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Abstract

Conventional TopN data-dependent acquisition (DDA) LC–MS/MS analysis identifies only a 

limited fraction of all detectable precursors because the ion-sampling rate of contemporary mass 

spectrometers is insufficient to target each precursor in a complex sample. TopN DDA 

preferentially targets high-abundance precursors with limited sampling of low-abundance 

precursors and repeated analyses only marginally improve sample coverage due to redundant 

precursor sampling. In this work, advanced precursor ion selection algorithms were developed and 

applied in the bottom-up analysis of HeLa cell lysate to overcome the above deficiencies. 

Precursors fragmented in previous runs were efficiently excluded using an automatically aligned 

exclusion list, which reduced overlap of identified peptides to ∼10% between replicates. Exclusion 

of previously fragmented high-abundance peptides allowed deeper probing of the HeLa proteome 

over replicate LC–MS runs, resulting in the identification of 29% more peptides beyond the 

saturation level achievable using conventional TopN DDA. The gain in peptide identifications 

using the developed approach translated to the identification of several hundred low-abundance 

protein groups, which were not detected by conventional TopN DDA. Exclusion of only identified 

peptides compared with the exclusion of all previously fragmented precursors resulted in an 

increase of 1000 (∼10%) additional peptide identifications over four runs, suggesting the potential 
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for further improvement in the depth of proteomic profiling using advanced precursor ion selection 

algorithms.
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Introduction

In a typical precursor-driven “TopN” LC–MS data-dependent acquisition (DDA) bottom-up 

experiment, precursor ions are automatically selected for fragmentation, without a priori 

knowledge, using simple rules. The precursor selection logic includes highest intensity 

priority, intensity thresholds, exclusion of specified m/z ranges (e.g., 445.12 Th, 

polysiloxane), dynamic exclusion,1 and charge-state selection.2 The most important goals of 

precursor selection logic are noise filtering based on charge and intensity of ion species 

(e.g., z > + 1 for tryptic peptides and intensity above a set threshold) and deeper sample 

probing using dynamic exclusion, which prevents redundant selection of a precursor for a set 

period of time after a fragment (MS2) scan has been acquired. Although commonly used, the 

conventional TopN data acquisition strategy is limited by stochastic and biased sampling,3,4 

fragmentation of precursors before and after the chromatographic peak maximum,5 

cofragmentation of near isobaric coeluting precursors resulting in difficult to interpret 

chimeric spectra,6 and redundant selection of the same precursors between replicate analyses 

or within individual LC–MS experiments. In bottom-up proteomic analysis of complex 

samples, these deficiencies lead to the identification of only a minority of detectable 

peptides within individual experiments (typically <30%).7 Additional peptides can be 

identified by repeated analysis, but due to sampling bias toward high-intensity features, 

high-abundance peptides are redundantly identified while low-abundance peptides are 

neglected. Thus, repeated analysis eventually leads to saturation where few new peptides are 

identified by additional technical replicates.8

To circumvent the deficiencies of conventional DDA, multiplexed and data-independent 

acquisition (DIA) strategies have been implemented in the bottom-up proteomic analysis.9 

In multiplexed data acquisition, several precursors are simultaneously selected and 
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fragmented to increase the rate of precursor sampling. In DIA experiments, fragment 

information is acquired for all eluting precursors also by parallel fragmentation of multiple 

precursors. DIA does not require precursor selection but rather uses a systematic scheme for 

scanning the entire m/z range of interest (e.g., MSE,10 SWATH,11,12 MSX-DIA,13 and 

pSMART14). A given peptide is more likely to be identified from a spectrum obtained by 

isolation in a corresponding narrow m/z window (e.g., 2 Th) such as in conventional DDA 

than from a multiplexed DDA or DIA spectrum (e.g., 20–25 Th isolation windows) due to 

challenges in interpreting multiplexed spectra and due to improved selectivity and sensitivity 

(for the individual precursor) in narrow isolation windows. Furthermore, DIA is 

incompatible with isobaric tag quantitation due to intermixing of reporter ion signals when 

multiple precursors are cofragmented.15,16 However, DIA can serve as a means for obtaining 

fragmentation spectra for peptides that would otherwise be neglected by conventional TopN 

analysis, which results in complementary coverage between the two strategies.17

Aside from improving physical separation of analytes by multidimensional and high-

resolution liquid chromatography,18 the depth of DDA-based proteomic profiling can be 

enhanced with strategies for improved precursor selection. The most straightforward 

solution for sampling peptides missed by conventional DDA is targeted analysis (e.g., 

parallel reaction monitoring) to subject peptide-like precursors unidentified in the initial 

LC–MS run(s) to scheduled fragmentation in subsequent replicate analyses. Several versions 

of this solution have been demonstrated to be advantageous over the conventional 

approach.19 One notable example, Post Analysis Data Acquisition (PAnDA), performs an 

automated database search after conventional DDA analysis to generate a list of precursor 

targets that were not identified in the conventional analysis, followed by targeted MS 

analysis to fragment these features.20 The authors reported a 30.9% gain (3849 vs 2941) and 

20.5% gain in peptide and protein identifications, respectively, in the bottom-up analysis of 

C. elegans proteome after six iterations.20 A related strategy implemented on an Orbitrap 

Elite mass spectrometer combined targeted and untargeted analysis by fragmenting preset 

peptides when they were detected and performing conventional Top 15 DDA simultaneously 

to identify other peptides in the sample in an untargeted manner.21 Although effective, the 

targeted strategy is dependent on the reproducible appearance of the precursors at the same 
retention time between runs. This is, unfortunately, not always the case for low-intensity 

peptides in complex mixtures, where ion suppression from high-abundance species and 

chromatographic variability can mask the precursor in a somewhat stochastic manner.22 If a 

peptide is not detected in the initial survey, it will not be targeted, and if the elution time of 

the peptide changes during targeted analysis, it will likely not be detected.

An alternative to targeted analysis for increasing protein coverage in shotgun proteomics is 

scheduled exclusion of m/z ranges corresponding to previously identified peptides for set 

retention time intervals in previous gradient runs. Accurate Mass Exclusion-based DDA 

(AMEx), has been reported to increase the number of identified peptides by 26% (4490 vs 

3564) over conventional DDA by iteratively excluding peptides, which were identified in 

previous LC–MS/MS runs (six iterations).23 However, the inability to adjust for retention 

time shifts and the lack of on-the-fly deconvolution algorithms for both the charge and 

isotopic states of precursor ions have hampered the benefits of conventional interexperiment 

exclusion (enabled through Xcalibur) in our hands. It is possible to extend the control of 
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LTQ Orbitrap-based mass spectrometers (Thermo Fisher Scientific) beyond the standard 

functionality allotted by Xcalibur through LTQ COM Object, which communicates with the 

instrument's low-level data acquisition software. A previous version of COM Object, 

instrument OCX, has been implemented by MaxQuant Real-Time, which has allowed for the 

identification of peptides and SILAC pairs on-the-fly.24 In the current paper, the 

implementation of COM Object, Smart MS2 (Spectroglyph, Kennewick, WA), creates a user 

interface software that customizes the control of LTQ Orbitrap-based mass spectrometers 

and expands on the iterative precursor exclusion strategy implemented in AMEx.23 Several 

additional algorithms were developed and implemented through Smart MS2 to improve the 

efficacy of precursor exclusion: noise filtering based on persistent precursor detection, 

deconvolution of peptide precursors in multiple charge and isotopic states, an indexed 

dynamically aligned exclusion list, dynamic exclusion extended for the entire precursor 

elution profile, a percent chimeric intensity (PCI) filter,6 and an integrated postacquisition 

database search that generates an exclusion list of only identified peptides. The application 

of the developed algorithms results in deeper probing of the HeLa proteome than possible 

with the conventional DDA strategy. The algorithms were tested on an LTQ Orbitrap XL as 

a proof-of-concept, and similar strategies can benefit the performance of more advanced and 

faster duty cycle mass spectrometry platforms.

Materials and Methods

Materials

HPLC-grade water, acetonitrile, formic acid, and Pierce HeLa tryptic digest standard were 

acquired from Thermo Fisher Scientific (San Jose, CA). The column was prepared in-house 

by polymerizing a frit from a 3:1 mixture of Kasil 1 (29.1% potassium silicate solution) 

from PQ Corporation (Valley Forge, PA) and formamide from Sigma-Aldrich (St. Louis, 

MO) inside a 75 μm internal diameter, 360 μm outer diameter polyimide-coated fused silica 

capillary from Polymicro/Molex (Phoenix, AZ). The frit was cut to ∼0.2 mm, and the end 

was polished. The fritted capillary was packed with Magic C18AQ, 3 μm diameter, 200 Å 

pore size beads from Michrom Bioresources (Auburn, CA) to 30 cm of stationary phase. 

Liquid chromatography (LC) separation was performed on an Ultimate 3500 system from 

Thermo Fisher Scientific, and mass spectrometry data were acquired on an LTQ Orbitrap 

XL ETD (Tune Plus version 2.5.5) from Thermo Fisher Scientific. The sample was 

electrosprayed using a distal-coated 20 μm internal diameter, 360 μm outer diameter tip with 

a 10 μm opening from New Objective (Woburn, MA) connected directly to the column head 

using a Teflon sleeve.

Liquid Chromatography

Reversed-phase liquid chromatography was carried out using mobile phase A: 0.1% formic 

acid in water and mobile phase B: 0.1% formic acid in acetonitrile. Twenty μg of HeLa 

digest was dissolved in 100 μL of 2% acetonitrile, 0.1% formic acid in water. One μL (200 

ng HeLa lysate) was injected directly onto the analytical column using 2% B at 250 nL/min. 

The sample was loaded and desalted over 10 min in 2% B and separated at 250 nL/min flow 

rate using the following linear gradient: 2– 37% B over 120 min, 37–95% B over 10 min, 

95% B hold for 9 min, 95% to 2% B in 1 min, 2% B hold for 10 min.
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Mass Spectrometry

Data were acquired on an LTQ Orbitrap XL mass spectrometer using matching parameters 

for conventional analysis enabled through Xcalibur (v. 2.0.7) and intelligent, user-defined 

DDA analysis enabled through Smart MS2 (Spectroglyph, Kennewick, WA). Full precursor 

scans were acquired over a 400–1700 Th range in the Orbitrap at 60 000 resolution (at 400 

Th), with the AGC set to 1 000 000 and 500 ms maximum ion accumulation time. The 10 

highest intensity eligible precursors (Top 10) were serially selected in 2 Th wide isolation 

windows centered on the monoisotopic peak and activated for a maximum of 30 ms by CID 

at 35% normalized energy. In fragment ion accumulation, the AGC target was set to 40 000, 

the maximum injection time was 100 ms, and the ion trap was scanned at 0.5 Da resolution. 

Noise filtering and exclusion of previously (during the same LC–MS run) fragmented 

precursors were accomplished differently between the two approaches. In the conventional 

analysis, ions with a +1 charge state and lower than 500 intensity units were considered 

chemical noise, and precursors were excluded for 60 s after fragmentation to prevent 

redundant sampling. In Smart MS2 analysis, precursors with a charge of +2 or higher and at 

least two isotopic peaks detected in at least three consecutive precursor scans were 

considered fragmentation candidates (not noise). In Smart MS2 analysis, previously 

fragmented precursors in all isotope and charge states were excluded for a minimum of 30 s 

with the exclusion period extended until the end of the precursor's elution profile.

Exclusion of Identified Peptides

Completion of data acquisition for each LC–MS run triggered execution of an in-house 

developed Python script based on the Pyteomics library25 to perform an X!Tandem26 

(version 2013.09.01.1 Sledgehammer) search against the UniProt human database described 

below, appended with an equal number of reverse decoy sequences. Carbamidomethylation 

of cysteine was set as a static modification, and up to one tryptic missed cleavage was 

allowed. The error tolerances were set at 10 ppm for the precursor mass (with the 

monoisotopic peak mismatch enabled) and 0.4 Da fragment mass error tolerance. The scored 

spectral matches were filtered to 1% FDR, and the accepted precursors remained in the 

Smart MS2 exclusion database. The precursors that were not identified were removed from 

the exclusion list, which made them eligible for refragmentation in subsequent runs. Smart 

MS2 data acquisition was initiated 8 min after injection and terminated at 140 min (before 

column washing and equilibrating) to allow sufficient time to complete the database search 

and exclusion list generation before the subsequent replicate.

Data Analysis

The acquired data was analyzed in Proteome Discoverer 1.4 (Thermo Fisher Scientific) with 

Sequest HT27 peptide spectral match scoring and Percolator28 validation and filtering (q < 

0.01), and with MaxQuant (v. 1.5.2.8) with 1% FDR filtering.29 Both searches were 

conducted against a human UniProt database containing canonical proteins and known 

variants from March 2014 appended with 47 common contaminants (88 894 total entries). 

The maximum precursor mass error was set to 10 ppm, and the maximum fragment mass 

error was set to 0.6 Da. Carbamidomethylation of cysteine was set as a static modification, 

and oxidation of methionine and deamidation of glutamine and asparagine were set as 
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dynamic modifications. Up to two missed tryptic cleavages were allowed. Evaluation of 

overlapping identifications and cumulative identifications were carried out in Excel.

Results and Discussion

Precursor Selection Algorithms Applied through Smart MS2

The Smart MS2 flow-control process is diagrammed in Figure 1. Elution profiles of all 

fragmentation candidates were monitored in real-time by Smart MS2 software. Once 

fragmented, precursors in all charge and isotopic states were excluded for a user-defined 

minimum exclusion period (30 s in the current experiment). If the software determined that 

an elution profile of a previously fragmented precursor ion had extended past the minimum 

exclusion period, the exclusion time of that precursor ion was then automatically extended 

until elution of the precursor was complete. Nonredundant fragmentation of precursors 

between replicate experiments was accomplished by an indexed exclusion list where 

retention times of precursor ions were dynamically aligned during data acquisition based on 

the retention times of automatically selected anchor peptides using a 2 min retention time 

adjustment window. Anchor peptides were automatically identified by Smart MS2 from the 

initial experiment in each series by selecting the highest intensity ion species in each 5 min 

long interval and identifying their chromatographic peak apex positions. The percent 

chimeric intensity filter (PCI)6 was set to 500%, meaning that if a second precursor appeared 

within the isolation window of an excluded precursor, this second precursor would be 

considered an eligible candidate for MS2 only if its intensity is at least 5 times greater than 

the intensity of the excluded precursor. This threshold was selected based on the definition 

of chimeric spectra used in Houle et al., which stated that the spectrum match score is 

significantly reduced at a PCI ≥ 20%. Because we are interested in the “contaminant” 

precursor, the inverse value is used.6

Figure 2A presents an example of a precursor being recovered despite coelution with a near-

isobaric (i.e., within the same 2 Th isolation window) previously fragmented precursor using 

the PCI filter. Conventional dynamic exclusion could mask the presence of near-isobaric 

coeluting species by acquiring one spectrum when one species may be underrepresented and 

then excluding both precursors until both have eluted. Compounding dynamic exclusion 

with the exclusion of precursors from previous experiments can quickly deplete the allowed 

sampling space (a situation where most m/z windows are ineligible for precursor ion 

selection for most of the LC- gradient to prevent redundant fragmentation of previously 

selected precursors). The implemented PCI filter recovered sampling of 300–900 precursors 

in each run. While this translates to <10% of the total acquired MS2 scans, without the PCI 

filter the number of acquired MS2 spectra is significantly decreased at the third iteration 

(data not shown). This decrease is delayed until the fourth iteration by application of the PCI 

filter.

The Smart MS2 noise filtering strategy permits the selection of very low-abundance features, 

while the conventional intensity threshold approach does not consider features below the 

intensity threshold. The filter implemented in Smart MS2 relies on the persistent appearance 

of the isotopic envelope of the precursor in at least three sequential precursor scans 

independent of intensity. After detection in two consecutive scans, the precursor is 
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considered a candidate and may be selected for fragmentation in the third scan if it is 

present. At least two isotopic peaks (i.e., 12C and 13C peaks) were considered an isotopic 

envelope because for many low-abundance features the M+2 peak (i.e., Two 13C) was not 

consistently detectable. This approach allowed the mass spectrometer to sample precursors 

that would be considered noise by a conventional threshold filter and, in some cases, acquire 

informative MS2 spectra.

Smart MS2 real-time precursor ion charge deconvolution treats all m/z peaks derived from 

the same peptide species as one entity, so that higher intensity ion species, for example, [M 

+2H]2+, would be fragmented, while lower intensity species (e.g., [M+3H]3+ and [M

+4H]4+) would be excluded. In addition, extended dynamic exclusion prevents redundant 

fragmentation of a precursor for a minimum exclusion duration that is reset if the precursor 

is persistently detected after the minimum set duration. This is in contrast with conventional 

DDA, where a set exclusion duration time, which is the same for every precursor, is the only 

means to control redundant fragmentation of precursor ions.

The most important feature of Smart MS2 is the automatic alignment of the indexed 

exclusion list during data acquisition using a set of high-intensity anchor peptides 

automatically selected from the first run. The database of precursors to be excluded is 

dynamically adjusted by the difference between the reference and observed retention times 

of the anchor peptide chromatographic apexes. Figure 2B demonstrates the agreement in the 

on-the-fly alignment of the exclusion list performed by Smart MS2 with the pose-cluster 

alignment30 implemented in OpenMS31 of the reference LC–MS run (the first iteration of 

exclusion series) and each subsequent LC–MS iteration in the series. While the two 

alignment strategies are inherently different, the general agreement indicates that the 

adjustments made by Smart MS2 adequately address the retention time shifts between 

replicate experiments.

The postacquisition database analysis, triggered by Smart MS2 at the end of each LC–MS 

experiment, executed an X!Tandem database search. The peptides identified at FDR < 1% 

remained in the exclusion list, while the unidentified precursors were removed from the 

exclusion list and were made eligible for fragmentation in subsequent runs. A relatively 

short time interval during column washing and equilibration was allocated for the database 

search so X!Tandem was used because it is a fast and readily available open-access search 

algorithm. To further increase the benefits of the postacquisition database search and 

exclusion of only identified peptides, more comprehensive search strategies can be 

implemented in the future.

Performance Metrics of Smart MS2 and Conventional DDA

Three DDA strategies were compared: (1) conventional Xcalibur driven Top 10 approach, to 

be referred as Strategy 1, (2) Smart MS2-driven analysis in which all previously fragmented 

precursors were iteratively excluded in subsequent replicate LC–MS/MS analyses, to be 

referred as Strategy 2, and (3) Smart MS2-driven analysis, in which only identified peptides 

(FDR < 1%) were iteratively excluded in subsequent replicates, to be referred as Strategy 3. 

The differences in precursor selection algorithms implemented in the three data acquisition 

strategies are summarized in Table 1. Strategy 1 was evaluated using eight LC–MS/MS runs 
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to approximate the saturation of analysis (the maximum number of peptide species identified 

using the analytical platform) in duplicate using two batches of HeLa lysate (Replicate 1 and 

Replicate 2). Three series of four iterations were used to evaluate the performance of 

Strategy 2. In a Strategy 2 series, the precursors fragmented during the first iteration (i.e., the 

initial analysis of the sample) were excluded from selection in the second iteration (i.e., 

second replicate LC–MS/MS analysis of the same sample), the precursors fragmented in the 

first and second iteration were excluded in the third iteration, and all previously fragmented 

precursors were excluded in the fourth iteration. Three Strategy 2 series were benchmarked 

against the extrapolated Strategy 1 saturation. Finally, Strategies 2 and 3 were compared 

using the same four-iteration series experimental design, in triplicate.

Table 2 presents the performance metrics of the tested data acquisition strategies. It is 

possible to schedule exclusion of specified m/z ranges in Xcalibur, but our attempt to 

implement exclusion of all identified peptides between two replicate analyses of complex 

proteomic samples found no benefit in this strategy compared with simply performing two 

replicate analyses (Supplementary Figure 1). To be effective, exclusion of previously 

fragmented or identified precursors requires exclusion of all charge and isotopic states and 

highly reproducible chromatography (or sufficiently wide retention time exclusion windows) 

as with AMEx23 or on-the-fly exclusion list alignment as in our approach. Thus, exclusion 

was not implemented in the two sets of experiments evaluating the saturation of Strategy 1 

(conventional DDA). The identification results of Strategy 1 improved in the second 

replicate, as indicated by an increase in MS2 scans, peptide spectral matches, and peptide 

identifications, which can possibly be attributed to differences in sample batches or 

experimental variables. However, even with the improved performance, the cumulative 

peptide identification increased by <4% over eight runs. Smart MS2 performance in the first 

exclusion iteration (no interexperiment precursor exclusion is applied) acquired fewer 

precursor (MS1) and MS2 scans than the conventional analysis due to (i) the inability to 

perform parallel MS1 and MS2 experiments with Thermo's COM Object and (ii) latency in 

data transfer between the external and internal PCs controlling the mass spectrometer. 

Evaluation of MaxQuant Real-Time has also observed these latency issues.24 However, the 

ratio of acquired MS2 scans to precursor scans was higher in the Smart MS2 experiments: 

6.3, 7.0, and 7.2 (Strategy 2 replicates 1 and 3 and Strategy 3, respectively) compared with 

4.7 and 3.4 in Strategy 1 (see Table 2). This suggests that the Smart MS2 data acquisition 

approach was more efficient, but somewhat slower in acquiring MS2 scans.

Effects of Iterative Exclusion (Strategy 2) on Precursor Selection

Iterative exclusion implemented in Smart MS2 effectively prevented redundant 

fragmentation of precursors between technical replicates. Figure 3A demonstrates the 

overlap in peptides identified by Sequest HT with Percolator rescoring and filtering (q < 

0.01, equivalent to FDR < 1%) between three runs acquired using Strategy 1 (left) and 

Strategy 2 (right). The typical Strategy 1 overlap in peptide identifications between runs of 

roughly 70% is decreased to 10–20% when iterative exclusion is applied (Table 3). Iterative 

exclusion also affects the intensity distribution of features sampled. Figure 3B was generated 

through label-free quantitative analysis (MaxQuant), which (1) identified all peptide-like 

LC–MS features (at least three peaks in the isotopic envelope, and charge +2 to +5), (2) 
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determined which features were fragmented, (3) identified peptides using the Andromeda 

search engine, and (4) filtered to FDR < 1%. The peptide-like features were sorted by 

intensity into 20 5-percentile bins, and the percentage of sampled and identified peptide-like 

features in each bin was determined. The orange line represents the combined feature 

identifications from all eight Strategy 1 runs with the expected high-intensity bias observed 

for conventional DDA in other studies.7 The Strategy 2 iterations, presented as an average of 

three experiments, show a reduction in sampling bias with each iteration of precursor 

exclusion. The first iteration resembles the Strategy 1 distribution, the second iteration 

shows a shift toward sampling of medium intensity features, and the third and fourth 

iterations show evenly distributed sampling across the intensity range. As expected, the ratio 

of identified to sampled features correlated with precursor ion intensity in both Strategies 1 

and 2 (not shown) because low-intensity precursor ion signals are less likely to produce an 

identifiable fragmentation spectrum. Another caveat of iterative exclusion is the eventual 

depletion of the eligible MS2 candidate pool, as manifested in a decrease in the number of 

acquired MS2 scans and identified unique peptides in the third and fourth iterations (Table 

2).

Differences in Identifications between Strategies 1 and 2

Figure 4A presents the cumulative peptide identifications using Strategy 1 (Replicates 1 

(dark blue) and 2 (purple)) and Strategy 2. Extrapolation of experimental data (dotted lines) 

shows that Strategy 1 would reach the saturation level of approximately 12 500 peptides 

(dotted light-blue line) after 12+ replicates. After four iterations of Strategy 2, 84.4 ± 2.2% 

of all peptides identified at the approximate saturation level are identified. When peptide 

identifications from two Strategy 2 series are combined, the saturation level is exceeded by 

13%. When results from three Strategy 2 series are combined, the saturation is exceeded by 

29% (16 156 total peptide identifications). There is a noticeable decrease in the gain of new 

identifications in the fourth iteration of Strategy 2 in comparison with preceding iterations. 

While the fourth iteration provides a substantial number of novel peptide identifications, if 

the identifications from only the first three iterations in each Strategy 2 series are combined, 

then a total of 15 168 peptides (21% above saturation) are identified over nine runs (not 

shown), providing a quicker alternative for in-depth analysis. Figure 4B presents the overlap 

between the cumulative protein group identifications using Sequest HT and Percolator (q < 

0.01, equivalent to FDR < 1%) in each of the Strategy 2 series (top left Venn diagram) and 

the overlap in protein identifications between Strategy 1 and Strategy 2 (bottom left Venn 

diagram). The same Venn diagrams are presented in the right panel when a minimum of two 

peptides per protein group filter are applied in addition to q < 0.01 for more stringent protein 

identifications. Without the two-peptide filter, over 1000 more protein groups are identified 

with Strategy 2. However, this advantage diminishes to several hundred when the filter is 

included. Many single-peptide protein groups were identified with high confidence in 

multiple Strategy 2 series, as reflected by the drop in overlapped protein group 

identifications when the two-peptide filter is applied, which improves confidence in the 

identifications despite reliance on a single peptide. The same data were also processed using 

MaxQuant (FDR < 1%). MaxQuant identified a total of 2963 protein groups with 304 

protein groups unique to Strategy 2 and 23 protein groups unique to Strategy 1. The majority 

of proteins unique to either strategy are within the lowest 20 intensity percentile (data not 

Kreimer et al. Page 9

J Proteome Res. Author manuscript; available in PMC 2017 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shown). Depending on the stringency of data analysis (minimum of either 2 or 1 peptide per 

protein group, q < 0.01), Strategy 2 identified between 300 and 1000 additional low-

abundance protein groups undetected by Strategy 1, indicating that the dynamic range of 

analysis is increased with more efficient data acquisition. The low-abundance protein 

identifications vary between the Strategy 2 series, suggesting that the ability to detect these 

low-abundance species is stochastic even with efficient precursor sampling, so the flexibility 

of an untargeted approach (i.e., Strategies 2 and 3) may be better for discovering these 

species than the targeted strategies described in the Introduction (e.g., PAnDA).

Iterative Exclusion of Identified Precursors, Strategy 3 versus All Fragmented Precursors, 
Strategy 2

One of the major deficiencies of Strategy 2, presented in Table 2, is a drop in MS2 scan 

acquisition in the third and fourth iterations caused by the depletion of the candidate pool. 

Many ion precursors already fragmented in the initial LC–MS iteration(s) that were 

therefore excluded from fragmentation in subsequent iterations did not result in informative 

MS2 spectra and hence successful peptide identifications. In Strategy 3, to address this issue, 

an automated database search is executed at the completion of each LC–MS run using an in-

house developed Python script to exclude only precursors identified by X!Tandem (FDR < 

1%). Strategy 3 shows uniform numbers of MS2 scans acquired across all four LC–MS 

iterations and allows a second opportunity to acquire better quality spectra for previously 

fragmented but not identified precursors. Presented in Figure 5A is a significant gain (p < 

0.05) of 1000 peptides (∼10%) over four exclusion iterations in Strategy 3 compared with 

Strategy 2. The performance of Strategy 3 can be further improved with a more 

comprehensive automated search. As presented in Table 3, the overlap in identified peptides 

between the first and second iterations is over 30% in Strategy 3 (compared with ∼10% with 

Strategy 2). This is due to redundant fragmentation of peptides that were not identified by 

the postacquisition X!Tandem search but are identified by Sequest HT and Percolator 

(Figure 5B). While a more thorough postacquisition database search would improve 

performance by reducing the overlap between iterations to the ∼10% level observed with 

Strategy 2, we were limited by the system resources of the instrument-controlling PC and 

the allotted search time (duration of column cleaning and equilibration). Thus, X!Tandem 

was used without the benefits of postsearch validation and rescoring with Percolator. 

However, even under suboptimal conditions Strategy 3 is superior to Strategy 2 and 

demonstrates even greater potential after addressing the above-mentioned limitations.

Conclusions

This work has demonstrated that improved precursor ion selection increases the number of 

identified peptides in DDA analysis, which results in the identification of low-abundance 

proteins, previously undetectable with the conventional approach (TopN DDA, Strategy 1). 

The conventional strategy reaches saturation due to an inefficient sampling of medium and 

low-abundance species in proteome-complexity samples, while the application of efficient 

data acquisition provides deeper proteomic profiling. Specifically, to increase the efficiency 

of iterative DDA analyses, we have developed combined real-time tracking and intelligent 

handling of all elution profiles of isotopically and charge-state deconvolved precursor ions 
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signals. The proposed strategy includes a dynamic (signal-to-noise and persistent precursor 

detection based) exclusion list of elution profiles of all precursor ion candidates, alignment 

of retention time domains of different LC runs, nonredundant triggering of MS2 events using 

the most abundant charge states of the peptides of interest, use of a percent chimeric 

intensity (PCI) filter, and automated postdata acquisition database searching performed 

immediately after completion of the run (integrated into the Smart MS2 workflow to exclude 

identified precursors from the following analyses). Without the postacquisition database 

search, 29% (16 156 vs ∼12 500, FDR < 1%) more peptides were identified above the 

saturation level of conventional data acquisition after 12 runs. The postacquisition search 

improved the performance of iterative exclusion by an average gain of 1,000 peptides 

(∼10%) over four exclusion iterations. While a direct comparison is beyond the scope of this 

publication, these improvements in identifications are comparable to those reported for 

AMEx and PAnDA (26 and 31% peptide identification gains, respectively, over six 

iterations).

Recent generations of mass spectrometers are certainly capable of faster precursor sampling 

rates than an LTQ Orbitrap XL. However, these sampling rates are still insufficient for 

fragmentation of every eluting precursor in complex samples. Furthermore, newer mass 

spectrometers also tend to offer higher sensitivity, which translates to more detectable 

candidates that require even faster sampling rates for comprehensive sampling. As such, 

even the most advanced mass spectrometers would benefit from improved precursor ion 

selection strategies such as those presented in this proof-of-concept study. Alternatively, 

DIA allows comprehensive sampling, but identification of low-abundance precursors from 

multiplexed spectra can be problematic. While numerous software packages for interpreting 

DIA data are now available,32 the fundamental obstacle of accumulating sufficient signal for 

fragments from low-intensity precursors cofragmented with high-intensity precursors is still 

a limitation. Comparisons of DDA and DIA analysis demonstrated that the two approaches 

identify complementary peptide populations.14,33 Furthermore, DIA data analysis by 

targeted data extraction (peptide-centric analysis) requires a comprehensive spectral library 

that is typically obtained through exhaustive DDA analysis of the sample of interest. The 

described approach can obtain spectra for peptides beyond the saturation point of 

conventional DDA in LC–MS proteomic profiling with replicate injections, allowing the 

opportunity for detection of these low-abundance species in DIA analysis. The depth of the 

proteomic coverage is commonly increased by higher efficiency separation of analytes using 

multidimensional and high-resolution liquid chromatography. The efficient exclusion of 

previously fragmented precursors allows an additional dimension for pseudoseparation by 

manipulating the precursor ion sampling in MS data acquisition. These developed precursor 

ion selection and exclusion algorithms will be instrumental in any experiments where liquid-

phase separation (e.g., liquid chromatography, capillary electrophoresis, capillary 

isoelectrofocusing, etc.) is coupled to mass spectrometry to enable deep molecular profiling 

(i.e., proteomic, lipidomic, metabolomics, etc.) of complex biological samples and 

especially limited samples, where all steps toward increasing the coverage of profiling are 

important.34

The performance of the developed algorithms was noticeably decreased by latency in data 

transfer between the data acquisition PC and the on-board computer. Additionally, the 
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postacquisition database search was limited by the PC system resources. We expect to see 

even greater advantages in sample analysis by the developed precursor ion selection 

algorithms with improvements in computational hardware. In summary, better precursor 

selection can provide a gain in depth of proteomic profiling by reducing the inefficiencies of 

conventional precursor sampling. Similar gains can be expected in the analysis of post-

translational modifications when modified peptides are adequately enriched. It should be 

noted that quantitation by spectral counting is not possible when high- abundance precursor 

bias is reduced by iterative exclusion. However, we anticipate that quantitation by precursor 

peak integration will be further improved by identification of additional peptides per protein. 

The DDA algorithms reported here were implemented in the Smart MS2 platform, which 

was developed in collaboration with and can be licensed from Spectroglyph LLC. The 

required LTQ COM Object instrument control library can be licensed from Thermo Fisher 

Scientific. The Python script enabling postacquisition database search is available upon 

request from the Barnett Institute.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Smart MS2 process workflow. The flow control diagram of the Smart MS2 algorithm (left 

side) and programmatic interfacing to Thermo's COM Object (right side). The latter 

incorporates interface “ILTQInstCtrl”, which controls the instrument and dispatch interface 

“_ILTQInstCtrlEvents” used to receive instrument status updates. Upon receiving an event 

from “_ILTQInstCtrlEvents”, Smart MS2 adds a list of m/z and intensity data from the latest 

scan to the previously generated dynamic list, performs real-time isotope deconvolution, and 

then updates the dynamic list of elution profiles, which also incorporates information on the 

retention time and charge states of the deconvolved features. A feature represented by, at 

least, C12 and C13 isotopes is considered to be an elution profile (non-noise precursor) if 

observed in, at least, two consecutive MS1 scans at a mass accuracy of 10 ppm. The 

algorithm performs real-time retention domain alignment using higher intensity anchor 

peptides and then determines whether an elution profile is off the exclusion list, and the 

profile intensity matches user-defined criteria (e.g., top 10, bottom 10, middle 10–20, etc.) 

for collisional activation. If the above conditions are met, the profile of interest is added to 

the MS2 attention list to be passed over the instrument through the “ILTQInstCtrl” interface. 

Redundant elution profiles of the same species represented by lower intensity charge states 

are excluded. Upon completion of the MS2 event, the profile is added to the dynamic 

exclusion list (which can be expanded with profiles from previous experiments) and then 

monitored real-time during the experiment. Once eluted off the column, the profile is 

dynamically removed from the exclusion list. If an elution profile, which is not on the 

exclusion list, overlaps with nearly isobaric excluded profile in the retention time domain 
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and conforms to percent chimeric intensity (PCI) filter and user-defined criteria for 

precursor ion fragmentation (e.g., top 10, etc.), the elution profile would be chosen for MS2 

fragmentations. In summary, Smart MS2 algorithm monitors all elution profiles 

concurrently, dynamically puts them on or removes from the exclusion list, performs real-

time alignment of retention time domains, and conducts MS2 experiments based on user-

defined activation criteria.
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Figure 2. 
Application of PCI candidate recovery and on-the-fly exclusion list adjustment. (A) 

Example of a candidate (YQAVTATLEEK, orange) which would not be eligible for 

fragmentation due to coelution with a candidate that has been previously fragmented 

(ALIGYADNQCK, blue) within the same 2 Th isolation window. However, the precursor is 

fragmented when its intensity surpasses the previously fragmented candidate by the 500% 

PCI threshold. (B) Agreement between Smart MS2 on-the-fly retention time adjustment of 

the indexed exclusion list and pose-clustering alignment relative to the first run in the 

exclusion series. Pose-clustering did not align the earliest and latest regions of the gradient 

due to high variability in elution of the most hydrophilic and hydrophobic peptides.
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Figure 3. 
Effect of iterative exclusion. In conventional analysis (Strategy 1), over 70% of identified 

peptides are redundant between replicates (A, left). In iterative exclusion (Strategy 2), this 

overlap is reduced to 10–30% (A, right). This decrease in redundant fragmentation allows 

the MS instrument to target medium and low-abundance peptides, as shown in panel B, 

where the blue line presents the sampling coverage by Strategy 1 from eight replicate runs 

and the bar graphs represent the iterations of Strategy 2 (average of three runs).
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Figure 4. 
Peptide and protein identification gains with iterative exclusion. (A) Cumulative peptide 

identifications using either Strategy 1 or Strategy 2. Each 4-iteration Strategy 2 series 

identified more peptides than four replicates of Strategy 1. The logarithmic extrapolation of 

Strategy 1 from eight runs estimates the saturation at approximately 12 500 unique peptides 

(light-blue line). Combined results from two Strategy 2 series exceed Strategy 1 saturation 

by ∼1500 unique peptides. Combined results from all three Strategy 2 series show that 

peptide identification does not plateau after over 16 000 peptides identification due to 

sampling and identification of low-intensity peptides. (B) Overlap in protein group 

identifications between Strategy 2 series and the combined identifications between 

Strategies 1 and 2 with single peptide identifications accepted on the left and a 2 peptide 

minimum filter applied on the right.

Kreimer et al. Page 19

J Proteome Res. Author manuscript; available in PMC 2017 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Exclusion of all precursors versus exclusion of identified precursors. Exclusion of identified 

precursors (Strategy 3) identified on average (n = 3) ∼1000 (or 10%) more peptides over 

four iterations than the exclusion of all fragmented candidates (Strategy 2) (A). The 

identification gains were hampered by limitations of the postacquisition search resulting in 

higher redundant peptide identifications between replicates. The majority of peptides 

redundantly identified between the first and second iteration of Strategy 3 were not 

identified in the postacquisition (X!Tandem) search (B).
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Table 1
Precursor Selection Logic Implemented in Each Data Acquisition Strategy

precursor selection logic Strategy 1: 
conventional DDA

Strategy 2: smart MS2 

iterative exclusion of all 
precursors

Strategy 3: smart MS2 iterative 
exclusion of identified peptides

intensity-based precursor selection 10 highest intensity eligible precursors from each MS1 scan are selected for MS2 (top 10)

noise filtration charge and intensity 
threshold

charge and defined elution profile (isotopic envelope and consecutive scan 
appearance)

percent chimeric intensity (PCI) filter N/A precursor becomes an eligible MS2 candidate if PCI filter threshold is 
exceeded

intraexperiment (dynamic) exclusion 60 s exclusion after 
MS2

30 s minimum m/z exclusion extended until end of elution

interexperiment exclusion N/A all precursors fragmented in 
previous experiments

only peptides identified in previous 
experiments

postacquisition database search N/A N/A X!Tandem (1% FDR)
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