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Structure-based cross-docking 
analysis of antibody–antigen 
interactions
Krishna Praneeth Kilambi1,2 & Jeffrey J. Gray   1

Antibody–antigen interactions are critical to our immune response, and understanding the structure-
based biophysical determinants for their binding specificity and affinity is of fundamental importance. 
We present a computational structure-based cross-docking study to test the identification of native 
antibody–antigen interaction pairs among cognate and non-cognate complexes. We picked a dataset 
of 17 antibody–antigen complexes of which 11 have both bound and unbound structures available, and 
we generated a representative ensemble of cognate and non-cognate complexes. Using the Rosetta 
interface score as a classifier, the cognate pair was the top-ranked model in 80% (14/17) of the antigen 
targets using bound monomer structures in docking, 35% (6/17) when using unbound, and 12% (2/17) 
when using the homology-modeled backbones to generate the complexes. Increasing rigid-body 
diversity of the models using RosettaDock’s local dock routine lowers the discrimination accuracy with 
the cognate antibody–antigen pair ranking in bound and unbound models but recovers additional top-
ranked cognate complexes when using homology models. The study is the first structure-based cross-
docking attempt aimed at distinguishing antibody–antigen binders from non-binders and demonstrates 
the challenges to address for the methods to be widely applicable to supplement high-throughput 
experimental antibody sequencing workflows.

Antibody–antigen interactions are an important component of our immune response to pathogens1, and under-
standing the structural basis of antibody–antigen interactions can help in designing more potent therapeutics. 
Recent experimental advances2 have enabled high-throughput sequencing studies of antibody repertoires in mul-
tiple organisms3–5, including perturbation effects of various antigens on the repertoire sequence frequencies6–8. 
Since antibody repertoire sizes for an individual range from 103 for zebrafish to 1010 for humans9, 10, compu-
tational approaches represent a practical structure-based method to study antibody specificity and selectivity. 
To understand the driving forces behind the generation and maturation of these antibody sequences, we need 
not just structural models, but knowledge of the antigen/epitope pairings and models of the bound antibody–
antigen complexes. In this paper, we present a computational cross-docking study to discriminate binders from 
non-binders by identifying native antibody–antigen interaction pairs among cognate and non-cognate com-
plexes. We also discuss the major remaining challenges for the methods to be useful to support high-throughput 
next-generation sequencing (NGS) pipelines or to support individual studies on particular antibody–antigen 
complexes of interest.

Cross-docking study efficacy relies on the accuracy of binding energy estimates. A team of researchers col-
lected experimental binding affinity measurements for 179 protein–protein complexes as a benchmark dataset 
for training computational algorithms11, 12. Kastritis and Bonvin tested the affinity prediction ability of nine of 
the standard score functions used in the leading docking algorithms and found all score functions correlated 
poorly with the experimental results13. Some score functions were able to broadly classify weak, medium and 
strong binders, but the standard deviations of the predicted binding energies were wider than the energy gap 
between the three categories. The ability to distinguish binding from non-binding interfaces was also tested in 
Critical Assessment of PRediction of Interactions (CAPRI) through a challenge to predict successful high-affinity 
binders from a set of designed protein–protein interfaces and distinguishing natural interfaces from unsuccessful 
Rosetta-designed interfaces14. Both these challenges were difficult, and no computational method was able to 
identify the design responsible for the successful binder.
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Antibodies constitute the most important class of therapeutic biologics. Accurate binding estimates can aid 
development of in silico screening methods to pick a potential list of epitope-diverse antibodies during animal 
immunization NGS campaigns, and help design better-behaving therapeutic antibodies with minimal off-target 
activity. Unfortunately, estimation of absolute binding free energies for antibody–antigen complexes is chal-
lenging due to the inaccuracies in the computational free energy calculations. Additionally, since all antibodies 
share the immunoglobulin fold with sequence variability primarily in the complementarity determining regions 
(CDRs), domain or sequence-similarity based binding predictors are not reliable. So accurate biophysics-based 
cross-docking methods aimed at identifying potential antibody–antigen interaction partners are of immense 
value. Previous cross-docking attempts15, 16 on a dataset of diverse protein–protein complexes found the predic-
tion of antibody–antigen interaction pairs to be especially difficult.

In this paper, we present a cross-docking study to discriminate antibody–antigen binders from non-binders 
using a dataset of 17 complexes with both bound and unbound antigen structures available. We first generate 
a dataset of cognate and non-cognate complexes and test the RosettaDock score function for identification of 
the correct antibody–antigen interaction partners. We evaluate the effects of antibody backbone accuracy on 
the partner predictions using antibody bound, unbound structures, and RosettaAntibody17 generated homology 
models. We also demonstrate the effects of increasing diversity of the generated cognate and non-cognate models 
on prediction accuracy. To our knowledge, our work is the first structure-based cross-docking study focused on 
distinguishing antibody–antigen binders from non-binders.

Results
Antibody-antigen complexes are well suited for cross-docking based affinity calculations because antibodies can 
be superposed using their framework regions onto different antibodies binding their cognate epitopes. We assem-
bled a test set of 17 antibody–protein-antigen pairs from the affinity benchmark set11 for which both bound and 
unbound antigen structures are known (Table 1). Eleven of these complexes also have both bound and unbound 
structures available for the antibody, and the remaining six have solved bound antibody structures only.

We superposed each antibody onto the native antibody in 16 other antibody–antigen complexes, generating 
289 total pairs to discriminate. The tightly packed interface residues in the native crystal complexes and the 
steric clashes in the non-cognate complexes generated using antibody superposition make the initial set trivial 
to separate. To construct a more realistic set, it is necessary to refine each candidate complex to (1) erase the 
memory of the crystal structure in cognate complexes, and (2) optimize the interface in non-cognate complexes. 
Furthermore, generation of an unbiased set of starting models is critical if the method is to be extendable to anti-
bodies with no available experimental structures with the corresponding antigens. We used a customized version 
of the fixed-backbone RosettaDock high-resolution stage (“local refine”) to generate an ensemble of 50 cognate 
and non-cognate refined models for each antibody–antigen pair (see Methods for details).

As shown in Fig. 1, the cognate models are refined starting from the crystal complex, while the non-cognate 
models are refined after superimposing the VL–VH framework of the non-cognate antibody on the cognate anti-
body in the crystal complex. The starting antibody ligand-RMSDs between cognate and non-cognate antibodies 
average around 1.2–1.4 Å (Supplementary Fig. S1). The primary goal is to predict the correct antibody that pairs 
with each antigen. To test the effects of antibody backbone accuracy on the binding predictions, we generated 
cognate and non-cognate models using bound–bound (henceforth referred to as simply “bound”), unbound–
unbound (“unbound”), and homology–unbound (“homology”) backbones, respectively, for the antibody–antigen 

No. Antibody Antigen
Complex 
PDB

Antibody 
PDB

Antigen 
PDB

Expt. Kd 
(nM)

1 Fab B02C11 Factor VIII domain C2 1IQD 1IQD* 1D7P <0.014

2 Fab N10 Staphylococcal nuclease 1NSN 1NSN* 1KDC <0.10

3 Fab D3H44 Tissue factor 1JPS 1JPT 1TFH 0.10

4 FabF10.6.6 HEW lysozyme 1P2C 2Q76 3LZT 0.10

5 Fab BV16 Birch pollen antigen Bet V1 1FSK 1FSK* 1BV1 0.24

6 Fab E8 Cytochrome C 1WEJ 1QBL 1HRC 0.71

7 Fab HC19 Flu virus hemagglutinin 2VIR 1GIG 2HMG 1.00

8 Fab Hyhel63 HEW lysozyme 1DQJ 1DQQ 3LZT 2.80

9 Fab Jel42 HPr 2JEL 2JEL* 1POH 2.80

10 Fab 5g9 Tissue factor 1AHW 1FGN 1TFH 3.40

11 Fab A4.6.1 VEGF 1BJ1 1BJ1* 2VPF 3.40

12 Fv D1.3 HEW lysozyme 1VFB 1VFA 8LYZ 3.70

13 Fab NC41 Flu virus neuraminidase N9 1NCA 1NCA* 7NN9 8.30

14 Fv Hulys11 HEW lysozyme 1BVK 1BVL 3LZT 14

15 Fab 13B5 HIV-1 capsid protein p24 1E6J 1E6O 1A43 29

16 Fab 44.1 HEW lysozyme 1MLC 1MLB 3LZT 91

17 Fab HC19 Flu virus hemagglutinin 
T131I mutant 2VIS 1GIG 2VIU 4000

Table 1.  Antibody–antigen complexes used for cross-docking. *In these six cases, the only antibody structure 
available is in the antigen-bound state.
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complexes. About 35% (6/17) of the antibodies in the dataset lack unbound structures, so we used bound anti-
body backbones to generate their unbound cognate and non-cognate complex models. We used RosettaAntibody 
3.018 to generate the antibody models required for homology complexes (see Methods). Based on CDR RMSDs, 
most of the generated antibody models are approximately equidistant (1–3 Å) from the known bound and 
unbound conformations (Supplementary Fig. S2).

Sample binding analyses: Fab NC41–influenza virus neuraminidase N9 and Fab 44.1–hen 
egg-white lysozyme complexes.  The main metrics of interest are the rank of the cognate complex relative 
to the non-cognate complexes and the magnitude of the predicted binding scores. We used Rosetta’s docking 
interface score19 (based on the Talaris2013 force field20) to rank the complexes. Rosetta interface score is defined 
as = −E EIsc bound unbound, where Ebound is the score of the bound complex and Eunbound is the sum of the scores 
of the individual protein partners in isolation. The score function is a linear combination of several score terms 
including a Lennard–Jones potential, an implicit solvation potential21, an orientation-dependent hydrogen bond-
ing potential22, a Coulomb electrostatic potential with a distance-dependent dielectric, a side-chain torsional 
potential23, and a knowledge-based residue pair term based on the probability of proximity of two amino acids in 
the PDB24.

Figure 2 compares the interface scores for antibody complexes involving influenza virus neuraminidase N9 
(Cognate Fab NC41; 1NCA) and hen egg-white lysozyme (Cognate Fab 44.1; 1MLC) generated using the local 
refine routine (Fig. 2a,b). Interface scores for the cognate and non-cognate complexes (turquoise and grey, respec-
tively; top-scoring complexes for each antibody against the target antigen are highlighted with a black outline) 
generated starting from bound, unbound, and homology backbones are plotted as a function of the complex 
interface size (ΔSASA in Å2). In general, interface scores are lower (better) for larger candidate interfaces, and 
the cognate antibody–antigen complexes have both larger interfaces and lower scores. In both the antigens, the 
calculated energy gap between the cognate and non-cognate antibodies is small, even though the non-cognate 
complexes likely bind weakly or not at all.

In influenza virus neuraminidase N9, interface scores of the top-scoring cognate complexes (Fig. 2a) drop 
from −9.7 to −9.2, and further to −6.2 REU when using bound antibody/antigen, unbound antigen/bound 
antibody, and unbound antigen/homology antibody backbones, respectively, even though all the complexes 
involve the same epitope (Fig. 2c). The cognate scores remain better than the corresponding interface scores 
of all the top-scoring non-cognate complexes in each category (−5.5, −5.3, and −5.8 REU, respectively). In 
hen egg-white lysozyme, interface scores of the top-scoring cognate complexes (Fig. 2b) are −7.7, −5.1, and 
−5.1 REU when using antibody bound, unbound, and homology backbones against the same epitope (Fig. 2d). 
Interface score can discriminate the cognate antibody using bound models (top non-cognate score: −7.2 REU), 
but other non-cognate antibodies surpass even the top-scoring cognate antibody when using unbound and 
homology models. For example, when using unbound backbones, the top-scoring non-cognate complex gener-
ated using the antibody from the Fab HC19–influenza hemagglutinin T131I complex (2VIS) scores better (−5.9 
REU) than the top-scoring cognate complex (−5.1 REU) even though both antibodies target the same lysozyme 
epitope (Fig. 2e). Finally, even the top-scoring bound cognate interface scores of −9.7 and −7.7 REU in the two 

Figure 1.  Generation of cognate and non-cognate antibody–antigen complexes. The starting structures for 
cognate models (blue) are the crystal complexes, while the starting non-cognate models are generated by 
superimposing the VL–VH framework of the non-cognate antibody (red) on the cognate antibody in the crystal 
complex. A customized version of RosettaDock’s high-resolution stage is then used to generate an ensemble of 
models focused around the epitope for discrimination.
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complexes underestimate the true binding affinities (~11 and 9.6 kcal/mol, respectively, mapping13, 25, 26 REUs to 
kcal/mol).

In summary, interface score distinguishes the cognate antibody from the non-cognate antibodies in both 
the cases when using the bound antibody coordinates but fails in the case of Fab 44.1–hen egg-white lysozyme 

Figure 2.  Binding discrimination in Fab NC41–influenza virus neuraminidase N9 and Fab 44.1–hen egg-white 
lysozyme complexes. Surface area change upon binding (ΔSASA) vs. Interface scores for model structures in 
antibody cross-docking tests using bound, unbound, and homology-modeled backbones in (a) influenza virus 
neuraminidase N9, and (b) hen egg-white lysozyme. Sixteen non-cognate structures (grey) are compared to 
cognate structures (turquoise); black outline indicates the top-scoring model for each antibody–antigen pair. 
The top-scoring cognate complexes generated using bound (red), unbound (blue), and homology (green) 
complexes in (c) influenza virus neuraminidase N9, and (d) hen egg-white lysozyme complexes. (e) Top-scoring 
cognate (blue) and non-cognate (grey) antibody against hen egg-white lysozyme.
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complex when using unbound and homology-modeled backbones, likely due to the decrease in the accuracy of 
the antibody backbone conformations used for generating the models.

Antibody backbone accuracy is critical for accurate binding partner identification.  We used 
interface scores (Isc) to rank the cognate and non-cognate models for each antibody–antigen pair in the dataset. 
Figure 3 shows the interface scores of the top-scoring cognate and non-cognate models for each antigen. Using 
bound backbones (Fig. 3a), the cognate antibody–antigen pair is the top-scoring model in 14/17 antigens, and it is 
one of the top three scoring models in 16/17 antigens. Using unbound backbones, the cognate pairs ranked at the 
top in six targets, and in the top three in ten targets (Fig. 3b), compared to two and eight cognate pairs at the top 
and top three when using homology backbones (Fig. 3c). Four of the six top-ranked cognate pairs using unbound 
backbones are from targets missing unbound antibody structures and were generated using bound antibody coor-
dinates. The drop in the prediction accuracy correlates with the drop in the accuracy of the backbone coordinates 
moving from bound to unbound, and eventually homology complexes. The decline in the discrimination capa-
bility is not surprising as backbone conformation is a critical determinant of protein–protein docking accuracy27. 
Inaccuracies in the backbone often translate to docking errors through sub-optimal arrangement of the interface 
residues in the docking models.

To assess the interface quality of the top-scoring cognate and non-cognate models, we first calculated the 
distribution of the number of antibody–antigen interface hydrogen bonds. As shown in Fig. 4a, the native crystal 

Figure 3.   Ranks of cognate complexes among local refine antibody–antigen models. Interface scores (Isc) of 
the top-scoring cognate (turquoise) and non-cognate (grey) local refine models for (a) bound, (b) unbound, 
and (c) homology antibody–antigen complexes. Each row indicates a single antigen represented by the PDB 
ID of the bound complex. Antigens are sorted based on decreasing experimental binding affinities for their 
native antibodies (top to bottom). The top left corner shows the number of antigens where the cognate antibody 
complex is ranked in the top 1, 3, and 5 top-scoring cognate and non-cognate models generated for the antigen.
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complexes contain 7.7 ± 3.3 interface hydrogen bonds, compared to 6.9 ± 2.4 and 1.8 ± 1.7 hydrogen bonds in 
the top-scoring cognate and non-cognate models when using bound backbones. The average number of inter-
face hydrogen bonds drop to 3 ± 1.5 and 1.7 ± 1.4 for the top-scoring cognate and non-cognate models using 
unbound backbones, respectively, and finally 2.4 ± 1.5 and 2.2 ± 1.5 with homology-modeled antibody back-
bones. The number of interface hydrogen bonds in the top-scoring cognate models thus decline moving from 
bound to unbound, and homology complexes, but are similar for the top-scoring non-cognate models across the 
three categories. As the number of interface hydrogen bonds in cognate complexes drop, there is a greater chance 
the resulting buried unsatisfied polar atoms contribute to unfavorable interfaces affecting the discrimination 
power of the interface score.

We computed the number of buried unsatisfied polar atoms (ignoring contribution of structural waters) across 
the interfaces of the top-scoring cognate and non-cognate models. As shown in Fig. 4b, on average, crystal struc-
tures of the antibody–antigen complexes have 10.1 ± 4.3 buried unsatisfied polar atoms at the interface, with the 
top-scoring cognate and non-cognate bound models containing 10.5 ± 4.2 and 7.9 ± 4.2 buried unsatisfied inter-
face polar atoms, respectively. The number of buried unsatisfied interface polar atoms in the top-scoring cognate 
and non-cognate complexes remain about the same at 11.2 ± 5.7 and 7.4 ± 4.1 when using unbound backbones, 

Figure 4.   Interface metric distributions for local refine models. Kernel density estimate curves for the number 
of (a) interface hydrogen bonds, (b) buried unsatisfied interface polar atoms, and (c) surface area change upon 
binding (ΔSASA) for the native crystal complexes (black), and the top-scoring cognate (turquoise) and non-
cognate (grey) models generated using local refine for bound, unbound, and homology antibody–antigen 
complexes.
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but fall to 8.5 ± 3.7, 6.7 ± 3.6, respectively, with homology-modeled antibody backbones. Surprisingly, the num-
ber of buried unsatisfied interface polar atoms in the top-scoring cognate complexes are always higher than the 
corresponding non-cognate complexes in each category. In addition, the reported drop in the number of interface 
hydrogen bonds between bound and unbound backbones does not increase the number of buried unsatisfied 
interface polar atoms (which remain about the same). Finally, the number of buried unsatisfied interface polar 
atoms drop from unbound to homology models correlating with a drop in the number of hydrogen bonds, more 
so in the top-scoring cognate models. One reason for this unexpected behavior is a simultaneous decline in the 
absolute interface sizes between i) bound, unbound, and homology, and ii) cognate and non-cognate docking 
models.

Finally, we investigated the interface sizes of the generated antibody–antigen complexes. Figure 4c shows 
the surface area change upon binding (ΔSASA) in the top-scoring cognate and non-cognate models. The aver-
age ΔSASA in the crystal complexes is 1622 ± 290 Å2, and it is 1670 ± 299 Å2 and 1212 ± 317 Å2 in cognate and 
non-cognate models, respectively, generated using bound backbone coordinates. ΔSASA in the cognate and 
non-cognate models is 1467 ± 321 Å2 and 1187 ± 332 Å2 with unbound backbones, and finally, 1351 ± 337 Å2 
and 1148 ± 322 Å2 using homology backbones. The interface sizes in the top-scoring cognate models decrease 
using bound, unbound, and homology backbones, but remain roughly the same in the top-scoring non-cognate 
models. This difference in the interface size trends between cognate and non-cognate models explains the drop in 
the number of interface hydrogen bonds across cognate but not non-cognate models, and the sharp drop in the 
number of buried unsatisfied polar atoms in the top-scoring cognate models.

In summary, the interface quality of the top-scoring cognate models declines when using bound, unbound 
and eventually homology backbones to model the complexes, while the interface quality of the top-scoring 
non-cognate models expectedly remains about the same (see Table 2 for summary). Since the structures gener-
ated by local refine comprehensively sample the antibody–antigen orientation space around the starting epitope, 
the decline in the prediction accuracy is primarily due to the inaccuracies in the backbone conformations in 
unbound and homology models.

Expanding antibody–antigen model diversity reduces binding discrimination.  The cognate and 
non-cognate models generated by the local refine protocol are typically under 5 Å Cα Irmsd from the native 
antibody–antigen complexes. That is, model diversity is limited because most model structures have interfaces 
around the epitope of the antigen. The limited diversity can hinder generation of native-like complexes with 
tightly-packed interfaces in non-cognate complexes or in cognate complexes where the homology models are not 
very accurate. To address this, we increased rigid-body sampling diversity using the standard RosettaDock local 
dock routine. Using local dock, we generated 1000 models starting from a random structure picked from the local 
refine ensemble for each antibody–antigen pair. In local dock, the starting structures are perturbed by about 3 Å 
translation and 8° rotation around the axis joining the centers of the two partners generating models up to 20 Å 
Cα Irmsd from the starting complex.

We compared the interface scores of the top-scoring cognate and non-cognate models for each antigen 
(Fig. 5). Using interface scores, the cognate antibody–antigen pair is the top-scoring model in nine of the 17 
target antigens, and is one of the top three scoring models in 13/17 targets using bound backbones to generate the 
complexes (Fig. 5a). The cognate pairs ranked at the top in four targets, and in the top three in six targets using 
both unbound and homology models (Fig. 5b,c). Two of the four top-ranked cognate pairs in unbound models 
are from targets missing unbound antibody structures and thus generated using bound antibody coordinates. As 
expected, the number of correctly identified cognate antibody–antigen pairs using local dock is lower than local 
refine when using bound, unbound backbone coordinates. Encouragingly, when using homology complexes, 
local dock places more cognate pairs at the top (four) compared to local refine (two).

We again calculated distributions of the three interface quality metrics: (i) number of interface hydrogen 
bonds, (ii) number of buried unsatisfied interface polar atoms, and (iii) surface area change upon binding for the 
top-scoring cognate and non-cognate models generated by local dock (see Table 2 for summary). The top-scoring 
cognate models generated starting from bound backbones contain 6 ± 3 interface hydrogen bonds, 11.7 ± 3.7 
buried unsatisfied interface polar atoms, and 1636 ± 290 Å2 ΔSASA, compared to 3.2 ± 1.8 hydrogen bonds, 
8.4 ± 3.7 unsatisfied atoms, 1309 ± 258 Å2 ΔSASA, respectively, in the top-scoring non-cognate models (Fig. 6). 
Using unbound backbones, cognate and non-cognate models contain 3.1 ± 2.1 hydrogen bonds, 9.2 ± 4 unsat-
isfied atoms, 1394 ± 316 Å2 ΔSASA, and 3.4 ± 1.8 hydrogen bonds, 8.3 ± 3.5 unsatisfied atoms, 1328 ± 251 Å2 
ΔSASA, respectively. Finally, the top-scoring models cognate and non-cognate models generated using homol-
ogy backbones contain 3 ± 1.6 hydrogen bonds, 8.4 ± 3.5 unsatisfied atoms, 1332 ± 213 Å2 ΔSASA, and 3.2 ± 1.9 

Method Metric
Crystal 
structure

Bound Unbound Homology

Cognate Non-cognate Cognate Non-cognate Cognate Non-cognate

Local Refine

Interface hydrogen bonds 7.7 ± 3.3 6.9 ± 2.4 1.8 ± 1.7 3 ± 1.5 1.7 ± 1.4 2.4 ± 1.5 2.2 ± 1.5

Buried unsat. interface polar atoms 10.1 ± 4.3 10.5 ± 4.2 7.9 ± 4.2 11.2 ± 5.7 7.4 ± 4.1 8.5 ± 3.7 6.7 ± 3.6

Surface area change upon binding (Å2) 1622 ± 290 1670 ± 299 1212 ± 317 1467 ± 321 1187 ± 332 1351 ± 337 1148 ± 322

Local Dock

Interface hydrogen bonds 7.7 ± 3.3 6 ± 3 3.2 ± 1.8 3.1 ± 2.1 3.4 ± 1.8 3 ± 1.6 3.2 ± 1.9

Buried unsat. interface polar atoms 10.1 ± 4.3 11.7 ± 3.7 8.4 ± 3.7 9.2 ± 4 8.3 ± 3.5 8.4 ± 3.5 7.8 ± 3.3

Surface area change upon binding 1622 ± 290 1636 ± 290 1309 ± 258 1394 ± 316 1328 ± 251 1332 ± 213 1292 ± 265

Table 2.  Interface metrics for cognate and non-cognate models generated using local refine and local dock.
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hydrogen bonds, 7.8 ± 3.3 unsatisfied atoms, 1292 ± 265 Å2 ΔSASA, respectively. The interface quality of the 
cognate models generated by local dock drops drastically moving from bound backbones, but is similar across 
models generated using unbound and homology backbones correlating with the same trend observed in the 
binding discrimination performance. For the non-cognate models, the average interface quality is similar across 
all the three categories.

In general, the binding discrimination performance in local dock generated models is lower compared to 
the models generated using local refine because the greater model diversity increases the chance of false pos-
itive interfaces picked up by the score function. One exception is models generated from homology-modeled 
antibody backbones where the greater antibody–antigen orientation diversity in local dock compensates for 
the backbone inaccuracies resulting in higher quality interfaces in both cognate and non-cognate models. 
Local dock achieves more top-ranked cognate complexes compared to local refine using homology-modeled 
antibodies.

Effect of experimental binding affinities and antibody backbone modeling errors.  To determine 
 the effect of absolute binding affinities of the antibody–antigen complexes on the binder predictions, we plot-
ted correlations of the ranks of the top-scoring cognate models vs. the absolute experimental ΔG values of the 
native antibody–antigen complexes. As shown in Fig. 7a, binder discrimination of the models generated using 
local refine and local dock is independent of the absolute binding affinities for bound, unbound, and homology 

Figure 5.   Ranks of cognate complexes among local dock antibody–antigen models. Interface scores (Isc) of 
the top-scoring cognate (turquoise) and non-cognate (grey) local dock models for (a) bound, (b) unbound, 
and (c) homology antibody–antigen complexes. Each row indicates a single antigen represented by the PDB 
ID of the bound complex. Antigens are sorted based on decreasing experimental binding affinities for their 
native antibodies (top to bottom). The top left corner shows the number of antigens where the cognate antibody 
complex is ranked in the top 1, 3, and 5 top-scoring cognate and non-cognate models generated for the antigen.
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complexes. For example, the cognate antibody against Factor VIII domain C2, Fab B02C11 (PDB: 1IQD) which 
is the stronger binder in the dataset (experimental Kd < 0.014 nM) ranks first both in local refine and local dock 
against its antigen when using bound backbone, but ranks fifth and eleventh, respectively, when using unbound 
backbone, and third and first when using homology-modeled backbone. The weakest binder in the dataset, Fab 
HC19 against influenza virus hemagglutinin T131I mutant (2VIS), ranks second both in local refine and local 
dock when using bound, but ranks third and first when using unbound, and eighth and fourteenth when using 
homology-modeled backbones. Therefore, when using unbound backbones, prediction accuracy is higher in 
the case of the weakest binder compared to the strongest binder in the dataset. It is not surprising binding dis-
crimination is not strongly dependent on absolute binding affinities of the native antibody–antigen complexes, 
as the score function is not calibrated for absolute binding affinities but to distinguish native vs. non-native 
interfaces.

We next tested the dependence of the ranks of the cognate complexes on their interface scores (Fig. 7b). The 
cognate ranks are good (rank 1 or 1–3) when interface scores Isc < −6 REU (i.e. tight binders), and cognate rank 
quality decreases (higher ranks) for Isc above −6 REU. The increase in the cognate rank is especially evident in 
unbound and homology complexes where only three complexes from the dataset have Isc < −6 REU, compared 
to bound complexes where 76%, 88% of the complexes have Isc < −6 REU when using local refine, lock dock, 

Figure 6.   Interface metric distributions for local dock models. Kernel density estimate curves for the number 
of (a) interface hydrogen bonds, (b) buried unsatisfied interface polar atoms, and (c) surface area change 
upon binding (ΔSASA) for the native crystal complexes (black), and the top-scoring cognate (turquoise) and 
non-cognate (grey) models generated using local dock for bound, unbound, and homology antibody–antigen 
complexes.
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respectively. Since interface score is a measure of the complex interface quality, the increase in the cognate rank 
highlights the drop in the interface quality when using unbound and homology backbones.

We also calculated the effect of antibody backbone accuracy on binding discrimination by plotting correla-
tions of the ranks of the top-scoring cognate complexes vs. RMSD of the antibody CDRs from the bound back-
bone coordinates (Fig. 7c). As expected, binder discrimination accuracy in general drops at higher CDR RMSDs. 
Specifically, when using local refine with unbound and homology-modeled backbones, the cognate rank progres-
sively worsens with increasing antibody CDR RMSD. The weak correlation with the antibody backbone accuracy 
in local refine but not local dock hints that the limited antibody–antigen orientation diversity in local refine 
is inadequate to compensate for the backbone errors. This observation is consistent with the small increase in 
the number of top-scoring cognate models when using local dock (vs. local refine) in models generated using 
homology-modeled backbones.

Finally, we evaluated the impact of the deviation of the final top-scoring cognate and non-cognate complexes 
from the original cognate crystal complexes on binding discrimination for the local refine and local dock cases. 
Supplementary Fig. S3 shows the antibody ligand-RMSD (Ab_L_RMSD, see Methods) versus the rank of all 
cognate and non-cognate top-scoring models for all 17 targets and various docking cases. Like the CDR RMSDs, 

Figure 7.   Effects of experimental binding affinities, interface scores, and antibody backbone accuracy. 
Correlation plots comparing ranks of the top-scoring cognate models to (a) experimental binding affinities 
(ΔG), (b) interface scores, and (c) antibody CDR backbone accuracy for bound (blue), unbound (red), and 
homology (green) complexes. Models generated using local refine and local dock are shown as filled and empty 
squares, respectively.

http://S3


www.nature.com/scientificreports/

1 1Scientific REPOrtS | 7: 8145  | DOI:10.1038/s41598-017-08414-y

it is necessary for the antibody ligand-RMSD to be small for the cognate antibody to have a top rank relative to 
the non-cognate antibodies. Conversely, top-ranked non-cognate antibody complexes are sometimes close to the 
cognate complex structure (Ab_L_RMSD < 5 Å), and sometimes quite different (up to ~30 Å).

Binder discrimination summary: Antibody–antigen complexes are challenging targets.  To 
compare the binding discrimination power of the interface score across various categories, we calculated the 
Receiver Operating Characteristic (ROC) curves using the interface score of the top-scoring model as the classifier 
 in bound, unbound, and homology complexes for both local refine and local dock routines (Fig. 8). We also 
calculated the ROC curves for the complexes using four other widely-used scoring potentials computed using 
the CCharPPI28 web server: DFIRE229 interaction energy, total FireDock30 energy (antibody–antigen energy  
function), OPUS-PSP31 all-atom potential, and ZRANK232 scoring function. We considered the native cognate 
antibody–antigen interaction pairs as the only true positives.

In ROC curves, the area under the curve (AUC) values represent the performance of the scoring potential as 
a binary binder vs. non-binder classifier. Using Rosetta interface score as the classifier for models generated using 
the local refine routine, the AUC for the bound complexes is 0.97, followed by 0.78 and 0.73 for unbound and 
homology complexes, respectively (AUC 0.5 = random; 1 = perfect discrimination, Fig. 8a). For local refine mod-
els, Rosetta interface score is the best discriminator in bound complexes, but FireDock and OPUS-PSP potential 
perform better when using unbound and homology complexes. Using interface score as the classifier in local 
dock routine, the AUC values for bound, unbound, and homology complexes are 0.87, 0.65, and 0.59, respec-
tively (Fig. 8b). For local dock models, Rosetta interface score is one of the top two discriminators in bound and 
unbound complexes, behind OPUS-PSP and ZRANK2 potentials, respectively. In homology complexes, FireDock 
outperforms all the other potentials including the Rosetta interface score. Overall, discrimination by the interface 
score is better than random in all cases, and as expected, drops with an increase in antibody backbone inaccuracy 
and/or model diversity.

Discussion
We have presented the first structure-based cross-docking study focused on discrimination of protein binders 
from non-binders by identifying native antibody–antigen interaction pairs among cognate and non-cognate 

Figure 8.   Receiver Operating Characteristic (ROC) curves for binder discrimination. ROC curves using 
Rosetta interface score of the top-scoring model as the classifier for (a) local refine, and (b) local dock. The 
native cognate antibody–antigen interaction pairs are true positives. ROC curves computed using four 
additional potentials: DFIRE2, FIREDOCK.AB, OPUS_PSP, and ZRANK2 are shown for comparison. The 
bottom right corner of the plot shows the area under the curve (AUC) for Rosetta bound (blue), unbound (red), 
and homology (green) complexes compared to the other potentials.
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complexes. After generating an unbiased dataset of cognate and non-cognate complexes, we used Rosetta inter-
face scores of the top-scoring models to rank the complexes. The binding discrimination results are encour-
aging when using bound backbones with the cognate pair ranked at the top in more than 80% of the antigen 
targets, compared to 35% and 12% when using unbound and homology-modeled antibody backbones, respec-
tively. Using RosettaDock’s local dock routine to increase antibody–antigen model diversity helps achieve more 
top-ranked cognate complexes when using homology-modeled antibody backbones, but decreases binding 
prediction accuracy in bound and unbound backbone-generated models because of the higher false positive 
rate.

Interface quality of the cognate models declines between using bound and unbound, homology-modeled 
antibody backbones to model the complexes, but remains about the same in non-cognate models. The drop in 
the cognate interface quality and hence binding discrimination highlight the sampling limitations of the current 
docking algorithms when using unbound and homology modeled backbones. Therefore, accurate modeling of the 
bound structures starting from the unbound structures or homology models is critical for improving accuracy. 
Flexible backbone algorithms such as EnsembleDock19 and SnugDock33 based on the conformer selection (CS) 
binding models previously shown to help improve interface quality34 of the models generated using unbound 
and homology complexes can be of immense value. However, existing flexible docking algorithms may increase 
false positive rates as the additional backbone flexibility will also help accommodate the energetically unfavorable 
interface residues at the epitopes in non-cognate models. Moreover, recent results27 show that none of the current 
backbone flexibility generation algorithms successfully sample the bound conformation in a sizable fraction of 
proteins. Therefore, improving prediction accuracy will require development of novel flexible backbone sam-
pling approaches to model the bound conformation with score functions specially catered to antibody binder 
discrimination.

Antibody–antigen cross-docking is the only in silico approach that offers a structural perspective in 
epitope-targeted antibody screening studies. It is useful to screen antibody binders raised from animal immuniza-
tion campaigns to pick an epitope-diverse selection of antibodies increasing the chances of in vivo efficacy that is 
often a complex function of various interactions involving the antigen. With the rapid rise in the scale of the com-
puting resources, computational structure-based methods are already playing a role in understanding the bio-
logical process of generation of antibody repertoires and how antibodies are selected for recognizing pathogens6.  
Further improvements in binding predictions with unbound and homology-modeled backbones will pave 
the way for studies parsing antibody sequence repertoires for antigen-specific binders and rational engineer-
ing of antibodies to minimize off-target activity. This study is the first step towards development of an efficient 
structure-based cross-docking framework to support high-throughput experimental antibody pipelines.

Methods
Homology modeling.  Rosetta’s antibody homology modeling protocol, RosettaAntibody 3.018 is used for 
constructing homology models for the antibodies in the dataset. VL,VH homologs with more than 80% sequence 
identity, and CDR homologs with more than 98% sequence identity are excluded from the database during the 
template selection stage. Since the antibodies used in the study are part of the RosettaAntibody database, filtering 
is necessary to avoid picking structural components from the native structures during modeling. Additionally, 
the sequence identity cutoffs help simulate homology modeling of newly-determined antibody sequences that 
do not have existing highly homologous structural templates. The coordinate files of the 17 homology-modeled 
antibodies are provided as Supplementary Dataset 1.

Starting complex structure generation.  For bound complexes, the crystal structure of the antibody–
antigen complex is used as the starting structure. For unbound complexes, the starting structure is generated by 
superimposing the antibody and antigen unbound structures on the bound crystal complex, and for homology 
complexes, the antibody homology model and antigen unbound structure on the bound crystal complex.

Local refine.  The local refine routine is derived from RosettaDock’s high-resolution refinement stage. 
Since superposing the VL–VH framework of the non-cognate antibody on the cognate antibody to generate the 
starting non-cognate structure often results in steric clashes with the antigen, the standard refinement routine 
moves the antibody away from the epitope to lower the total score of the complex. To generate models focused 
around the epitope, we created a customized local refine antibody–antigen refinement routine. The routine starts  
minimization of the antibody–antigen orientation with a score function with a low Van der Waals repulsive weight 
(wrep = 0.02) to ignore starting steric clashes. The weight is gradually ramped up to its full value (wrep = 0.186) in 
increments of 33% each over three minimization cycles allowing sampling of conformations that are otherwise 
inaccessible due to the high-energy barriers.

Local dock.  We used the standard RosettaDock local docking routine35 involving a sequence of low-resolution 
and high-resolution steps to generate local dock models.

Metrics.  Antibody ligand-RMSD (Ab_L_RMSD) of a model antibody–antigen complex is defined as the 
RMSD between the antibody framework Cα atoms (receptor) in the model and reference complexes calculated 
after aligning the antigen backbones (ligand) in the both the complexes.

= ∑ −α αAb L RMSD C C
N

_ _ ( _ _ _ )
_ _

Ab Frwk Ref Ab Frwk

Ab Frwk Res

2
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where α αC C_ , _ _Ab Frwk Ref Ab Frwk are the Cα-atom coordinates of the antibody framework residues in the model and 
reference antibodies, respectively. The RMSDs are calculated over all the antibody framework residues 
(N _ _Ab Frwk Res).

Antibody ligand-RMSDs are analogous to the commonly used ligand RMSDs in docking calculations.

Rosetta command line.  The algorithms in the manuscript are implemented using the Rosetta molecular 
modeling suite. The Rosetta command-line arguments used for the calculations are as follows:

Cognate and non-cognate model generation. 
	(a)	 Local refine

ab_binding.<exe>
–s 1BVK.1AHW.pdb
–docking:partners LH_C
–docking:docking_local_refine
–pH:pre_process
–pH:cognate_pdb 1AHW.b.pdb
–pH:cognate_partners LH_C
–ex1 –ex2aro –use_input_sc
–nstruct 50

where 1BVK.1AHW.pdb is the structure generated after superposing the non-cognate antibody from 
1BVK.pdb on the cognate antibody in 1AHW.pdb. The –docking:partners and –pH:cognate_
partners arguments identify the receptor and ligand chains in non-cognate and cognate complexes, 
respectively. –pH:cognate_pdb provides the cognate bound complex.

(b)	 Local dock
docking_protocol.<exe>

–s 1BVK.1AHW.pdb –native 1BVK.1AHW.pdb
–dock_pert 3 8 –spin –partners LH_C –ex1 –ex2aro
–nstruct 1000

Homology modeling. 
(a)   RosettaAntibody homology modeling

antibody_H3.<exe>
–s 1AHW_h.pdb
–antibody:remodel perturb_kic
–antibody:snugfit true
–antibody:refine refine_kic
–antibody:cter_insert false
–antibody:flank_residue_min true
–antibody:bad_nter false
–antibody:h3_filter false
–antibody:h3_filter_tolerance 5
–antibody:constrain_cter
–antibody:constrain_vlvh_qq
–constraints:cst_file 1AHW_cter_constraint
–loops:legacy_kic false
–loops:kic_min_after_repack true
–loops:kic_omega_sampling
–loops:allow_omega_move true
–kic_bump_overlap_factor 0.36
–loops:ramp_fa_rep –loops:ramp_rama
–loops:outer_cycles 5
–corrections:score:use_bicubic_interpolation false
–ex1 –ex2aro –extrachi_cutoff 0
–nstruct 2000
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