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Determining causal miRNAs and 
their signaling cascade in diseases 
using an influence diffusion model
Joseph J. Nalluri1, Pratip Rana1, Debmalya Barh2,3,4, Vasco Azevedo3, Thang N. Dinh1, 
Vladimir Vladimirov5,6,7,8 & Preetam Ghosh   1

In recent studies, miRNAs have been found to be extremely influential in many of the essential 
biological processes. They exhibit a self-regulatory mechanism through which they act as positive/
negative regulators of expression of genes and other miRNAs. This has direct implications in the 
regulation of various pathophysiological conditions, signaling pathways and different types of cancers. 
Studying miRNA-disease associations has been an extensive area of research; however deciphering 
miRNA-miRNA network regulatory patterns in several diseases remains a challenge. In this study, 
we use information diffusion theory to quantify the influence diffusion in a miRNA-miRNA regulation 
network across multiple disease categories. Our proposed methodology determines the critical disease 
specific miRNAs which play a causal role in their signaling cascade and hence may regulate disease 
progression. We extensively validate our framework using existing computational tools from the 
literature. Furthermore, we implement our framework on a comprehensive miRNA expression data set 
for alcohol dependence and identify the causal miRNAs for alcohol-dependency in patients which were 
validated by the phase-shift in their expression scores towards the early stages of the disease. Finally, 
our computational framework for identifying causal miRNAs implicated in diseases is available as a free 
online tool for the greater scientific community.

MicroRNAs (miRNAs) are small non-coding RNAs, which are approximately ~20–22 nt in size. They play a cru-
cial role in regulating gene expression by imperfect base-pairing at the 3′-UTRs of messenger RNAs1. miRNAs 
are commonly considered as negative regulators of gene expression2, however it has been shown that they also 
act as positive regulators of gene expression in some cases3. miRNAs possess a complex regulatory mechanism of 
feed-back and feed-forward regulation whereby they regulate their own expression or other genes′ expressions4. 
Multi-level interactions at miRNA regulome-level include miRNA-mRNA, miRNA-environment factors (e.g. 
virus, stress and radiation), miRNA-transcription factors and also miRNA-miRNA interactions5. A miRNA can 
modulate hundreds of target genes, thereby potentially regulating several cell processes6, biological processes 
and patho-physiological disorders. Hence, the origins of a vast number of diseases have been linked to miRNA 
(de)regulations7. Such miRNA-disease associations have been widely researched8, 9 and various models of pre-
diction10–12 and identification13, 14 of miRNA-disease associations have been developed to study the specific pat-
terns of their interactions. miRNA-disease associations have also been formulated into several network models 
and various graph theoretical approaches have been implemented15–17 to study them from a network topological 
perspective.
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Furthermore, recent cancer biology studies and tumor genome sequencing approaches have investigated into 
subclonal levels of a particular tumor and clone-based network analysis18. These studies have revealed a deeper 
insight into the complexity of cancers. As opposed to the traditional view of a tumor consisting of a distinct 
single clone, recent studies have confirmed that a single tumor can contain more than one clone and many dis-
tinct subpopulations of genetic profiles (e.g. cells) or clones can mutually exist19, 20. Tools such as ABSOLUTE21 
and ASCAT22 are able to computationally quantify and reconstruct the genetic networks tracing the lineage of 
the mutation. These subclones may consist of distinct functional modules of miRNA, target mRNAs and their 
interactions. Hence, construction, modeling and comparing networks of every distinct clone within a tumor 
can provide insights into the working mechanism among subclones. It has been suggested that miRNAs related 
to same diseases tend to work together in miRNA clusters23, 24. In addition, it has been observed that among 
multi-factorial diseases like cancer, there exist groups of miRNA clusters known as superfamilies that are 
expressed consistently across many cancer phenotypes and may act as drivers of tumorigenesis25. The presence 
of such groups not only suggest the need for coordinated targeting and regulation amongst the miRNAs, but also 
signify that a few critical miRNAs may direct the global expression patterns; and hence it is likely that therapeutic 
suppression or activation of expression of any one of the few miRNAs in such groups may compensate for the 
other participants of the group25. Despite such evidence, only one previous study has reported an experimen-
tal proof of direct miRNA-miRNA interactions5 and very few studies have computationally predicted possible 
miRNA-miRNA interactions26.

Although many studies have identified miRNAs associated with diseases, only a few of those have investigated 
the (signal) cascading influence/effect of miRNA (de)regulations onto other miRNAs or molecular participants. 
Despite the wide availability of data regarding a miRNA’s direct/indirect effect on various biological processes, 
identifying or quantifying their influence remains a challenge. To the best of our knowledge, there has not been 
any model that simulates the time or an event-driven progression of miRNA (de)regulations leading up to a 
pathophysiological disorder. It is still unknown how (de)regulations of a miRNA impact a disease progression 
and/or their repression. Understanding the progression of such miRNA-driven signaling cascade in the context 
of diseases is extremely crucial for identifying (i) the critical miRNAs (as potential biomarkers and directors of 
global expression patterns); and (ii) the key stages in the progression of a disease-state under the influence of 
miRNAs’ expression.

In this work, we model the passage of miRNA-based influence propagation among other miRNAs as a net-
work diffusion model. We use social behavioral/network principles to model a miRNA’s cascading influence 
or flow of information in and among disease-specific miRNA interaction networks (DMIN) (elaborated in the 
Methodology section). Essentially, a DMIN is a (predicted) miRNA-miRNA interaction network pertaining to a 
specific disease. These networks often resemble the behavioral characteristics of a social network, such as homo-
phily27, wherein participants tend to have positive ties with participants that are similar to themselves; this has 
already been evidenced in the case of miRNAs24. Hence, the application of social network algorithms is apt for 
modeling the progression of a miRNA’s activity and its signal cascading effect in the context of a disease-state. 
We explore the property of information diffusion through miRNAs which is a crucial characteristic of a DMIN 
network and study the aspect of information flow in DMINs. Consider a network of miRNA nodes as shown in 
Fig. 1. At time point T1, only miRNA-1 is activated (in green color). At time point T2, miRNA-1 attempts to acti-
vate its neighbors, miRNA-2 and miRNA-3. While, miRNA-2 is not activated (shown by a red arrow), miRNA-1 
successfully activates miRNA-3 (shown by a green arrow). At time point T3, miRNA-3 tries to activate miRNA-4 
and miRNA-5, out of which only miRNA-5 gets activated (shown by a green arrow) while activation of miRNA-4 
is unsuccessful (shown by a red arrow). And at time point T4, miRNA-5 successfully activates miRNA-4. A par-
ticular disease-state is assumed to be highly probable once a required set of crucial miRNA nodes in a network 
are activated. In this work, we refer to activating/influencing a miRNA as a function of time and analogous to 
affecting a miRNA’s expression and activity. Note that miRNAs implicated in a particular disease may either be 
up- or down-regulated; our notion of activating/influencing a miRNA is abstract and encompasses both cases. In 
other words, the nodes in a DMIN sequentially activate/influence others where such activation pertains to a sig-
nificant differential expression of a miRNA over its corresponding expression at control. In this work, we devise a 
modeling framework to identify the signaling cascade of miRNAs that have already been implicated in particular 
diseases; our framework can distinguish between causal miRNAs and the affected ones from the global pool of 
miRNAs that were implicated in a disease. We also present this framework in the form of an online web tool, 
miRfluence that can be readily used by the scientific community. Once the passage of influence between miRNAs 

Figure 1.  Cascading flow of influence in a DMIN.
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is decoded based on the software tool presented here, it will motivate a wide variety of applications ranging from 
predicting disease progression, disease outcomes and designing drug therapeutics.

Background
The concept of information diffusion in a network has been widely deployed in the field of social network theory 
to study spread of ideas, rumors and product adoption between the individuals in the network via the word of 
mouth effect28–30. There are essentially two fundamental models of information propagation in social networks 
- linear threshold (LT) and independent cascade (IC) model. Every other model proposed in the literature is a 
derivative of these canonical models. Although, this concept has been applied in the field of sociology to study 
the various behavioral phenomena, such as the spread of a new concept31, it has also been extended to understand 
the dynamics of spreading of diseases32–34. However, understanding influence diffusion in a complex network 
of miRNAs has never been attempted before and is challenging due to the multi-level nature of interactions. In 
this work, considering that miRNAs of similar diseases tend to act cooperatively24, we focus on the social nature 
of miRNAs related to a class of diseases. We deploy an information diffusion model, through which a miRNA’s 
influence on its neighboring miRNAs is analyzed and quantified. Social influence can affect a range of behaviors 
in networks such as dissemination of information/influence, communication and in this case, even mutation. 
In both the LT and IC model, the nodes (i.e. the miRNAs) in the network can be in one of the two states - active 
or inactive. The activated nodes spread their influence by activating their neighboring inactive nodes based on 
a certain criteria or effect. Garnovetter et al.35 proposed the LT model by applying a specific threshold in each of 
the nodes of the network. Therein, each node is activated only by its neighbor(s) depending upon the cumulative 
weight of the incoming edges to the node. The node becomes active when the cumulative sum of the weight of the 
incoming edges from an active neighboring node crosses its threshold value. Once activated, the node remains 
active and tries to activate its neighbor, thereby propagating its influence. On the contrary, the IC model uses edge 
probability to determine the information diffusion. In this model, an active node has a single opportunity to acti-
vate its neighbors. The edge weights represent the activation probability or likelihood of information propagation 
in between two nodes. Hence, upon activation, an active neighbor is likely to choose a neighbor with the highest 
edge weight to activate next.

The miRNA-miRNA interaction network in DMINs used in this study have probability scores as edge weights. 
These scores act as activation probabilities. Using the IC model, upon an activation of a certain miRNA, based on 
the edge weights between its neighbors, we can determine the next miRNA that is likely to be activated. In this 
context, activation implies having a causative effect on another miRNA’s expression level. This effect may be direct 
(when a miRNA directly controls the expression of another one) or indirect (when such regulation can be due 
to intermediate genes/proteins that these miRNAs regulate). Following this pattern, the information flow or the 
spread of influence across the miRNAs can be detected. Hence, the pattern of influence across miRNAs in a dis-
ease can be identified and studied. Further, we integrate different DMINs belonging to the same category profile, 
(e.g. ‘gastrointestinal cancers’) and detect the spread of influence among miRNA-miRNA interaction networks 
belonging to this profile. Subsequently, we determine the key miRNAs playing an influential role among all the 
diseases within a certain profile.

Methodology
Disease-specific miRNA-miRNA interaction networks (DMIN).  PhenomiR 2.0 database9 is a man-
ually curated comprehensive data set of differentially regulated miRNA expressions in diseases. It contains 632 
database entries collated from 345 articles pertaining to 675 unique miRNAs and 145 diseases. The data curated 
in PhenomiR is not normalized and is available for download as is. An example of miRNA’s foldchange values 
and their corresponding regulations in a disease is shown in Fig. 2(i), where miRNAs are denoted by M1 − M5 
and disease is denoted by D1. Nalluri et al., developed a consensus-based network inference pipeline from the 
PhenomiR dataset to predict key miRNA signatures (i.e., groups) across several categories of diseases26. To briefly 
summarize this work, they considered a pair of miRNA and disease as a single miRNA-disease (MD) entity (or 
node) which conceptually signifies a disease-specific miRNA. Therefore, the expression score of MiDj would 
mean the expression score of miRNA i in disease j. Next, they created a miRNA-disease expression matrix, in 
which the rows represented the various samples/studies and columns represented MD nodes. Next, they used six 
network inference algorithms on the expression matrix and a consensus-based aggregation approach to derive 
the probabilistic MD − MD interaction network. From this MD − MD interaction network, they further extracted 
disease-specific miRNA-miRNA interaction networks (DMIN)s and made them available in the tool, miRsig26. 
Further details about this methodology are mentioned in their work26. DMINs are directed graphs G(V, E) where 
V is the set of miRNAs being regulated in a specific disease and E is the set of weighted edges between them 
denoting the probability of an interaction. We downloaded the DMINs from miRsig as is, and further developed 
an optimization-based methodology (detailed in the next section) to generate a modified DMIN which would 
serve as the input network for the influence diffusion based strategy (Fig. 2(iv)). miRsig hosts DMINs for 66 
specific diseases. However, to pursue a defined cancer-specific analysis, only 17 DMINs were considered. Based 
on their tissue-specificity, DMINs were grouped into four categories, namely cancer of the gastrointestinal, endo-
crine, brain systems and leukemia resulting in four DMINs corresponding to each category.

Network generation via optimization of expression scores.  DMINs are directed miRNA-miRNA 
interaction networks with probability scores as edge weights. To have a network with highest confidence, we 
extracted DMINs having edge weights of 0.90 score and above. Selecting a high cut-off of 0.9 on the edge scores 
is a standard practice in such reverse engineering algorithms to ensure confidence in the results. Such algorithms 
generally suffer from low accuracy due to the noisy expression datasets, non-linearity in the miRNA interactions 
as well as the high complexity of the inverse problem of inferring N2 edges in a network of N nodes. Hence, it is 
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customary to work with only the high-confidence edges signified by a 0.9 cut-off on the edge scores. Additionally, 
the very nature of the influence diffusion set-up works better for sparse graphs; for more dense graphs, most 
nodes in the network will end up having a high influence score for activating the entire network just because of 
the availability of more paths to destination nodes. To avoid this possibility, we chose a edge score cut-off of 0.9 
in this paper. After deriving these DMINs, we discarded the edge weights (Fig. 2(ii)). We term this network as 
DMINHC (DMIN of high-confidence). Although, DMINHC captures the miRNA-miRNA interaction topology, 
it does not take into consideration the expression scores of the individual miRNAs within their corresponding 
diseases (Fig. 2(i)). Expression scores are a vital part of the miRNA-disease regulatory mechanism. Hence, we 
append DMINHC with expression scores for every node (i.e., miRNA), as shown in Fig. 2(iii) resulting in our final 
network, DMINHCE(DMIN of high-confidence and expression score). The expression scores of miRNAs were 
converted to their log2 scores before being incorporated. While incorporating miRNA’s expression scores into 
DMIN, some miRNAs had multiple expression scores for a particular disease (e.g., row #1 and #3 in Fig. 2(i)). In 
such instances, these multiple scores were averaged to get the best possible estimated expression score to be incor-
porated into the DMIN(e.g., node M1 in Fig. 2(iii)). Nalluri et al., demonstrated that averaging of the multiple 
expression scores yielded the best estimate for DMINs (Average Scoring, under Methods)26.

It is important to note that, in our network-building methodology of DMINHCE, we justify the underlying 
biological implications of a miRNA’s regulatory behavior. We assume that expression changes in a particular 
miRNA will have consequential effect on another miRNA’s expression behavior. Hence, if a miRNA has a very 
high expression score (i.e. degree of fold-change) and is connected to its neighboring miRNAs then it would have 
a corresponding degree of influence or propagating effect on its neighboring miRNAs. Hence, in order to build a 
network model which is as close to the underlying biological activity, we design the following optimization-based 
strategy which provides us with DMINHCE with edge-weights, i.e., a weighted DMINHCE (see Fig. 2(iv)). These 
edge-weights would quantify influence of one miRNA onto another, thereby modeling the behavior of miRNA’s 
regulatory activity based on their expression scores.

Optimization formulation for generating edge weights.  In order to derive the edge weights for DMINHCE, the 
following assumptions were postulated.

	 1.	 The direction implies regulatory influence.
	 2.	 Each miRNA’s expression score is a cumulative result of its neighboring miRNAs’ expression scores. Hence, 

the cumulative sum of incoming edge-weights would equal to the expression score of the miRNA. This is 
denoted by the Incoming constraint in the optimization function.

	 3.	 Each miRNA’s outgoing edge-weights would not exceed its expression score. A miRNA’s expression score 
corresponds to its outgoing edge-activity implying that the consequential effect a miRNA has on its neigh-
boring miRNAs is directly correlated to its expression score. However, in this case we introduce a slack 

Figure 2.  Overview of network generation via optimization of expression scores in a DMIN.
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quantity to make the model more relaxed and feasible for solutions. Without the slack variable, the model 
becomes too restrictive and would not yield any solutions. This is denoted by the Outgoing constraint in the 
optimization function.

The formulation is as follows,
Objective: To achieve the most optimal regulatory network flow (i.e., edge weights) characterized by expres-

sion scores of each node. This is achieved by obtaining minimum slack (denoted by si) throughout the network; 
subject to constraints that (i) the cumulative sum of products of incoming edge-weights and corresponding 
expression scores of parent nodes would equal the expression score of the target node and (ii) sum of every node’s 
outgoing edge-weights can exceed its expression score within a slack amount.

Variables: Let Xi,j be the flow of influence from node i to node j, where i, j ∈ n, and n is the total number of 
nodes in the network, e be the fold-change expression of a node, and s be the slack quantity for ∀ i, j

Optimization function:
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The above methodology provided an optimally-weighted DMINHCE (Fig. 2(iv)) which was used as the input 

network for the subsequent influence diffusion algorithm.
The goal of the optimization step is to derive as good an input for the subsequent analysis for influence diffu-

sion based on the expression behavior of miRNAs. Note that ideally for the influence diffusion analysis, the edges 
should signify the influence of the source node onto the target node. In terms of chemical kinetics of the A → 
B edge, such influence is determined by [concentration of the source node A] × [rate constant]; since such rate 
constants of the miRNA interaction network are unknown (and very difficult to validate experimentally as they 
comprise indirect interactions of possibly multiple components), we simply considered the influence of an edge to 
be governed by the concentration of the source node exclusively. Also, considering the steady-state concentrations 
of the source nodes only signify the equilibrium edge weights and hence the static influence of the source onto 
the target; this does not capture the time varying influence on the edges as the source node concentration should 
ideally vary with time.

In addition to the optimization-based network generation method, we also implemented another network 
generation method - ‘Rescoring all edges to constant weight’, wherein we assign a constant weight on all the edges 
of the network. The goal of the more simplistic constant edge weights is to further disregard the steady state 
source node concentrations and assign equal weightage to all edges in terms of their influence. This formulation 
can only identify the topological pressure points and should be less accurate. However, due to limitations on the 

Figure 3.  Overview of the workflow of the methodology. Consider two weighted DMINHCEs belonging to 
disease D1 and D2 which are under the same disease category. The edge m1 − m2 is present in both the networks. 
In the final updated network, the edge weight of m1 − m2 is recalculated accordingly using the Logical AND 
operation and upon this updated network, the Compute Influence algorithm is implemented.
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availability of such detailed time-series datasets on miRNA expression levels in specific diseases, it is currently 
not possible to quantitatively show the difference in accuracy of identifying the influential miRNAs from the two 
approaches. Perhaps, the common miRNAs that show up to be influential from both approaches will be a better 
option to consider.

Influence Diffusion analysis.  Upon deriving the weighted DMINHCE for 17 diseases and four disease cat-
egories, we implemented the influence diffusion algorithms to derive a list of miRNAs ranked according to their 
highest influence in a disease category (see Section Compute Influence and Algorithm 1). This algorithm was 
implemented using the influence maximization code freely distributed36.

In a DMINHCE of a disease category, there may be multiple occurrences of the same miRNA-miRNA interact-
ing edge due to its presence among several diseases of the category. Here, two approaches are further adopted to 
calculate their single edge prediction score. As seen in Fig. 3(a), two weighted DMINHCEs belonging to disease 
D1 and D2 are under the same disease category. The edge m1 − m2 is present in both networks with different 
edge-weights. To address these scenarios, we devised the following two approaches.

	 (i)	 Logical AND/Intersection operation
Under this operation, only the edges which were present in all the diseases of a category were retained in 
the final disease category network. The edge weights for these common miRNA-miRNA interaction edges 
were calculated by the following formula,

= × × … ×P P P P (2)new n1 2

where P1, P2, and Pn are prediction scores of the same edge in individual disease networks.
This operation was implemented on the following four categories consisting of the subsequent diseases:
Gastrointestinal category: esophageal carcinoma, gastroesophageal carcinoma, gastrointestinal cancer, 
gastric cancer, colorectal cancer.
Leukemia category: hematological tumors, acute myeloid leukemia (AML), susceptibility to chronic lym-
phatic leukemia, acute myelogenous leukemia.
Endocrine category: pancreatic cancer, hepatocellular carcinoma (HCC), thyroid carcinoma (follicular), 
thyroid carcinoma (papillary).
Brain systems: neuroblastoma, medulloblastoma, glioblastoma.

	(ii)	 Cumulative Union:

Under this approach, firstly, for every weighted DMINHCE in the category, each miRNA’s coverage was deter-
mined using Algorithm 1. The coverage value of each miRNA was mapped into a coverage-percentage (e.g., a node 
having coverage-percentage score of 70 would imply its influence over 70% of the nodes in the network). Next, 
for the miRNAs which were repeated in multiple diseases within the category - their coverage-percentages were 
averaged. Finally, the miRNAs are ranked as per their coverage-percentage in the disease category. An explanation 
of the coverage computation algorithm is provided in the next section.

Compute Influence (coverage).  This algorithm (i.e., Algorithm 1) is based off of the IC model of information 
diffusion. Let COV(u) denote the coverage/influence of a miRNA node u in the network. Upon the execution of 
the algorithm, all miRNAs are ranked as per their highest coverage/influence. The coverage of each node has been 
calculated after 10000 monte carlo simulation cycles to achieve the optimal value of coverage.

The algorithmic details of computing the COV function are described in the theory of Independent Cascade 
model stated in Kempe et al.‘s work37; however the following is the summary of its working.

	 1.	 Select a node in the network, e.g. consider node 1 in Fig. 4 (T1).
	 2.	 Along its every outgoing edge, perform a biased coin toss, where bias is the edge-probability. In Fig. 4 (T2), 

this operation is performed along edges 1 → 2 and 1 → 3 having edge weights 0.5 and 0.9, respectively.
	 3.	 If the coin toss operation is successful, then activate the node, and perform step (2) on the newly activat-

ed node. In Fig. 4 (T3), node 2 is not activated (denoted by a red edge, 1 → 2) while node 3 is activated 

Figure 4.  Computation of coverage of influence for node 1. Node 1 activates node 3, node 5 and node 4 based 
on a series of biased coin-toss operations along its edges.
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(denoted by a green node 3 and edge 1 → 3). Next, a biased coin toss is performed on node 3 along its edges 
3 → 4 and 3 → 5 which results in activation of node 5 and a failed activation of node 4. Subsequently, step 
(2) is performed on node 5 which results in activation of node 4.

	 4.	 Stop when there are no more new activations possible. In Fig. 4 (T4), no more new activations are possible. 
Hence, the nodes which can be influenced by node 1 are nodes 3, 5, and 4. Coverage score of node 1 is 
three.

	 5.	 Perform steps (2–4) for the initially selected node (i.e., node 1 in Fig. 4) 10,000 times and finally, average 
the coverage scores.

	 6.	 Repeat steps (1–5) for next node.

Results
The above methodology was implemented on DMINHCEs of four disease categories and on individual diseases as 
well. However, to maintain the emphasis on pan-cancer diseases, we discuss the results of this methodology on 
the aforementioned disease categories. The results of individual diseases are available and can be downloaded 
for study and research from the tool miRfluence. We implemented the two approaches, i.e., Intersection/Logical 
AND and Cumulative Union for the DMINHCEs of these four disease categories, and the results are labeled under 
Influence Maximization in Table 1. Under the Cumulative Union approach, since all the miRNAs (belonging to a 
category) are ranked as per their coverage percentage, we have selected top 10 miRNAs to be displayed as most 
influential miRNAs. The results obtained were compared with two other approaches - miRsig26 and tool for anno-
tations of miRNAs (TAM)38. miRsig uses a consensus-based network inference pipeline to predict the crucial 
miRNAs among the disease categories. The TAM method uses a prediction model to identify novel miRNA inter-
actions and the most likely diseases to be affected (noted with p-values) for the input set of miRNAs.

It is also important to note that there are hardly any tools which predict/determine a list of crucial miR-
NAs based on an input set of diseases. The availability of tools which predict a set of diseases based on an input 
set of miRNAs are also scarce (like tool for annotations of miRNAs(TAM)). Many tools provide individual 
miRNA-disease associations and prediction scores but not set-onto-set analysis. These factors make one-on-one 
comparison of the proposed methodology very challenging. Hence, we have used the only tools that are available 
for comparison. The results are presented in Table 1.

	 1.	 Endocrine cancers (see row Endocrine cancers in Table 1)
As per Logical AND/Intersection approach, the miRNAs hsa-mir-181b-1, hsa-mir-181a-1, hsa-mir-224, 
hsa-mir-221 and hsa-mir-222 are key influential miRNAs and they were also predicted as crucial miRNAs 
as per the tool, miRsig. These same miRNAs are also present in the list of top ten miRNAs under the Cumu-
lative Union approach. As per the tool TAM, all the diseases of this category, i.e., thyroid neoplasms, pancre-
atic cancer and HCC are very likely to be associated with the aforementioned list of miRNAs. The reported 
PubMed IDs report the occurrence/expression of all the resultant miRNAs within the same PubMed ID.

	 2.	 Leukemia (see row Leukemia cancers in Table 1)
Under this category, all the miRNAs determined by the Logical AND/Intersection were identified as crucial 
by the tool miRsig. Seven miRNAs predicted by the Cumulative Union approach are confirmed by miRsig, 
as well. Among the diseases, acute myeloid leukemia (AML), chronic lymphatic leukemia (CLL) and 

Algorithm 1.  Computing coverage of every node in the network.
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hematological disorders, were determined as most likely diseases as per TAM. The reported PubMed IDs 
report the occurrence/expression of all the resultant miRNAs within the same PubMed ID.

Category

Methods

PubMed IDs

Influence Maximization

miRsig

TAM (disease: p-value)

Intersection Cumulative Intersection Cumulative

Endocrine cancers hsa-miR-181b-1 hsa-miR-224 hsa-miR-221 thyroid neoplasm: 2.34e-04 thyroid neoplasm: 
2.56e-03 18270258

- hepatocellular carcinoma 
(HCC) hsa-miR-181a-1 hsa-miR-155 hsa-miR-222 pancreatic: 4.61e-03 pancreatic: 5.76e-04 21139804, 24289824, 

16966691

- pancreatic cancer hsa-miR-224 hsa-miR-222 hsa-miR-155

- thyroid carcinoma, 
follicular hsa-miR-221 hsa-miR-181a-1 hsa-miR-224

- thyroid carcinoma, 
papillary hsa-miR-222 hsa-miR-181b-1 hsa-miR-181a-1

hsa-miR-221 hsa-miR-181b-1

hsa-miR-187

hsa-miR-31

hsa-miR-205

hsa-miR-181c

Leukemia cancers hsa-miR-130a hsa-miR-126 hsa-miR-29b-1 AML: 1.12e-02 AML: 3.48e03 18337557, 21708028, 
19602709

- hematological tumors hsa-miR-199b hsa-miR-130a hsa-miR-20a CLL: 1.92e-02 CLL: 8.59e-03 17934639, 20439436

- acute myeloid leukemia 
(AML) hsa-miR-29b-1 hsa-miR-20a hsa-miR-126 hematological: 6.53e-03 hematological: 0.127 16192569, 21139804

- chronic lymphatic leukemia 
(CLL) hsa-miR-146a hsa-miR-29b-1 hsa-miR-130a

- acute myelogenous 
leukemia hsa-miR_20a hsa-miR-99a hsa-miR-99a

hsa-miR-199b hsa-miR-146a

hsa-miR-106a hsa-miR-199b

hsa-miR-146a

hsa-miR-222

hsa-miR_155

Gastrointestinal cancers hsa-miR-181a-1 hsa-miR-29c hsa-miR-30a None Colorectal cancer: 
3.06e-02

18607389, 20480519, 
22112324

- esophageal hsa-miR-30a hsa-miR-181a-1 hsa-miR-181a-1

- gastroesophageal hsa-miR-29c hsa-miR-30a hsa-miR-29c

- gastrointestinal hsa-miR-181b-1

- gastric hsa-miR-195

- colorectal hsa-miR-221

hsa-miR-21

hsa-miR-210

hsa-miR-99a

hsa-miR-126

Brain systems hsa-miR-330 hsa-miR-187 hsa-miR-323 None Glioblastoma: 0.09 17363563, 18577219, 
24213470

- neuroblastoma hsa-miR-149 hsa-miR-181b-1 hsa-miR-129-1 Medulloblastoma: 0.29 18973228, 24213470, 
18756266

- medulloblastoma hsa-miR-331 hsa-miR-137 hsa-miR-137

- glioblastoma hsa-miR-107 hsa-let-7a-1 hsa-miR-330

hsa-miR-129-1 hsa-miR-150 hsa-miR-149

hsa-miR-190 hsa-miR-107

hsa-miR-323 hsa-miR-30c-1

hsa-miR-107 hsa-miR-181b-1

hsa-miR-149 hsa-miR-30b

hsa-miR-331 hsa-miR-331

hsa-miR-150

hsa-let-7a-1

Table 1.  Results of influence maximization methods - Intersection and Cumulative compared to tools - miRsig 
and TAM with relevant PubMed IDs.
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	 3.	 Gastrointestinal cancers (see row Gastrointestinal cancers in Table 1)
The miRNAs predicted as influential (by Logical AND/Intersection) under this category were also pre-
dicted to be critical miRNAs by the tool, miRsig. The top ten miRNAs predicted by the Cumulative Union 
approach had three of them confirmed by miRsig as well. In the gastrointestinal category, colorectal cancer 
is listed in TAM with a p-value of 2.03e-3. The reported PubMed IDs report the occurrence/expression of 
all the resultant miRNAs within the same PubMed ID.

	 4.	 Brain systems (see row Brain systems in Table 1)

Under this category, all the miRNAs determined by the Logical AND/Intersection appraoch were predicted to 
be crucial by miRsig. Eight out of then reported miRNAs under the Cumulative Union approach were corrobo-
rated by miRsig. TAM’s prediction scores for the two diseases (glioblastoma and medulloblastoma) are not in the 
confidence margin. However, the reported PubMed IDs report the occurrence/expression of all the resultant 
miRNAs within the same PubMed ID.

Case Study and Proof-of-concept.  Our proposed methodology is able to identify influential miR-
NAs in disease-specific networks as demonstrated in the previous section. Furthermore, since the dynamics of 
miRNA-mediated regulations are similar in biological networks, this methodology has broad applications rang-
ing from networks pertaining to cancers to other pathophysiological conditions, as well. We further demonstrate 
the application of our proposed methodology on a miRNA expression data set generated from a postmortem 
brain tissue from patients diagnosed with alcohol dependence (AD).

Tissues for 18 AD patients and matched controls were obtained from a larger sample of 41 AD cases and 41 
controls. The postmortem brain sample was received from the Australian Brain Donor Program, New South 
Wales Tissue Resource Centre, at the University of Sydney, (http://sydney.edu.au/medicine/pathology/trc/). The 
demographic characteristics of the sample are described elsewhere39.

The miRNA expression data were generated using the Affymetrix GeneChip miRNA 3.0 array and normalized 
using log2 transformation, followed by quantile normalization, and median-polish probe-set summarization. The 
final miRNA expression data had 1733 miRNAs and 35 sample tissues (AD- 18, control-17). This expression data 
is provided in the Supplementary material.

The implementation of our proposed methodology on this data set consisted of the following steps:

	 1.	 Construction of a probabilistic miRNA-miRNA interaction network from the miRNA expression matrix 
based on the miRsig pipeline26. This network had 1733 miRNAs.

	 2.	 From this network, in order to generate a high-fidelity network, we consider only the edges which have a 
probability score of 0.9 and above.

	 3.	 Next, we determine 115 AD-related miRNAs. These miRNAs were derived from a brief literature survey 
mentioned in Ponomarev’s work40 which included miRNAs identified by Sathyan et al.41, Wang et al.42, Ya-
dav et al.43, Lewohl et al.44 and Nunez et al.45. We extract a sub-network consisting of 115 miRNAs and the 
edges among them from the larger network of 1733 miRNAs. This sub-network is a DMIN for the disease 
condition - alcoholic dependency.

	 4.	 Next, we choose the option of re-scoring the edges of this network with a fixed edge score of 0.01. Note that 
since this AD dataset involves multiple expression values of each miRNA pertaining to each sample (18 AD 
and 17 control samples), it is not possible to directly use the optimization formulation for generating edge 
weights as discussed before; averaging the miRNA expression scores across both control and AD samples 
will not work here as the AD samples showed significantly different expression levels based on the number 
of years of alcohol consumption of the patients. Additionally, we did not directly use the edge probabilities 
from the consensus methodology for generating the miRNA network as such probabilities quantify the 
feasibility of an edge between two miRNAs and not the actual influence one miRNA has on the other one. 
Also, the DMINHC is a highly dense and inter-connected network and hence having higher scores of edge 
weights will cause all the miRNAs to activate its neighbors, thereby labeling all the miRNAs as influen-
tial. Moreover, since these edge weights model regulatory influence and flux phenomena, lower values are 
more close to actual biological notion of flux dynamics; note that our goal here is to really understand the 

Category miRNAs

Top 5 miRs with highest 
influence

hsa-miR-376c

hsa-miR-27a

hsa-miR-30e

hsa-miR-194

hsa-miR-9

Bottom 5 miRs with least 
influence

hsa-miR-196a*

hsa-miR-606

hsa-miR-7b*

hsa-miR-302b*

hsa-miR-302c*

Table 2.  miRNAs with the highest and lowest coverage scores after the implementation of Algorithm 1.

http://sydney.edu.au/medicine/pathology/trc/
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topological pressure points in this miRNA interaction network with a constant edge weight of 0.01 on all 
edges using the influence diffusion model. We tried other (constant) low edge scores as well and the rank-
ings of the miRNAs based on coverage were very similar to the ones obtained here.

	 5.	 This DMIN is provided as input to the influence diffusion model (see Algorithm 1).

The result of the above implementation is a ranked list of miRNAs along with their coverage scores. Here, the 
coverage score implies the number of miRNA nodes that can be activated. For our further comparative analysis 
we consider the top five miRNAs with highest coverage and bottom five miRNAs with lowest coverage scores. 
This ranked list of miRNAs is provided in the Supplementary material.

Comparative analysis.  The influence diffusion phenomena within a miRNA-miRNA interaction network is 
a time/event-driven progression, characterized by a series of (un)successful activations of miRNA nodes, as 
explained in Fig. 4. However, the miRNA expression data set of alcohol-dependent patients used in this case 
study is not a time-series data set. The samples record the Total years of drinking alcohol for each patient. The Total 
years of drinking for these 18 samples are - 14, 20, 20, 24, 26, 27, 28, 29, 31, 31, 31, 32, 34, 36, 37, 39, 48 and 48. For 
the purposes of our modeling and in order to introduce an element of time/event-driven series of progression 
to the miRNA-miRNA interaction network, we presume these individual samples as time points and observe 
the expression profiles of the miRNAs in Table 2, across these samples. Our hypothesis is that, these influential 
miRNAs would have undergone a phase-shift or a distinct change in their expression trend in the beginning 
stages of the time-points so as to signify an activation moment. This change may correspond to the triggering of 

Figure 5.  Trendlines of expression scores (AD vs control samples) of miRNAs with highest influence (a,c,e,g,i) 
and of miRNAs with lowest influence (b,d,f,h,j) across sample time points.
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the influence diffusion cascade process by the influential miRNAs. On the contrary, the least influential miRNAs 
would exhibit a similar trend to their control trend with possible phase-shifts occurring only in the later time 
points.

We plot the expression scores of these miRNAs (listed in Table 2) against the samples with number of Total 
years of drinking. For same sample time points (such as 20, 31 and 48), we average the expression scores of the 
miRNAs across AD and control samples in order to derive a single time point expression score. The expression 
trends (AD vs control) of top five miRNAs are displayed in Fig. 5a,c,e,g,i (left side) and those of bottom five 
miRNAs are displayed in Fig. 5b,d,f,h,j (right side). The expression trends demonstrate that the top 5 miRNAs 
in AD-samples underwent a phase-shift in the beginning stages (especially around year 26) of the time-line 
when compared to their control trend, signifying a triggering of influence diffusion activity within the network. 
Conversely, the expression trends of the bottom 5 miRNAs in AD-samples align quite well with their control 
trend exhibiting slight fluctuations at later time points. The expression trends and the corresponding data points 
are provided in the Supplementary material. The results corroborate our earlier stated hypothesis. The expres-
sion trends of the top 5 miRNAs also demonstrate that the miRNAs in the AD-samples were operating at a 
higher expression score from the start, signifying that they were already activated and were on an ON state. In 
order to better quantify the differences in their expression trends before and after the phase-shift with respect to 
the control, we conducted differential expression analysis of these miRNAs using the limma package46 from R 
Bioconductor. We performed this analysis across two groups of data set: pre-phase shift and post-phase shift. For 
the purposes of this analysis, we chose the time-point of year 26, as the dividing time-point. The differences in the 
significance of the expression trends are shown in Table 3. Table 3 demonstrates that the difference in the expres-
sion trends of these miRNAs were very significant during the pre-phase shift period with respect to control in 
comparison to the post-phase shift period. This further emphasizes our hypothesis that the miRNAs underwent 
a phase-shift signifying the triggering of the influence diffusion cascade process towards the beginning stages of 
AD.

A point to note is that conventional differential expression analysis along with in-vivo strategies implicated all 
115 miRNAs considered here to play a role in alcohol dependence; so the bottom 5 miRNAs from our list were 
also implicated in alcohol dependence, albeit we argue that they were more of an effect of the signaling cascade, 
while the top 5 miRNAs exhibit more of a causal role.

miRNA

Differential expression (p-values)

Pre-phase shift Post-phase shift

hsa-miR-376c 9.97e-07 0.539

hsa-miR-27a 5.13e-08 0.573

hsa-miR-30e 2.93e-07 0.503

hsa-miR-194 4.62e-06 0.523

hsa-miR-9 1.34e-06 0.829

Table 3.  Significance of differential expression of top 5 miRNAs before and after undergoing a phase-shift. Pre-
phase shift p-values indicate there was a significant difference in the expression of their trends while post-phase 
shift p-values indicate that the expression trends did not differ significantly, as noted from Fig. 5.

Figure 6.  miRfluence - an influence diffusion implementation framework.
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The expression trends displayed in Fig. 5 of the miRNAs (listed in Table 2) demonstrate that the influence 
diffusion based methodology is able to identify top influential miRNAs playing a causal role in the miRNA inter-
action network, corroborated quantitatively by the expression trends of these miRNAs across the samples.

miRfluence - an influence diffusion implementation framework.  In order for researchers to imple-
ment the proposed influence diffusion methodology on various disease-specific miRNA-miRNA networks or 
on miRNA networks pertaining to diseases of their interest, we have developed miRfluence, an online platform. 
Using this platform, users can view the influential miRNAs in the miRNA-miRNA networks of existing categories 
and diseases (Fig. 6a). Users can also implement this methodology on a miRNA interaction network pertaining to 
any disease of their choice or can also create their own disease category with a combination of up to five diseases 
(Fig. 6b) from the existing set. Users can view the miRNAs and the topological placement of these miRNAs in the 
disease network. miRfluence also includes two options for identifying the edge weights of the miRNA interaction 
networks under the Network generation method option; these are the (i) optimized network based on expression 
scores and (ii) rescoring to 0.01 for all the edges considered above the 0.9 cut-off. Users can also choose the 
two types of influence diffusion implementations described in this work, namely Logical AND/Intersection and 
Cumulative Union approach. This tool will help researchers compare/contrast the influence of various miRNAs 
in similar/contrasting diseases and provide them an insight into the working and grouping of communities of 
miRNAs in an interactive visualization making comprehension intuitive. The miRNA-miRNA interaction net-
works can also be downloaded in CSV format which can be easily imported into various network analysis tools 
for further study and analysis.

miRfluence is freely available for research purposes at http://bnet.egr.vcu.edu/mirfluence and has been devel-
oped using MySQL as the back-end database and Javascript, PHP, d3.js, AJAX and HTML/CSS for front-end 
design and visualization.

Conclusion
In this work, we have implemented the information diffusion concept from social networks to identify a crucial 
set of ranked miRNAs playing an influential role in diseases of a specific profile. Using this methodology, we were 
able to detect key influential miRNAs in the categories of Gastrointestinal cancers, Leukemia, Brain cancers and 
Endocrine cancers. These results were observed to be significant and were further validated by miRsig and TAM 
based analysis. For further validation, we used a miRNA expression data set of patients with alcohol-dependency; 
our top-ranked miRNAs indeed showed up to have possible causal effects in the miRNA signaling cascade by 
showing phase-shifts in their expression towards the beginning stages of alcohol consumption in patients.

In our analysis, both the approaches used, i.e., Logical AND/Intersection and Cumulative Union produced sim-
ilar results. Among the four categories, with the exception of Brain cancers all the miRNAs listed under the Logical 
AND/Intersection approach were included in the top ten ranks of the Cumulative Union approach which listed the 
miRNAs based on highest coverage scores. Hence, a more clear consensus as to which method fared better would 
emerge by testing these approaches on more comprehensive data sets in the future.
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