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Abstract

We report on a temperature-dependent band gap property of epitaxial MoSe2 ultrathin films. We prepare uniform
MoSe2 films epitaxially grown on graphenized SiC substrates with controlled thicknesses by molecular beam epitaxy.
Spectroscopic ellipsometry measurements upon heating sample in ultra-high vacuum showed temperature-dependent
optical spectra between room temperature to 850 °C. We observed a gradual energy shift of optical band gap depending
on the measurement temperature for different film thicknesses. Fitting with the vibronic model of Huang and Rhys
indicates that the constant thermal expansion accounts for the steady decrease of band gap. We also directly probe both
optical and stoichiometric changes across the decomposition temperature, which should be useful for developing high-
temperature electronic devices and fabrication process with the similar metal chalcogenide films.

Keywords: MoSe2, Temperature-dependent band gap, Thermal stability, Molecular beam epitaxy, Spectroscopic
ellipsometry, Time of flight medium-energy ion-scattering spectroscopy

Background
Two-dimensional layered transition metal dichalcogen-
ides (TMDs) have attracted amplified interests due to
interesting physical behaviors such as direct-indirect
band gap transition, valleytronics, ferroelectric, and
charge-density wave [1–7]. Many semiconducting TMDs
possess direct band gap at the K point in monolayer
(ML), so that the strong excitonic transition [8–17], and
the resulting enhancement of optical behavior for opto-
electronic device development are exhibited [18–25]. Es-
pecially, the direct band gap (1.55 eV) of MoSe2 is close
to the optimal band gap value of single-junction solar
cells and photo-electrochemical devices [26–30]. In
addition, variation of band gap via partial oxidation or
temperature control provides potential applications
involving external control of optical properties in TMDs,
such as optoelectronic devices toward wider light
spectrum [31, 32]. However, modulation of band gap has
been studied so far by monitoring A exciton peaks in 1-
ML MoSe2 below 420 K [26], and high-temperature
stability has not been addressed for any TMD films. This

is partly due to difficulty in preparation of single crystal-
line TMD films with large uniformity.
Growth of TMD film has been rapidly developing to

meet the elevated interests for various ways, such as
chemical vapor deposition (CVD), pulsed laser depos-
ition, and molecular beam epitaxy (MBE) [5, 33–35].
CVD has been most widely utilized for crystalline films,
but it often provides non-uniform films with small crys-
talline grains. The state-of-the-art metal-organic CVD
growth shows uniform films with polycrystalline grains
[36]. On the other hand, MBE has been proved to grow
epitaxial films with uniformity for various kinds of
TMDs. In addition, in situ reflection high-energy elec-
tron diffraction (RHEED) monitoring provides precise
control of film thicknesses.
In this paper, we report on the high-temperature

optical and stoichiometry properties of epitaxial MoSe2
ultrathin films grown by MBE. We analyzed temperature
dependence of the band gap of the MoSe2 ultrathin films
with spectroscopic ellipsometry. We also directly meas-
ure the decomposition process in terms of surface crys-
tallinity and stoichiometry.

Methods
Series of MoSe2 films were epitaxially grown on graphe-
nized SiC substrates in a home-built MBE system with
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base pressures of 1 × 10−10 Torr. We used 6H-SiC single
crystal substrates, supplied by the Crystal Bank at Pusan
National University. We prepared bilayer graphene on
the 6H-SiC substrates by annealing at 1300 °C for
~5 min, following the reported recipe [1]. On the
graphene surface, we grew epitaxial MoSe2 films with
lattice mismatch of ~0.3%. Molybdenum and selenium
were evaporated with e-beam evaporator and effusion
cell, respectively. We deposited the films at growth
temperature of 250 °C with growth rate of 0.1 ML/
min, followed with post-annealing at 600 °C for
30 min [1]. We monitor the film surface with in situ
reflection high-energy electron diffraction (RHEED)
with high voltage of 18 kV.
Film crystallinity was checked with high-resolution

x-ray diffraction (HRXRD, Bruker, D8 Discover). Spec-
troscopic reflection measurement was performed with
two spectroscopic ellipsometries (JA Woollam, V-
VASE), one in atmosphere and the other in a separate
ultra-high vacuum chamber. Stoichiometry was ana-
lyzed by time of flight medium-energy ion-scattering
spectroscopy (TOF-MEIS, KMAC, MEIS-K120) with
He+ ion beam with 100.8 keV. For estimation of sam-
ple thickness, we used bulk density values for SiC
with 3.21 g/cm3 and for MoSe2 with 6.98 g/cm3.

Results and discussion
We fabricated three kinds of epitaxial MoSe2 films with
different thicknesses (1, 2.5, and 16 ML) on graphene/
SiC substrates. In Fig. 1, RHEED images shows epitaxi-
ally grown MoSe2 films. Well-separated straight lines in

Fig. 1a, b indicate electron diffraction from the well-
ordered surface crystallinity. Additional lines with differ-
ent periodicity correspond to the diffraction signal from
the underlying graphene probably due to electron pene-
tration through the ultrathin films, which is consistent
with the previous reports on MBE-grown MoSe2 films
[1]. As the film thickness increases, we found a weaker
RHEED signal along with rounded spots, which implies
in-plane orientation disorder at the surface of the 16-
ML film, as shown in Fig. 1c. Figure 1d shows HRXRD
pattern of the 16-ML film, which shows only c-axis or-
dered peaks, i.e., (00n), except the very sharp peaks orig-
inated from the single crystalline SiC wafer. These c-axis
diffraction peaks indicate that the 16-ML film possesses
periodic layer stacking, even though the top surface may
have in-plane disorders. Therefore, we prepared all three
epitaxial films with high crystallinity, which are ready for
temperature-dependent analysis.
We first obtained room temperature optical spectra of

the 16 ML-thick MoSe2 both in air and in UHV condi-
tion with two distinct ellipsometry spectrometers. As
shown in Fig. 2c, f, those two spectra (solid and dashed
lines) well overlap and show two characteristic peaks
near ~1.5 eV (A) and ~1.7 eV (B). Those two peaks cor-
respond to the two excitonic transitions at the K point
of the band structure [37, 38]. Strong spin-orbit coupling
induces splitting of degenerated valence band maximum
at K point [29, 39–42]. These two exciton peak energies
well compared to the reported exciton energy values,
~1.55 and ~1.75 eV, in the exfoliated bulk [38]. Then, we
show ellipsometry spectra of the 1- and 2.5-ML samples

Fig. 1 a–c RHEED patterns of 1 (a), 2.5 (b), and 16 ML (c) MoSe2 thin films on epitaxial graphene are illustrated. d XRD data of the 16-ML MoSe2 thin film
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measured in UHV condition at room temperature, as
shown in Fig. 2a–e, respectively. As the film thickness is
reduced, the exciton peaks become sharp, probably due
to band structure transition from the indirect band gap
to the direct one [1, 43]. The ellipsometry spectrum of
the 1 ML resembles the reported spectrum of exfoliated
1-ML MoSe2 flake [38, 44]. However, the ellipsometry
spectrums of few layers-thick MoSe2 have yet to be
reported. From the ellipsometry spectra, we extracted
the two exciton peak energies of all three samples at
room temperature. As listed in Table 1, both the A and
B exciton peaks show negligible change as the layer
thickness decreases, because it relates with the direct
band gap, which is insensitive to the thickness-

dependent direct-indirect band gap transition. The A
exciton band gap (1.54 eV) of the 1-ML sample is close
to the values reported in the photoluminescence experi-
ments on mechanically exfoliated [26] and CVD-grown
1-ML MoSe2 on SiO2 [31, 45], and the ARPES experi-
ments of MBE-grown 1-ML MoSe2 on graphene [1].
To extract optical band gap values using Tauc plot, we

further converted the ellipsometry spectra into the
absorption coefficient α of each samples. Since only the
1-ML MoSe2 has a direct band gap, we manifest α2 and
α1/2 to estimate the band gap for the 1 ML and the rest
of the samples, respectively. As shown in Fig. 2g–i, the
absorption spectra also show the two exciton peaks be-
tween 1.5–1.75 eV, which is consistent with the reported

Fig. 2 Optical spectra of the 1, 2.5, and 16 ML of MoSe2 films. a–c Real part of the dielectric function (ε1). d–f Imaginary part of the dielectric
function (ε2). g–i Absorption coefficient (α) for the case of direct band gap (g) and indirect band gap (h, i). The peaks labeled A and B in d–i
correspond to the direct excitonic transition at the K point in momentum space. All the measurements are performed in UHV at room temperature,
except the 16-ML MoSe2 film measured both in UHV and air

Table 1 Exciton peak energies and the fitting parameters from Eq. (1) for the 1, 2.5, and 16 ML of MoSe2 films

Layer thickness (ML) A exciton (eV, 300 K) B exciton (eV, 300 K) Eg(300 K) (eV) Electron-phonon coupling (S) Eg(0) (eV) Average phonon
energy (meV)

1 1.54 1.75 2.18 3.5 2.32 11.6

2.5 1.53 1.76 1.54 3 1.68

16 1.54 1.76 1.40 4 1.50
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absorption spectrum of 1-ML MoSe2 grown by CVD
[44]. In addition to the two exciton peaks, the absorp-
tion spectra show a broad peak centered at ~3 eV, corre-
sponding to the charge transfer absorption, and we
could extract band gap value using Tauc plot, which is
used to determine optical band gap in semiconductors,
shown as straight line fittings in Fig. 2g–i. We listed the
extracted optical band gap (Eg(300 K)) at room
temperature in Table 1, in which the 1-ML value (2.18 eV)
is nearly same with the reported band gap measured by
scanning tunneling spectroscopy measurements [40].
Contrary to the excition peaks, the optical band gap shows
sharp increase when the layer thickness is diminished.
Especially, big change of band gap between 1 ML
(2.18 eV) and 2.5 ML (1.54 eV) is consistent with the
direct-indirect band gap transition in this ML limit [1].
To understand thermal change of the optical band

gap, we repeated the ellipsometry measurements while
heating the three samples in UHV condition. Figure 3
shows the series of optical spectra for various measure-
ment temperatures ranging from room temperature to
750–850 °C. For every sample, the spectra suddenly lose
the characteristic peak structures and become mono-
tonic above different temperatures, which we define as
the decomposition temperature (Tdec) for each sample,
as we discuss stoichiometry analysis below. Tdec

increases from 700 °C for the 1 ML to 725 °C for the 16
ML. As shown in Fig. 4a, the Tdec of the ultrathin films
in UHV are far lower than those of bulk in air (1200 °C)
[46] and in UHV (980 °C) [47]. This implies that the
ultrathin MoSe2 should be handled for restricted
temperature range below the Tdec. When cooled after
the thermal annealing cycles below the Tdec, we con-
firmed restoration of the optical spectra for the 2.5-ML
MoSe2 (see Additional file 1: Figure S1).
Below the Tdec, we identified gradual red shifts of the

most characteristic peaks for all the three samples, as
shown in Fig. 3. As shown in Fig. 4b, we extract the band

gap values from the A exciton peak positions as a function
of measurement temperature (also see Additional file 1:
Figure S2). The temperature dependence of the A exciton
peak shows nearly linear dependence, which is similar to
the one in the exfoliated monolayer for 300–420 K [26].
However, the optical band gap of MoSe2 is known to be
quite different from the exciton peak due to exceptionally
large exciton-binding energy [40].
The linear temperature dependence of the optical

band gap over wide temperature range is illustrated in
Fig. 4c. Repeating the Tauc plot in Fig. 2g–i, we could
extract the optical band gap values from each spectra.
All three samples show nearly similar linear dependence
of the band gap for the wide temperature range. The
linear temperature dependence of the band gap over
wide temperature range is similar to one of the other
semiconductors [48–51]. We could fit this temperature
dependence by using the vibronic model of Huang and
Rhys [51, 52];

Eg Tð Þ ¼ Eg 0ð Þ–S < hν > coth < hν > =2kBTð Þ–1½ �
ð1Þ

where Eg(0) is the band gap at 0 K, S is a dimensionless
electron-phonon coupling parameter, <hν > is the aver-
age acoustic phonon energy, and the coth term repre-
sents the density of phonons at the specific temperature.
Shown as dashed lines in Fig. 4c, we could fit the
temperature dependence well with Eg(0) = 1.5–2.32 eV
and S = 3–4, while we fixed the value of <hν > = 11.6 meV
from the previously reported value in the exfoliated
monolayer MoSe2 [26]. While the fitting parameters are
listed in Table 1, the parameters are quite different from
the reported values (Eg(0) = 1.64 eV and S = 1.93) for the
exfoliated monolayer MoSe2, because they fit the A
exciton energy instead of the optical band gap. However,
S values are quite similar to the reported values for three-
dimensional compound semiconductors, such as GaAs

Fig. 3 Temperature dependence of optical spectra of the 1, 2.5, and 16 ML of MoSe2 films. a–c Real part of the dielectric function (ε1). d–f
Imaginary part of the dielectric function (ε2)
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and GaP [48]. We note that nearly constant thermal
expansion coefficient of MoSe2 above 150 K explains the
linear reduction of band gap upon heating [53].
To understand the abrupt change of the optical spectra

above the Tdec in Fig. 3, we further analyzed surface crys-
tallinity and stoichiometry by utilizing RHEED and TOF-
MEIS on the separately prepared 2-ML films, as shown in
Fig. 5. The RHEED images show dramatic changes among
the samples with different post-annealing temperatures
(850, 720, 600 °C) in UHV environment. The sample
annealed at 600 °C maintains the similar streaky pattern
with the as-grown samples, shown as Fig. 1a, b. However,
the 720 °C sample shows additional spots, and the 850 °C
sample shows no diffraction signal due to lack of long-
range crystalline order. To analyze the amount of decom-
position, we performed TOF-MEIS on the 720 and 600 °C
samples. The raw spectra in Fig. 5d show similar features
except the ratio difference between the Se and Mo peaks
between 80 and 90 keV. After modeling with assumption
of uniform slab geometry and bulk densities, we obtained
depth profile of chemical stoichiometry for both samples.
As shown in Fig. 5f, the 600 °C sample shows 1:2 ratio for

Mo and Se and the film thickness of ~1.3 nm, indicating
preserving the stoichiometry of the as-grown state up to
600 °C. However, the 720 °C sample shows reduced ratio
of 1:1.7 and increased thickness of ~1.6 nm, indicating sel-
enium deficiency and surface roughening upon heating
across the Tdec. Therefore, the MoSe2 layer begins to
disorder and decompose at 720 °C, and then remains a
disordered molybdenum layer in 850 °C. These direct evi-
dences should be helpful for designing high-temperature
fabrication process based on the similar kinds of metal
chalcogenide films.

Conclusions
We prepared a set of MoSe2 ultrathin films epitaxially
grown by MBE. From the temperature-dependent optical
spectra between room temperature to ~850 °C, we identi-
fied the thickness-dependent Tdec and the temperature
dependence of band gap. The linear decrease of the band
gap is well understood with the vibronic model of Huang
and Rhys. Such high-temperature characters should play an
important role for development of electronic and optoelec-
tronic devices based on the related metal chalcogenide films.

Fig. 4 a Tdec of MoSe2 bulk and thin films in air or UHV conditions. Red squares are from the temperature-dependent optical spectra on the MoSe2 epitaxial
films, while black solid and dashed lines correspond to the bulk MoSe2 in UHV [47] and air [46] condition in the literatures. b Temperature dependence of
the A exciton peaks in imaginary part of dielectric functions in Fig. 3d–f. Black open circles indicate the A exciton peak values of the exfoliated 1-ML MoSe2
taken in the previous report [26]. c Temperature dependence of the optical band gap values for the 1, 2.5, and 16 ML of MoSe2 films, taken from the
absorption spectra

Fig. 5 a–c RHEED pattern of the 2-ML MoSe2 films after annealing at 850 (a), 720 (b), and 600 °C (c) in UHV condition. d TOF-MEIS spectra of the 2-ML
MoSe2 films after annealing at 720 °C (blue) and 600 °C (red). e, f Depth profile of chemical composition of the annealed films at 720 °C (e) and 600 °C
(f), obtained from the TOF-MEIS analysis. Note that the stoichiometric ratio of Mo:Se is 1:1.7 and 1:2 for the 720 and 600 °C samples, respectively
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Additional file

Additional file 1: Figure S1 a, b. Optical spectra (ε2 (a) and ε2 (b)) of
2.5-ML MoSe2 at 100 °C cooled after thermal annealing at the indicated
temperatures. The spectra remain nearly same up to 650, indicating that
the observed spectral changes in Fig. 3 are mostly due to the reproducible
thermal effect. Figure S2 Expanded plot of temperature dependent optical
spectra of the 1, 2.5, and 16 ML of MoSe2 films to show detailed thermal
shifts; a-c Real part of the dielectric function (ε1), d-f Imaginary part of the
dielectric function (ε2). (DOCX 482 kb)
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