Skip to main content
. 2017 Aug 15;7:8137. doi: 10.1038/s41598-017-03925-0

Table 6.

Performance of multiclass classification strategies – one shot classifier (OSC), one vs. all (OVA), cascaded classifier in CaMCCo – upon fusion of modalities chosen from training set for each classification task.

ACC BACC AUC SEN SPEC PPV
CN OSC 0.69 0.63 0.96 0.34 0.92 0.75
OVA 0.89 0.77 0.97 0.59 0.96 0.77
CAMCCO 0.89 0.77 0.97 0.59 0.96 0.77
MCI OSC 0.69 0.69 0.77 0.68 0.70 0.67
OVA 0.68 0.68 0.77 0.78 0.59 0.63
CAMCCO 0.80 0.78 0.89 0.88 0.69 0.80
AD OSC 0.69 0.67 0.84 0.53 0.82 0.69
OVA 0.85 0.82 0.90 0.72 0.91 0.81
CAMCCO 0.80 0.78 0.89 0.69 0.88 0.80

The highest accuracy (ACC), balanced accuracy (BACC), area under the ROC curve (AUC), sensitivity (SEN), specificity (SPE) and positive predictive value (PPV) achieved for each class are shown in bold. These results indicate that although the performance of both OVA and CAMCCO are comparable for CN and AD classification, CAMCCO outperforms all other methods for MCI classification.