were calculated from the diffusion tensor obtained 

from the conventional DKI for all data sets except for the in vivo rat brain where the Westin 

indices where calculated from the axially symmetric diffusion tensor estimate from the 

axisymmetric DKI analysis. Our WMTI implementation is based on (13) but uses a slightly 

modified approach where the AWF is estimated simply as AWF=Kmax/(Kmax+3); this is 

exact when a direction with vanishing intra-axonal diffusivity exists – otherwise, this AWF 

is a lower bound estimate. This is less general than the full WMTI approach in (13) where a 

more involved alternative expression for the AWF is employed along with an optimization 

over the chosen WM region in which Da is then assumed to be constant. Such 

implementation choices may affect performance but are unlikely to affect the conclusions of 

Hansen et al. Page 10

NMR Biomed. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cfin.au.dk/cfinmindlab-labs-research-groups/neurophysics/software
http://cfin.au.dk/cfinmindlab-labs-research-groups/neurophysics/software


the present study as our parameter estimates are generally in agreement with WMTI values 

in the literature (see also discussion). Conventional WMTI assumes the sign choice 

producing our Branch 1 (+ in Eq. (15c) and - in Eq. (15d)), which was shown to be stable 

over all directions in (13). Although this is less clear for Branch 2, we obtain our WMTI 

Branch 2 simply by using the opposite sign choice and assuming it to be stable over all 

directions. For the aWMTI and faWMTI the axisymmetric DKI parameters were processed 

with Eqs. (15) yielding the WMTI parameters directly.

For our analysis of the rat SC data we obtain a measure of the WM fiber dispersion in each 

pixel by fitting a model comprised of a Watson distributed collection of sticks and an 

extracellular compartment with all diffusivities as variables (48). From this fit the Watson 

concentration parameter κ was obtained and used for calculating the average dispersion 

 relative to the out-of-plane direction) in each pixel, where angular 

brackets denotes the average over the Watson distribution:

(16)

We truncate the intra-neurite signal expression after 12 terms, adequate for κ< 128.

Numerical simulations

One major difference between WMTI and the analytical WMTI variants is the assumption of 

perfect fiber alignment in the analytical framework (Eq. (15)). We therefore first compare 

the performance of WMTI and aWMTI using numerical simulations based on biexponential 

fitting to the human data detailed above. The biexponential model parameters were then 

used as ground truth values in our evaluation of the performance of the methods. For this 

evaluation, the diffusion tensor with the smallest minor eigenvalues was taken to belong to 

the intra-axonal space and its volume fraction was used as the true AWF. In the simulations, 

the experimental signals from 100 random WM pixels satisfying the Westin index criteria 

were fit to the biexponential signal equation (Eq. (2)) with non-coaxial, unconstrained 

diffusion tensors (i.e. all entries on the diagonal of Da are allowed to be non-zero to provide 

the most flexible fit and to account for effects of intra-voxel fiber dispersion in the Gaussian 

limit. Here, all shells over the acquired b-value range (0–3.0 ms/μm2) were employed. Non-

linear least squares fitting was performed using the Trust Region Reflective algorithm in 

Matlab (Natick, MA, USA). These fits reveal a typical separation of several degrees between 

the primary eigenvectors of the two tensors. The parameter values obtained from these fits 

were then used with the biexponential model to generate synthetic data sets using the same 

encoding scheme as the human experiments and a maximum b-value of 2.6 ms/μm2. Noise 

was added in quadrature to an SNR matching the experimental of 39 (i.e. the simulations do 

not take into account the denoising applied to the experimental data). A total of 1000 noise 

realizations was performed in each of the 100 pixels. The generated signals were then 

analyzed in the same manner as the experimental data to yield WMTI and aWMTI 

parameters.
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Results

Figure 1 shows the results (histograms of relative errors) of the numerical simulations using 

the biexponential model parameters as ground truth for each pixel. The figure text reports 

median and mid-95% range of the error for each parameter and each of the WMTI/aWMTI 

estimation strategies over 100 WM voxels and 1000 noise realizations in each voxel. Here, 

only the branch yielding estimates in agreement with the true values are shown (Branch 1 in 

all cases). Input parameters (volume fraction, summary parameters of the tensors from the 

‘fast’ and ‘slow’ diffusion components) from the biexponential fits to the 100 random WM 

pixels are shown in Supplementary Fig. 1. We ensure the relevance of our input parameters 

by comparing to values obtained from the high quality data from human brain provided in 

(37). Overall, good agreement is seen between our input values and the reference values 

derived from data acquired with sampling to high b-values. Nevertheless, some differences 

are seen which likely stem from the reference data being produced by a fit to the average 

signal in a WM region whereas values employed in our simulations stem from 100 random 

WM pixels, as well as differences in the employed b-value range.

Figure 1 shows that both methods perform quite well and that they generally agree. Closer 

scrutiny reveals aWMTI to have lower median error than WMTI for all parameters except 

Da and tortuosity (α). However, also here the methods show very similar performance. The 

error range is also quite similar for the two methods, with only the Da estimate showing 

markedly different behavior between the two with aWMTI having the largest error range.

Turning to analysis of the experimental data we first compare the performance of WMTI to 

aWMTI in the WM fibers in rat SC (3551 voxels satisfying the Westin index based criteria 

detailed above). The same five parameters as in Fig. 1 are compared in Fig. 2 which includes 

estimates for both sign choices (Branch 1 and Branch 2). For all parameters, aWMTI 

estimates are seen to correlate strongly to their WMTI counterparts. For Branch 1, very 

strong correlations are seen with most estimates clustered tightly around the identity line 

(red). AWF displays the weakest linear correlation of the six parameters with a correlation 

coefficient of 0.9. Here, as well as in the rest of the study, all reported correlations are 

Pearson’s linear correlation coefficients significant at p<0.05. Estimates in Branch 2 also 

show very strong correlation, but here larger offsets from the identity are observed. Thus, the 

assumption of axial symmetry does not negatively affect WMTI estimation in this tissue. It 

is important to stress that the assumption of axial symmetry does not mean that the aWMTI 

and faWMTI methods assume or require perfect alignment of fibers in the tissue. To 

illustrate this, Fig. 3A shows the average fiber dispersion (θC) in the SC in each pixel. The 

red outline shows the WM region in the rat SC analyzed throughout. The histogram in Fig. 

3B shows the distribution of θC in this sample with values varying from 26° up to 47° (the 

WM average is 38°). WM κ values range from 1.5 to 5.5 with an average value of 3.6. When 

comparing aWMTI to faWMTI in the SC (data not shown) the correlations unsurprisingly 

decrease but remain very strong (all exceed 0.82). Maps of all parameters from WMTI, 

aWMTI and faWMTI in the SC are provided as Supplementary Figs. 2–4. Visual inspection 

of the AWF maps from rat SC reveals the expected left right symmetry and regional 

variation of AWF seems to correspond to known WM tract locations as segmented in (49).
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Figure 4 shows the same type of analysis as in Fig. 2, but this time for suitable WM regions 

in one normal human brain (4401 voxels across all slices). Here, aWMTI estimates in 

Branch 1 correlate very strongly with WMTI estimates with all correlations exceeding 0.86. 

Interestingly, the behavior in Branch 2 is different (as was also seen in Fig. 2) where 

correlations for De,|| and tortuosity are very strong but the Da correlation is only moderately 

strong at 0.68. Similar behavior is observed when comparing aWMTI to faWMTI in this 

subject. Here, correlations in Branch 1 are in the range of 0.67–0.74 except for the tortuosity 

where propagation of noise from the faWMTI estimates of De,|| and De,⊥ causes the 

correlation to decrease to 0.61. In Branch 2 the correlation for De,|| is 0.72 whereas Da and 

tortuosity correlations drop markedly to 0.44 for Da and 0.57 for α. Average correlations for 

all three subjects (aWMTI vs WMTI, aWMTI vs faWMTI) are given in Table 1.

Figure 5 shows an example of faWMTI estimates (in suitable pixels) of AWF, De,⊥ and α 
overlaid on the S0image in normal rat brain at 300 μm isotropic resolution. Two orthogonal 

slice planes are shown. The parameter estimates lie in the expected range, vary smoothly, 

and display the expected left-right symmetry.

Assessment of biophysical parameter values

In Fig. 6 we show histograms of WMTI estimates of De,|| and Da for both branches (Branch 

1 in top row, Branch 2 in bottom row) in suitable pixels in rat SC (column A) and normal 

human brain (column B). Column C shows faWMTI estimates from in vivo rat brain. 

Columns B and C show pooled values from all subjects/animals. Analysis of each subject/

animal separately showed the same overall behavior. The free water diffusivity at the sample 

temperature is marked with a vertical red line in all graphs as it provides an upper bound for 

credible parameter values. The difference in ranges between the left column and the other 

two columns is due to the sample temperature: approximately 20 °C (where free water 

diffusivity is ≈2 μm2/ms) for the rat SC (column A), and 37 °C (where free water diffusivity 

is ≈3 μm2/ms) for the human and rat brain (columns B-C). For all three systems, Branch 1 

produces diffusivity values below the upper bound imposed by free water diffusivity except 

for a tail of high De,|| values in the rat brain (column C, top panel). In the case of Branch 2, 

the De,|| values are also physically plausible, but the vast majority of estimated Davalues 

exceed free water diffusivity. Fig. 7 shows the correlation between θC and WMTI estimates 

of Da and De,|| for both branches in rat SC WM. The black line shows a robust fit to the data. 

Branch 1 is seen to display the expected behavior of decreasing diffusivity for increasing 

dispersion whereas Branch 2 does not.

We note a significant negative offset between the aWMTI and WMTI branch 2 estimates 

(Figs. 2 and 4) although they correlate strongly. Since our WMTI Branch 2 assumes sign 

stability which we cannot at present verify, we also present aWMTI Branch behavior (Fig. 

8). Here, branch behavior from SC and human brain (Fig. 8A–B) is shown with Branch 1 (2) 

estimates shown in the top (bottom) row. Interestingly, aWMTI Branch 2 estimates of 

diffusivities violate the physical upper bound in fewer pixels than WMTI (Fig. 7), albeit still 

in approximately 50% of WMTI pixels in human brain (Fig. 8B). In SC both branches 

largely produce diffusivities within the physical bounds with 83% of Branch 2 Da values 

below the upper bound of 2 μm2/ms (Fig. 8A). Correlations between diffusivities from both 
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aWMTI branches in SC and WM fiber dispersion are shown in Fig. 8C. We note that both 

branches now display the expected decreasing diffusivity with increasing dispersion. This 

behavior, however, remains most pronounced in Branch 1 as indicated by the correlations 

above each plot.

Discussion

This work extends earlier work on WMTI by combining a time-efficient data acquisition 

strategy from our earlier work (27,29–31) with a post-processing strategy utilizing analytical 

relations between WMTI parameters and tensor components similar to the originally 

proposed WMTI method which was derived assuming perfectly aligned WM bundles (28). 

The current standard for WMTI, however, builds on later work where the assumption of 

perfect alignment was relaxed to allow for angular spread up to 30° (13). This allows WMTI 

to be performed in most of the brain’s major WM tracts, where WM is highly aligned yet 

shows some dispersion. For instance, histology and N-acetylaspartate (NAA) diffusion 

spectroscopy show fiber dispersion in the human corpus callosum to be significant (group 

average 18°) (50) in agreement with similar histological analysis in the rat (51). Similarly, 

our findings in rat SC show a significant degree of dispersion in WM (see below).

In order to perform WMTI based on scarce data such as the 1-9-9 protocol for fast kurtosis 

(29–31) a reduction of parameters in the DKI signal representation is needed. Here, this is 

achieved by assuming axially symmetric diffusion and kurtosis tensors as in (27). However, 

as detailed above, axial symmetry is not completely fulfilled in even very aligned WM 

bundles, and is not assumed in conventional WMTI. We therefore performed simulations to 

evaluate the performance of aWMTI against WMTI and ground truth parameters. This was 

done using the biexponential signal model (Eq. (2)) to synthesize realistic non-axisymmetric 

DKI signals which are then analyzed with WMTI and aWMTI. Supplementary Fig. 1 shows 

our simulation input parameters to agree well with those obtained from high quality data 

acquired up to high b-value in human WM (37). The simulations (Fig. 1) show that aWMTI 

extracts the ground truth simulation parameter values with less bias but more spread than 

WMTI in most cases. However, overall the performance of the two methods is highly 

comparable meaning that the assumption of axially symmetric diffusion and kurtosis tensors 

does not impede aWMTI estimate fidelity in WM compared to WMTI. The presented results 

are based on direct estimation of parameters using Eqs. (15). An alternative strategy using 

least squares estimation with Eq. (12) was also evaluated with very similar performance to 

aWMTI in Fig. 1 was seen with this approach (data not shown). In our remaining analysis, 

we continue to compare aWMTI to WMTI for consistency with the literature where WMTI 

is the standard method for which validation studies have been carried out. As mentioned in 

the Methods section our WMTI implementation is slightly simplified compared to the full 

WMTI framework in (13). While our parameter estimates are in agreement with the 

literature (all report only Branch 1) we do stress that implementation details such as fitting 

strategies may affect performance (52,53). Moreover, the assumption that sign choice is 

stable over all directions may not be true for Branch 2. Analysis of whether this assumption 

produces a proper WMTI Branch 2 implementation is an interesting (non-trivial) topic for 

future work.
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Very strong agreement between WMTI and aWMTI is also seen in Fig. 2 which shows 

scatter plots based on rat SC data. Here, correlations in both branches all exceed 0.93 except 

for AWF (0.9). Even when a 1-9-9 data subset is used for faWMTI, correlations to aWMTI 

remain strong (>0.83) in both branches. Figure 3A illustrates SC WM fiber dispersion by 

showing the average fiber dispersion, θC, in each pixel. The average across the WM is 38°. 

Stating these results in terms of the Watson concentration parameter κ, we find κ = 3.6 on 

average in WM. To put this into perspective, for a fiber arrangement characterized by a 

Watson distribution with κ =4, only 20% of the fibers have angles ≤15° relative to the main 

direction, and a dispersion range as wide as 60° is needed to account for 91% of the fibers 

(54). Perfect alignment is thus far from fulfilled even in the SC. We note, that these results 

might be expected for an acquisition with a slice thickness of 1 mm in a section of the 

cervical SC where many nerve branches exit the SC to the extremities. Thus, the SC analysis 

shows that the aWMTI method is capable of producing robust estimates even in geometries 

where perfect alignment is not fulfilled which is in agreement with our simulations. Visual 

inspection of the parameter maps from rat SC (in Supplementary Figs. 2–4), shows regional 

variation of e.g. AWF which might indicate ability to map individual WM tracts in SC with 

WMTI methods, but more samples and histology would be needed to verify this. We note 

that fixed rat SC seems very well-suited for future validation studies of the WMTI methods 

with histological analysis of various WM tracts as in (49).

Turning to the human data, correlations between WMTI and aWMTI are also strong (Fig. 4) 

but slightly lower than those seen in fixed tissue (Fig. 2). This is most likely due to the lower 

SNR and presence of physiological noise in the human data. Nevertheless, the overall 

behavior in the method comparisons in Figs. 2 and 4 is very similar except for the Branch 2 

estimate of Dain human brain, where a correlation of 0.68 is seen compared to 0.94 for rat 

SC. In both cases, Branch 2 correlations fall far from, and below, the identity line. The 

Branch 1 estimates all agree with the value ranges and distributions presented from normal 

human brain in (13).

As expected, the correlations decrease when reducing the data foundation to a 1-9-9 subset 

of the human data. Nevertheless, the correlations remain strong between faWMTI and 

aWMTI (average correlations >0.7 for AWF, Da, and De,⊥, >0.6 in remaining cases for 

Branch 1); see Table 1 for full results. Interestingly, the estimation fidelity is not the same in 

the two branches with Da correlations in Branch 2 being much poorer than in Branch 1. 

Branch 2 estimates therefore seem more sensitive to the reduction in data (faWMTI) than 

estimates in Branch 1.

The proposed framework provides a means of reducing the required number of images. 

Since scan time can be a constraint in most clinical settings, such a technique may be useful. 

When scan time is less of a concern, the lower data demand can be utilized to achieve higher 

data quality, i.e. higher resolution and/or SNR. Higher resolution data may increase the 

number of WM pixels with a uniform fiber orientation thus further improving the agreement 

with aWMTI assumptions. However, it is a subject for future investigations to determine 

whether high SNR or higher angular sampling is optimal for WMTI. A fast alternative to 

conventional WMTI may therefore be useful in the clinic and for clinical and preclinical 

research including validation studies where both high image resolution and whole brain 
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coverage are desirable but perhaps not feasible with WMTI based on a conventional DKI 

acquisition. An example pointing to the usefulness of the faWMTI method for preclinical 

research is given in Fig. 5, which shows faWMTI mapping of AWF, and De,⊥, and tortuosity 

(Branch 1 throughout) in rat brain at an unprecedented resolution of 300 μm isotropic 

resolution. Given the degree of correlation values between aWMTI and faWMTI in human 

brain, some noise in the estimates might be expected, but they are seen to vary smoothly and 

display the expected symmetry between hemispheres. Similar behavior is seen in all four 

rats.

Validation and biophysical parameter duality

WMTI has been shown to provide valuable WM biomarkers in several validation studies 

demonstrating correlation between WMTI and tissue parameters derived from histology or 

measured with electron microscopy. Experimental validation was offered in (13), and more 

recently in (21–23). In the three latter studies, the cuprizone model of demyelination (55–57) 

was used. In (23) histology was used for validation of DKI based WM modeling. Here, 

AWF, mean kurtosis (MK) (2) and radial kurtosis (RK) (2,26) were found to be the most 

sensitive markers for the cuprizone induced WM changes. Similar findings were reported in 

(21) with MK, RK and AWF deemed the most sensitive DKI and WMTI parameters for 

detection of cuprizone induced WM changes in corpus callosum. Overall, a range of DTI, 

DKI and WMTI parameters were found to discriminate the cuprizone and control groups in 

various brain regions and in different stages from acute to long lasting changes. High 

resolution WMTI was performed in ex vivo mouse brains from knock-out models showing 

varying degrees of hypomyelination in (24). As in (21), the authors conclude that DKI offers 

improved sensitivity over DTI to myelination changes and exhibit stronger correlation to 

myelin from histology than DTI metrics. The authors also conclude that AWF from WMTI 

is a reasonably accurate reporter of axon water fraction in near normal WM compared to 

estimates from histology. AWF from WMTI was found to correlate significantly with total 

AWF derived from electron microscopy (EM) in (22). In that same study, De,⊥ was found to 

correlate with the WM g-ratio (the ratio between the axon diameter alone to the diameter of 

the myelinated fiber) from EM but not with the AWF from EM. These parameters (AWF and 

De,⊥), are therefore strong candidates for MR-derived markers with specificity to 

demyelination and remyelination. It is important to note that the estimates of AWF and De,⊥ 
are unaffected by branch choice. Other parameters (De,⊥, Da, and α) are, however, strongly 

affected by the choice of sign as also shown throughout our analysis. Typically, this has been 

resolved by a sign convention in WMTI yielding solutions such that Da≤De,|| (13). However, 

this has recently become a topic of debate e.g. in (15,32,38), where in the latter reference it 

is shown that arguments can be made in favor of either Da≤De,|| or the opposite. Figure 6 

summarizes the observed branch behavior for WMTI estimates of De,|| and Da in all three 

systems employed here (column A: rat SC, column B: in vivo human brain, column C shows 

faWMTI estimates from in vivo rat brain). Overall, our analysis shows WMTI Branch 2 to 

produce Da estimates in excess of the free water diffusivity (vertical red line) in a substantial 

number of pixels. Branch 1 estimates are generally within the physical range. Figure 7 

further points to the physically reasonable behavior in Branch 1 where both Da and De,|| are 

seen to decrease with increasing fiber dispersion in rat SC WM. Branch 2 does not display 
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this behavior. A similar analysis correlating AWF to Da and De,|| was inconclusive (not 

shown).

Our results are generally in agreement with previous WMTI literature where the choice 

leading to Da≤De,|| (Branch 1) has typically been favored (13,28). However, in live rat we see 

a large overlap of diffusivity estimates within the physically acceptable range in both 

branches (Fig. 6C). Interestingly, the Branch 2 Da estimate has a second peak at 

approximately 1.7 μm2/ms, which agrees with the overall D|| of water measured in vivo in rat 

SC (58). We also note that our in vivo rat data do show some unphysical behavior of De,|| in 

Branch 1 (Fig. 6C top panel). Comparing the histogram of error in WMTI Da estimation in 

our simulations (Fig. 1) to the Branch 2 Da estimate in rat SC in Fig. 6A the spread around 

the true value in Fig. 1 is seen to be very similar to the distribution around the free diffusion 

value in SC. This might indicate that the Branch 2 Da in SC is close to the free water 

diffusivity of 2 μm2/ms. In this case neither branch can be rejected based on the diffusivity 

estimates.

This notion is further supported by the histograms of aWMTI branch estimates (Fig. 8A–B) 

which shows aWMTI branches to have a somewhat different range than the diffusivities in 

the WMTI branches (as also seen in Figs. 2 and 4). In particular, the SC Branch 2 behavior 

is now seen to be mostly within the physically plausible range (Fig. 8A) and both show 

decreasing diffusivity with increasing dispersion (Fig. 8C). This is worth noting because our 

WMTI Branch 2 implementation is based on the assumption that the non-conventional sign 

choice is robust over directions as is the case for the conventional branch (Branch 1). This 

assumption may not be correct and the lower values produced by aWMTI in Branch 2 

therefore cannot be ruled out as mere bias. We note that the Branch 2 aWMTI Da estimate in 

human brain is centered on the free water diffusion coefficient (Fig. 8B) as discussed for the 

SC. Clearly, there is a difference in the results obtained in fixed tissue and in vivo. It is 

unclear if estimation uncertainty in the presence of physiological noise could explain the in 

vivo Branch 2 Da exceeding the free water value to the extent seen here. Nevertheless, our 

analysis seems to indicate that if the intra-axonal diffusivity is almost free, estimation 

uncertainty might be the cause of some apparent unphysical behavior. In this case neither 

branch can be ruled out. This is further underscored by the result in Fig. 8C, where both 

aWMTI branches display the expected negative correlation between dispersion and 

diffusivity. This behavior, however, is still most pronounced for Branch 1 as in Fig. 7.

Although our analysis cannot resolve the debate over the correct branch, our analysis does 

fall in line with the literature in that it mostly favors the conventionally chosen Branch 1. 

However, as pointed out above our results do contain some ambiguities in agreement with 

recent developments and observations either favoring Branch 2 (38,59) or even suggesting 

Da ≈ De,|| in rat SC in vivo (58). It should also be pointed out that our results - both in our 

analysis as well as in our simulations - may be determined by the data foundation, i.e. that 

we are bound to obtain faulty Branch 2 behavior due to the manner in which our data is 

acquired (essentially forcing all optimizations down one of the ‘pipes’ described in (32)). 

Higher b.-value acquisitions and advanced analysis frameworks as the one proposed in (38) 

may resolve the ambiguity and will likely aid in optimizing experimental procedures. We 

note, that a data set similar to the human brain data sets used here is publicly available for 
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those who wish to use a similar data foundation to compare our results to results from other 

analysis methods (60). Data sharing may be valuable in further investigation of the branch 

behavior as both data acquisition details and analysis scheme may affect which branch yields 

physically plausible estimates (38). We note, that in our analysis the branch estimates also 

seem to respond differently to the reduced data amount in faWMTI indicating different noise 

sensitivity in the two branches. Besides advances in analysis, experiments to resolve the 

duality problem may be possible, e.g. by investigation of the time dependence of parameters 

in both branches, or by direct experimental observation. In (61), the apparent diffusivity of 

water was mapped in the soma and initial segment of the axon in intact neuron, in situ. Such 

measurements using cellular level MR microscopy (61–65) may aid in resolving this 

modeling ambiguity by providing estimates of diffusivities in specific tissue compartments. 

So far, only fixed tissue has been examined in this manner but future experiments may be 

possible where the perfused acute brain slice model can be employed in a microscopy setup 

as in (66).

Caution is needed when comparing results between such different systems as employed 

here, and with somewhat varying experimental procedures. Our human data was acquired 

with CSF suppression as recommended in (40), but this was not employed in the remaining 

acquisitions. A post-hoc analysis of a human data set acquired without the inversion 

recovery preparation showed the same estimate behavior between branches (data not shown) 

indicating that CSF suppression does not affect the WMTI estimates much. Similarly, the 

overall branch behavior was the same in an analysis omitting the preprocessing steps 

employed here. Such details therefore do not seem to be responsible for the observed branch 

results. Other differences between data sets include biophysical differences between the 

fixed and in vivo state (as mentioned above), sequence details, and experimental field 

strength (affecting relaxation properties which may vary between compartments (67)). Since 

the echo times employed in the acquisitions are also very different (particularly between the 

preclinical data and the human data) compartmental differences in transverse relaxation may 

also contribute to differences observed between the systems. Most likely, the primary 

difference however, lies in the applied diffusion timings where for the human data, the 

diffusion time of approximately 50 ms is long enough to ensure that the Gaussian fixed-

point asymptote is reached (i.e. no compartmental kurtosis survives at these times), as is 

assumed in the WMTI framework. However, in the rat SC and in vivo rat brain, diffusion 

times are shorter and the tortuosity regime may not be fully reached, potentially causing a 

mix of contributions to overall kurtosis (different compartmental diffusivities and kurtosis) 

to be captured in the measurements. The diffusion time dependence of the DW signal was 

investigated in rat cortex in (68). Here apparent kurtosis was seen to sharply increase from 

the lowest diffusion times of a few ms up to approximately 10 ms where it peaked and 

showed a slight decrease (from 0.60±0.05 to 0.51±0.05, values read from figure in (68)) with 

increasing diffusion time (measured up to 30 ms). Their analysis also showed a negligible 

diffusivity variation in this time range. Assuming that intra-cellular kurtosis had vanished at 

the longest diffusion time we can estimate that the intracompartmental kurtosis contributes 

roughly 15% of the peak kurtosis observed at 10 ms. Although these considerations stem 

from observations in gray matter, our rat SC data (Δ = 10 ms) and rat brain data (Δ = 14 ms) 

may be somewhat similarly affected, particularly the SC data as it was acquired under 
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conditions where diffusion is slower (fixed tissue at room temperature) than in vivo. More 

experiments are needed to elucidate these matters in WM. Since the data acquisition details 

are the same in our comparison of WMTI, aWMTI and faWMTI the results of the main 

topic of this study - characterization of WMTI based on axially symmetric DKI - are 

unaffected. Validation and correct estimation and interpretation of the biophysical 

parameters are, however, highly important problems, as are the effects of time-dependence. 

With the faWMTI method, acquisition of data sets spanning a range of diffusion times 

becomes more experimentally feasible than with previous approaches. Investigations of the 

diffusion time dependence of WMTI parameters are ongoing in our group.

In addition to WMTI other novel WM markers may be of value. One example is the kurtosis 

fractional anisotropy (KFA) (29,69), which has been shown to offer WM contrast where FA 

does not (39,70). Post-hoc analysis (data not shown) shows that estimation of KFA is 

feasible with axisymmetric DKI, but the agreement is best for high SNR data such as the rat 

SC data. In human brain, KFA estimated with axisymmetric DKI correlates strongly (>0.9) 

with KFA from conventional DKI but a marked loss of contrast in KFA from axisymmetric 

DKI hints that information is lost by imposing axial symmetry on the tensors. The KFA 

analysis also shows that, unlike the central DKI and WMTI parameters, the 1-9-9 protocol is 

not adequate for estimation of KFA in whole brain where KFA contrast further deteriorates. 

This is in agreement with the results in (39), where a rapidly obtainable KFA proxy based on 

the 1-9-9 protocol was investigated, but found unfeasible due to high SNR requirements.

Conclusion

We presented and evaluated WMTI based on a simplification of the DKI signal expression 

obtained by imposing axial symmetry on both tensors D and W and an analytical 

framework. The performance of this strategy and the effect of the imposed tensor 

symmetries on WMTI parameter estimation in non-axisymmetric systems was evaluated 

using numerical simulations. In general, the proposed approaches display improved or 

similar performance over conventional WMTI estimates when compared to simulation 

ground truth values. Correlations were then investigated between WMTI and axisymmetric 

WMTI estimates based on large data sets (aWMTI) and sparse data sets obtained with the 

1-9-9 protocol for fast kurtosis estimation (faWMTI). In the analysis of experimental data 

from fixed rat SC and human brain, very good agreement was seen between WMTI and 

aWMTI parameter estimates in most cases. Reducing the data foundation to a 1-9-9 

acquisition caused the correlations to decrease, but strong correlations between aWMTI and 

faWMTI persisted for all of the parameters - importantly also for parameters that have 

shown potential as WM markers in validation studies. Lastly, we presented in vivo faWMTI 

in rat brain with isotropic resolution of 300 μm, demonstrating the preclinical potential of 

the method. We provided an overview of parameter estimates from both branches of a 

solution ambiguity across all investigated systems. Although a number of potential 

confounds exist, overall, our analysis indicates that the conventionally chosen branch 

(Branch 1 where Da≤De,||) most consistently leads to physically plausible predictions. While 

not conclusive on the matter of appropriate branch choice, our aWMTI/faWMTI methods 

may contribute to the current debate over WMTI parameter estimation by providing a 

technique for efficient data acquisition for investigation of e.g. parameter time dependence 
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and for high resolution validation studies. Furthermore, the proposed faMWTI technique 

based on the fast kurtosis strategy opens interesting clinical possibilities where now most 

DKI techniques can be explored and applied in routine clinical MRI even in very demanding 

workflows.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used

AWF axonal water fraction

aWMTI axial white matter tract integrity

CSF cerebrospinal fluid

DDE Double diffusion encoding

DKI Diffusion kurtosis imaging

DTI Diffusion tensor imaging

DW diffusion weighted

EM electron microscopy

EPI echo planar imaging

EU European Union

faWMTI fast axial white matter tract integrity

KFA kurtosis fractional anisotropy

MK mean kurtosis

MKT mean of the kurtosis tensor

PBS phosphate buffered saline

PFA paraformaldehyde

PGSE pulsed gradient spin echo

RK radial kurtosis
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SC spinal cord

SDE single diffusion encoding

SNR signal to noise ratio

WM white matter

WMTI white matter tract integrity
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Fig. 1. 
Results from numerical simulations comparing performance of WMTI to aWMTI. 

Histograms show relative errors compared to ground truth values for each method. The red 

line marks zero error. Text inside each plot reports median relative error and mid-95% range 

for each method.
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Fig. 2. 
Comparison of parameter estimates from WMTI and aWMTI in rat SC white matter.
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Fig. 3. 
A) Mapping of the average intra-voxel fiber dispersion (in degrees) in the rat SC. The red 

outline shows the WM region analyzed throughout. B) Histogram of the average intra-voxel 

fiber dispersion mapped in panel A.
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Fig. 4. 
Scatterplots comparing WMTI and aWMTI estimates in both branches in whole brain (4401 

WM pixels) of one human subject. On average less than 9% of the data fall outside the 

shown ranges.
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Fig. 5. 
Data example showing estimates of three faWMTI parameters (Branch 1) based on a 1-9-9 

acquisition in live rat brain at an isotropic resolution of 300 μm. Axial and coronal slice 

planes are shown. The parameter values are overlaid on the b=0 images from the 1-9-9 data 

set.
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Fig. 6. 
Histograms of WMTI estimates of De,|| and Da for Branch 1 (top row) and Branch 2 (bottom 

row) in rat SC (column A), human brain (column B). Column C shows faWMTI estimates 

from in vivo rat brain. Columns B and C show data from all subjects/animals. Vertical red 

lines mark the free water diffusivity at the sample temperature.
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Fig. 7. 
Correlation between θC (in degrees) and WMTI estimates of Da and De,|| for both branches 

in rat SC WM. The black line shows a robust fit (function ‘robustfit’ in Matlab) to the data.
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Fig. 8. 
aWMTI branch behavior in rat SC (A), human brain (B). Vertical red lines mark the free 

water diffusivity at the sample temperature. Panel C shows correlations between θC (in 

degrees) and aWMTI estimates of Da and De,|| for both branches in rat SC WM. The black 

line shows a robust fit to the data.
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