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Summary

During realistic, continuous perception, humans automatically segment experiences into discrete 

events. Using a novel model of cortical event dynamics, we investigate how cortical structures 

generate event representations during narrative perception, and how these events are stored to and 

retrieved from memory. Our data-driven approach allows us to detect event boundaries as shifts 

between stable patterns of brain activity without relying on stimulus annotations, and reveals a 

nested hierarchy from short events in sensory regions to long events in high-order areas (including 

angular gyrus and posterior medial cortex), which represent abstract, multimodal situation models. 

High-order event boundaries are coupled to increases in hippocampal activity, which predict 

pattern reinstatement during later free recall. These areas also show evidence of anticipatory 

reinstatement as subjects listen to a familiar narrative. Based on these results, we propose that 

brain activity is naturally structured into nested events, which form the basis of long-term memory 

representations.
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Introduction

Typically, perception and memory are studied in the context of discrete pictures or words. 

Real-life experience, however, consists of a continuous stream of perceptual stimuli. The 

brain therefore needs to structure experience into units that can be understood and 

remembered: “the meaningful segments of one’s life, the coherent units of one’s personal 

history” (Beal & Weiss, 2013). Although this question was first investigated decades ago 

(Newtson, Engquist, & Bois, 1977), a general “event segmentation theory” was only 

proposed recently (Zacks, Speer, Swallow, Braver, & Reynolds, 2007). These and other 

authors have argued that humans implicitly generate event boundaries when consecutive 

stimuli have distinct temporal associations (Schapiro, Rogers, Cordova, Turk-Browne, & 

Botvinick, 2013), when the causal structure of the environment changes (Kurby & Zacks, 

2008; Radvansky, 2012), or when our goals change (DuBrow & Davachi, 2016).

At what timescale are experiences segmented into events? When reading a story, we could 

chunk it into discrete units of individual words, sentences, paragraphs, or chapters, and we 

may need to chunk information on different timescales depending on our goals. Behavioral 

studies have shown that subjects can segment events into a nested hierarchy from coarse to 

fine timescales (Kurby & Zacks, 2008; Zacks, Tversky, & Iyer, 2001) and flexibly adjust 

their units of segmentation depending on their uncertainty about ongoing events (Newtson, 

1973). The neural basis of this segmentation behavior is unclear; event perception could rely 

on a single unified system, which segments the continuous perceptual stream at different 

granularities depending on the current task (Zacks et al., 2007), or may rely on multiple 

brain areas which segment events at different timescales, as suggested by the selective 

deficits for coarse segmentations exhibited by some patient populations (Zalla, Pradat-Diehl, 

& Sirigu, 2003; Zalla, Verlut, Franck, Puzenat, & Sirigu, 2004).

A recent theory of cortical process-memory topography argues that information is integrated 

at different timescales throughout the cortex. Processing timescales increase from tens of 

milliseconds in early sensory regions (e.g. for detecting phonemes in early auditory areas), 

to a few seconds in mid-level sensory areas (e.g. for integrating words into sentences), up to 

hundreds of seconds in regions including the temporoparietal junction, angular gyrus, and 

posterior and frontal medial cortex (e.g. for integrating information from an entire 

paragraphs) (J. Chen et al., 2016; Hasson, Chen, & Honey, 2015). The relationship between 

the process-memory topography and event segmentation has not yet been investigated. On 

the one hand, it is possible that cortical representations are accumulated continuously, e.g. 

using a sliding window approach, at each level of the processing hierarchy (Stephens, 

Honey, & Hasson, 2013). On the other hand, a strong link between the timescale hierarchy 

and event segmentation theory would predict that each area chunks experience at its 

preferred timescale and integrates information within discretized units (e.g. phonemes, 

words, sentences, paragraphs) before providing its output to the next processing level 

(Nelson et al., 2017). In this view, “events” in low-level sensory cortex (e.g. a single 

phoneme, Giraud & Poeppel, 2012) are gradually integrated into minutes-long situation-

level events, using a multi-stage nested temporal chunking. This chunking of continuous 

experience at multiple timescales along the cortical processing hierarchy has not been 

previously demonstrated in the dynamics of whole-brain neural activity.
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A second critical question for understanding event perception is how real-life experiences 

are encoded into long-term memory. Behavioral experiments and mathematical models have 

argued that long-term memory reflects event structure during encoding (Ezzyat & Davachi, 

2011; Gershman, Radulescu, Norman, & Niv, 2014; Sargent et al., 2013; Zacks, Tversky, et 

al., 2001), suggesting that the event segments generated during perception may serve as the 

“episodes” of episodic memory. The hippocampus is thought to bind cortical representations 

into a memory trace (McClelland, McNaughton, & O’Reilly, 1995; Moscovitch et al., 2005; 

Norman & O’Reilly, 2003), a process that is typically studied using discrete memoranda 

(Danker, Tompary, & Davachi, 2016). However, given a continuous stream of information in 

a real-life context, it is not clear at what timescale memories should be encoded, and 

whether these memory traces should be continuously updated or encoded only after an event 

has completed. The hippocampus is connected to long timescale regions including the 

angular gyrus and posterior medial cortex (Kravitz, Saleem, Baker, & Mishkin, 2011; 

Ranganath & Ritchey, 2012; Rugg & Vilberg, 2013), suggesting that the main inputs to long-

term memory come from these areas, which are thought to represent multimodal, abstract 

representations of the features of the current event (“situation models”, Johnson-Laird, 1983; 

Van Dijk & Kintsch, 1983; Zwaan, Langston, & Graesser, 1995; Zwaan & Radvansky, 1998, 

or more generally, “event models,” Radvansky & Zacks, 2011). Recent work has shown that 

hippocampal activity peaks at the offset of video clips (Ben-Yakov & Dudai, 2011; Ben-

Yakov, Eshel, & Dudai, 2013), suggesting that the end of a long-timescale event triggers 

memory encoding processes that occur after the event has ended.

Based on our experiments (described below), we propose that the full life cycle of an event 

can be described in a unified theory, illustrated in Fig. 1. During perception, each brain 

region along the processing hierarchy segments information at its preferred timescale, 

beginning with short events in primary visual and auditory cortex and building to 

multimodal situation models in long timescale areas, including the angular gyrus and 

posterior medial cortex. This model of processing requires that: 1) all regions driven by 

audio-visual stimuli should exhibit event-structured activity, with segmentation into short 

events in early sensory areas and longer events in high-order areas; 2) events throughout the 

hierarchy should have a nested structure, with coarse event boundaries annotated by human 

observers most strongly related to long events at the top of the hierarchy ; 3) event 

representations in long timescale regions, which build a coarse model of the situation, 

should be invariant across different descriptions of the same situation (e.g. when the same 

situation is described visually in a movie or a verbally in a story). We also argue that event 

structure is reflected in how experiences are stored into episodic memory. At event 

boundaries in long timescale areas, the situation model is transmitted to the hippocampus, 

which can later reinstate the situation model in long timescale regions during recall. This 

implies: 4) the end of an event in long timescale cortical regions should trigger the 

hippocampus to encode information about the just-concluded event into episodic memory; 

5) stored event memories can be reinstated in long timescale cortical regions during recall, 

with stronger reinstatement for more strongly-encoded events. Finally, this process can come 

full circle, with prior event memories influencing ongoing processing, such that: 6) prior 

memory for a narrative should lead to anticipatory reinstatement in long timescale regions.
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To test these hypotheses, we need the ability to identify how different brain areas segment 

events (at different timescales), align events across different datasets with different timings 

(e.g. to see whether the same situation model is being elicited by a movie vs. a verbal 

narrative, or a movie vs. recall), and track differences in event segmentations in different 

observers of the same stimulus (e.g. depending on prior experience). Thus, to search for the 

neural correlates of event segmentation, we have developed a new data-driven method that 

allows us to identify events directly from fMRI activity patterns, across multiple timescales 

and datasets (Fig. 2).

Our analysis approach (described in detail in STAR Methods) starts with two simple 

assumptions: that while processing a narrative stimulus, observers progress through a 

sequence of discrete event representations (hidden states), and that each event has a distinct 

(observable) signature (a multi-voxel fMRI pattern) that is present throughout the event. We 

implement these assumptions using a data-driven event segmentation model, based on a 

Hidden Markov Model (HMM). Fitting the model to fMRI data (e.g. evoked by viewing a 

movie) entails estimating the optimal number of events, the mean activity pattern for each 

event, and when event transitions occur. When applying the model to multiple datasets 

evoked by the same narrative (e.g. during movie viewing and during later verbal recall), the 

model is constrained to find the same sequence of patterns (because the events are the same), 

but the timing of the transitions between the patterns can vary (e.g. since the spoken 

description of the events might not take as long as the original events).

In prior studies, using human-based segmentation of coarse event structure, we demonstrated 

that event-related representations generalize across modalities and between encoding and 

recall (thereby supporting hypotheses 3 and 5, J. Chen et al., 2017; Zadbood, Chen, Leong, 

Norman, & Hasson, 2016). In the current study, we extend these findings, by testing whether 

we can use the data driven HMM to detect stable and abstract event boundaries in high order 

areas without relying on human annotations. This new analysis approach also allows us to 

test for the first time whether the brain segments information, hierarchically, at multiple 

timescales (hypotheses 1 and 2), how segmentation of information interacts with the storage 

and retrieval of this information by the hippocampus (hypothesis 4), and how prior exposure 

to a sequence of events can later lead to anticipatory reinstatement of those events 

(hypothesis 6). Taken together, our results provide the first direct evidence that realistic 

experiences are discretely and hierarchically chunked at multiple time-scales in the brain, 

with chunks at the top of the processing hierarchy playing a special role in cross-modal 

situation representation and episodic memory.

Results

All of our analyses are carried out using our new HMM-based event segmentation model 

(summarized above, and described in detail in the Event Segmentation Model subsection in 

Methods), which can automatically discover the fMRI signatures of each event and its 

temporal boundaries in a particular dataset. We validated this model using both synthetic 

data (Fig. S1) and narrative data with clear event breaks between stories (Fig. S2), 

confirming that we could accurately recover the number of event boundaries and their 
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locations (see Materials and Methods). We then applied the model to test six predictions of 

our theory of event perception and memory.

Timescales of cortical event segmentation

We first tested the hypothesis that “all regions driven by audio-visual stimuli should exhibit 

event-structured activity, with segmentation into short events in early sensory areas and 

longer events in high-order areas.” We measured the extent to which continuous stimuli 

evoked the event structure hypothesized by our model (periods with stable event patterns 

punctuated by shifts between events), and whether the timescales of these events varied 

along the cortical hierarchy. We tested the model by fitting it to fMRI data collected while 

subjects watched a 50-minute movie (J. Chen et al., 2017), and then assessing how well the 

learned event structure explained the activity patterns of a held-out subject. Note that 

previous analyses of this dataset have shown that the evoked activity is similar across 

subjects, justifying an across-subjects design (J. Chen et al., 2017). We found that essentially 

all brain regions that responded consistently to the movie (across subjects) showed evidence 

for event-like structure, and that the optimal number of events varied across the cortex (Fig. 

3). Sensory regions like visual and auditory cortex showed faster transitions between stable 

activity patterns, while higher-level regions like the posterior medial cortex, angular gyrus, 

and intraparietal sulcus had activity patterns that often remained constant for over a minute 

before transitioning to a new stable pattern (see Fig. 3 insets and Fig. S3). This topography 

of event timescales is broadly consistent with that found in previous work (Hasson et al., 

2015) measuring sensitivity to temporal scrambling of a movie stimulus (see Fig. S8).

Comparison of event boundaries across regions and to human annotations

The second implication of our theory is that “events throughout the hierarchy should have a 

nested structure, with coarse event boundaries annotated by human observers most strongly 

related to long events at the top of the hierarchy.” To examine how event boundaries changed 

throughout the cortical hierarchy, we created four regions of interest, each with 300 voxels, 

centered on ROIs from prior work (see STAR Methods): early visual cortex, late visual 

cortex, angular gyrus, and posterior medial cortex. We identified the optimal timescale for 

each region as in the previous analysis, and then fit the event segmentation model at this 

optimal timescale, as illustrated in Fig. 4a. We found that a significant portion of the 

boundaries in a given layer were also present in lower layers (Fig. 4b), especially for 

adjacent layers in the hierarchy. This suggests that event segmentation is at least partially 

hierarchical, with finer event boundaries nested within coarser boundaries.

We asked four independent raters to divide the movie into “scenes” based on major shifts in 

the narrative (such as in location, topic, or time). The number of event boundaries identified 

by the observers varied between 36 and 64, but the boundaries had a significant amount of 

overlap, with an average pairwise Dice’s coefficient of 0.63 and 20 event boundaries that 

were labeled by all four raters. We constructed a “consensus” annotation containing 

boundaries marked by at least two raters, which split the narrative into 54 events, similar to 

the mean timescale for individual annotators (49.5).We then measured, for each region, what 

fraction of its fMRI-defined boundaries were close to (within three timepoints of) a 

consensus event boundary. As shown in Fig. 4c, all regions showed an above-chance match 
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to human annotations (early visual, p=0.0135; late visual, p=0.0065; angular gyrus, 

p=0.0011; posterior medial, p<0.001), but this match increased across the layers of the 

hierarchy and was largest in angular gyrus and posterior medial cortex (angular gyrus > 

early visual, p=0.0580; posterior medial > early visual, p=0.033).

Shared event structure across modalities

The third requirement of our theory is that “activity patterns in long timescale regions should 

be invariant across different descriptions of the same situation.” This hypothesis is based on 

a prior study (Zadbood et al., 2016), in which one group of subjects watched a 24-minute 

movie while the other group listened to an 18-minute audio narration describing the events 

that occurred in the movie. The prior study used a hand-labeled event correspondence 

between these two stimuli to show that activity patterns evoked by corresponding events in 

the movie and narration were correlated in a network of regions including angular gyrus, 

precuneus, retrosplenial cortex, posterior cingulate cortex and mPFC (Zadbood et al., 2016). 

Here, we use this dataset to ask whether our event segmentation model can replicate these 

results in a purely unsupervised manner, without using any prior event labeling.

For each cortical searchlight, we first segmented the movie data into events, and then tested 

whether this same sequence of events from the movie-watching subjects was present in the 

audio-narration subjects. Regions including the angular gyrus, temporoparietal junction, 

posterior medial cortex, and inferior frontal cortex showed a strongly significant 

correspondence between the two modalities (Fig. 5), indicating that a similar sequence of 

event patterns was evoked by the movie and audio narration irrespective of the modality 

used to describe the events. In contrast, though low-level auditory cortex was reliably 

activated by both of these stimuli, there was no above-chance similarity between the series 

of activity patterns evoked by the two stimuli (movie vs. verbal description), presumably 

because the low level auditory features of the two stimuli were markedly different.

Relationship between cortical event boundaries and hippocampal encoding

We tested a fourth hypothesis from our theory, that “the end of an event in long timescale 

cortical regions should trigger the hippocampus to encode information about the just-

concluded event into episodic memory.” Prior work has shown that the end of a video clip is 

associated with increased hippocampal activity, and the magnitude of the activity predicts 

later memory (Ben-Yakov & Dudai, 2011; Ben-Yakov et al., 2013). These experiments, 

however, have used only isolated short video clips with clear transitions between events. Do 

neurally-defined event boundaries in a continuous movie, evoked by subtler transitions 

between related scenes, generate the same kind of hippocampal signature? Using a 

searchlight procedure, we identified event boundaries with the HMM segmentation model 

for each cortical area across the timescale hierarchy, using the 50-minute movie dataset (J. 

Chen et al., 2017). We then computed the average hippocampal activity around the event 

boundaries of each cortical area, to determine whether a cortical boundary tended to trigger 

a hippocampal response. We found that event boundaries in a distributed set of regions 

including angular gyrus, posterior medial cortex, and parahippocampal cortex all showed a 

strong relationship to hippocampal activity, with the hippocampal response typically peaking 

within several timepoints after the event boundary (Fig. 6). This network of regions closely 
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overlaps with the posterior medial memory system (Ranganath & Ritchey, 2012). Note that 

both the event boundaries and the hippocampal response are hemodynamic signals, so there 

is no hemodynamic offset between these two measures. The hippocampal response does 

start slightly before the event boundary, which could be due to uncertainty in the model 

estimation of the exact boundary timepoint and/or anticipation that the event is about to end.

Reinstatement of event patterns during free recall

Our theory further implies that “stored event memories can be reinstated in long timescale 

cortical regions during recall, with stronger reinstatement for more strongly-encoded 

events.” After watching the movie, all subjects in this dataset were asked to retell the story 

they had just watched, without any cues or stimulus (see Chen et al., 2017 for full details). 

We focused our analyses on the high-level regions that showed a strong relationship with 

hippocampal activity in the previous analysis (posterior cingulate and angular gyrus), as well 

as early auditory cortex for comparison.

Using the event segmentation model, we first estimated the (group-average) series of event-

specific activity patterns evoked by the movie, and then attempted to segment each subject’s 

recall data into corresponding events. When fitting the model to the recall data, we assumed 

that the same event-specific activity patterns seen during the movie-viewing will be 

reinstated during the spoken recall. Analyzing the spoken recall transcriptions revealed that 

subjects generally recalled the events in the same order as they appeared in the movie (see 

table S1 in Chen, Leong, et al., 2016). Therefore, the model was constrained to use the same 

order of multi-voxel event patterns for recall that it had learned from the movie-watching 

data. However, crucially, the model was allowed to learn different event timings for the 

recall data compared to the movie data – this allowed us to accommodate the fact that event 

durations differed for free recall vs. movie-watching.

For each subject, the model attempted to find a shared sequence of latent event patterns that 

was shared between the movie and recall, as shown in the example with 25 events in Fig. 7a 

(see Fig. S6 for examples from all subjects). Green shading indicates the probability that a 

movie and a recall timepoint belong to the same latent event (with darker shading indicating 

higher probability), and boxes indicate segments of the movie and recall that were labeled as 

corresponding to the same event by human annotators. Compared to the null hypothesis that 

there was no shared event order between the movie and recall, we found significant model 

fits in both the posterior cingulate (p=0.015) and the angular gyrus (p=0.002), but not in 

low-level auditory cortex (p=0.277) (Fig. 7b). This result demonstrates that we can identify 

shared temporal structure between perception and recall without any human annotations. A 

similar pattern of results can be found regardless of the number of latent events used (see 

Fig. S6). The identified correspondences for each subject (using both posterior cingulate and 

angular gyrus) were also significantly similar to the human-labeled correspondences 

(probability mass inside annotations = 17.8%, significantly greater than null model (11.9%), 

p<0.001) (see Fig. S6).

We then assessed whether the hippocampal response evoked by the end of an event during 

the encoding of the movie to memory was predictive of the length of time for which the 

event was strongly reactivated during recall. As shown in Fig. 7c–d, we found that encoding 
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activity and event reactivation were positively correlated in both angular gyrus (r=0.362, 

p=0.002) and the posterior cingulate (r=0.312, p=0.042), but not early auditory cortex 

(r=0.080, p=0.333). Note that there was no relationship between the hippocampal activity at 

the starting boundary of an event and that event’s later reinstatement in the angular gyrus (r=

−0.119, p=0.867; difference from ending boundary correlation p=0.004) and only a weak, 

nonsignificant relationship in posterior cingulate (r=0.189, p=0.113; difference from ending 

boundary correlation p=0.274). The relationship between the average hippocampal activity 

throughout an event and later cortical reinstatement was actually negative (angular gyrus, r=

−0.247, p=0.017; posterior cingulate, r=−0.092, p=0.175), suggesting that encoding is 

strongest when hippocampal activity is relatively low during an event and high at its offset.

Anticipatory reinstatement for a familiar narrative

Finally, we tested a sixth hypothesis, that “prior memory for a narrative should lead to 

anticipatory reinstatement in long timescale regions.” Our ongoing interpretation of events 

can be influenced by prior knowledge; specifically, if subjects listening to the audio version 

of a narrative had already seen the movie version, they may anticipate upcoming events 

compared to subjects experiencing the narrative for the first time. Detecting this kind of 

anticipation has not been possible with previous approaches that rely on stimulus 

annotations, since the difference between the two groups is not in the stimulus (which is 

identical) but rather in the temporal dynamics of their cognitive processes.

Using data from Zadbood et al. (2016), we simultaneously fit our event segmentation model 

to three conditions – watching the movie, listening to the narration after watching the movie 

(“memory”), and listening to the narration without having previously seen the movie (“no 

memory”) – looking for a shared sequence of event patterns across conditions. By analyzing 

which timepoints were assigned to the same event, we can generate a timepoint 

correspondence indicating – for each timepoint during the audio narration datasets – which 

timepoints of the movie are most strongly evoked (on average) in the mind of the listeners.

We searched for cortical regions along the hierarchy of timescale showing anticipation, in 

which this correspondence for the memory group was consistently ahead of the 

correspondence for the no-memory group (relative to chance). As shown in Fig. 8, we found 

anticipatory event reinstatement in the angular gyrus, posterior medial cortex, and medial 

frontal cortex. Examining the movie-audio correspondences in these regions, the memory 

group was consistently ahead of the no-memory group, indicating that for a given timepoint 

of the audio narration the memory group had event representations that corresponded to later 

timepoints in the movie. A similar result can be obtained by directly aligning the two 

listening conditions without reference to the movie-watching condition (see Fig. S7).

Discussion

We found that narrative stimuli evoke event-structured activity throughout the cortex, with 

pattern dynamics consisting of relatively stable periods punctuated by rapid event 

transitions. Furthermore, the angular gyrus and posterior medial cortex exhibit a set of 

overlapping properties associated with high-level situation model representations: long event 

timescales, event boundaries closely related to human annotations, generalization across 
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modalities, hippocampal response at event boundaries, reactivation during free recall, and 

anticipatory coding for familiar narratives. Identifying all of these properties was made 

possible by using naturalistic stimuli with extended temporal structure, paired with a data-

driven model for identifying activity patterns shared across timepoints and across datasets.

Event segmentation theory

Our results are the first to validate a number of key predictions of event segmentation theory 

(Zacks et al., 2007) directly from fMRI data of naturalistic narratives, without using 

specially-constructed stimuli or subjective labeling of where events should start and end. 

Previous work has shown that hand-labeled event boundaries are associated with univariate 

activity increases in a network of regions overlapping our high-level areas (Ezzyat & 

Davachi, 2011; Speer, Zacks, & Reynolds, 2007; Swallow et al., 2011; Whitney et al., 2009; 

Zacks, Braver, et al., 2001; Zacks, Speer, Swallow, & Maley, 2010), but by modeling fine-

scale spatial activity patterns we were able to detect these event changes without an external 

reference. This allowed us to identify regions with temporal event structure at many different 

timescales, only some of which matched human-labeled boundaries. Other analyses of these 

datasets also found reactivation during recall (J. Chen et al., 2017) and shared event structure 

across modalities (Zadbood et al., 2016); however, because these other analyses defined 

events based on the narrative rather than brain activity, they were unable to identify 

differences in event segmentation across brain areas or across groups with different prior 

knowledge.

Processing timescales and event segmentation

The topography of event timescales revealed by our analysis provides converging evidence 

for an emerging view of how information is processed during real-life experience (Hasson et 

al., 2015). The “process memory framework” argues that perceptual stimuli are integrated 

across longer and longer timescales along a hierarchy from early sensory regions to regions 

in the default mode network. Using a variety of experimental approaches, including fMRI, 

electrocorticography (ECoG), and single-unit recording, this topography has previously been 

mapped either by temporally scrambling the stimulus at different timescales to see which 

regions’ responses are disrupted (Hasson, Yang, Vallines, Heeger, & Rubin, 2008; Honey et 

al., 2012; Lerner, Honey, Silbert, & Hasson, 2011) or by examining the power spectrum of 

intrinsic dynamics within each region (Honey et al., 2012; Murray et al., 2014; Stephens et 

al., 2013). Our model and results yield a new perspective on these findings, suggesting that 

all processing regions can exhibit rapid activity shifts, but that these fast changes are much 

less frequent in long timescale regions. The power spectrum is therefore an incomplete 

description of voxel dynamics, since the correlation timescale changes dynamically, with 

faster changes at event boundaries and slower changes within boundaries (see also Fig. S4b). 

We also found evidence for nested hierarchical structure, suggesting that chunks of 

information are transmitted from lower to higher levels primarily at event boundaries, as in 

recent multiscale recurrent neural network models (Chung, Ahn, & Bengio, 2017).

The specific features encoded in the event representations of long timescale regions like the 

angular gyrus and posterior cingulate cortex during naturalistic perception are still an open 

question. These areas are involved in high-level, multimodal scene processing tasks 
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including memory and navigation (Baldassano, Esteva, Beck, & Fei-Fei, 2016; Kumar, 

Federmeier, Fei-Fei, & Beck, 2017), are part of the “general recollection network” with 

strong anatomical and functional connectivity to the hippocampus (Rugg & Vilberg, 2013), 

and are the core components of the posterior medial memory system (Ranganath & Ritchey, 

2012), which is thought to represent and update a high-level situation model (Johnson-Laird, 

1983; Van Dijk & Kintsch, 1983; Zwaan et al., 1995; Zwaan & Radvansky, 1998). Since 

event representations in these regions generalized across modalities and between perception 

and recall, our results provide further evidence that they encode high-level situation 

descriptions. We also found that event patterns could be partially predicted by key characters 

and locations from the narrative (see Fig. S4d, and supplementary Fig. 6 in J. Chen et al., 

2017), but future work (with richer descriptions of narrative events, Vodrahalli et al., 2016) 

will be required to understand how event patterns are evoked by semantic content.

Events in episodic memory

Behavioral experiments have shown that long-term memory reflects event structure during 

encoding (Ezzyat & Davachi, 2011; Sargent et al., 2013; Zacks, Tversky, et al., 2001). Here, 

we were able to identify the reinstatement of events that were automatically discovered 

during perception, extending previous work demonstrating reinstatement of individual items 

or scenes in angular gyrus and posterior medial cortex (J. Chen et al., 2017; Johnson, 

McDuff, Rugg, & Norman, 2009; Kuhl & Chun, 2014; Ritchey, Wing, LaBar, & Cabeza, 

2013; Wing, Ritchey, & Cabeza, 2015) to continuous perception without any stimulus 

annotations.

We demonstrated that the hippocampal encoding activity previously shown to be present at 

the end of movie clips (Ben-Yakov & Dudai, 2011; Ben-Yakov et al., 2013) and at abrupt 

switches between stimulus category and task (DuBrow & Davachi, 2016) also occurs at the 

much more subtle transitions between events (defined by pattern shifts in high-level 

regions), providing evidence that event boundaries trigger the storage of the current situation 

representation into long-term memory. We have also shown that this post-event hippocampal 

activity is related to pattern reinstatement during recall, as has been recently demonstrated 

for the encoding of discrete items (Danker et al., 2016), thereby supporting the view that 

events are the natural units of episodic memory during everyday life. Changes in cortical 

activity patterns may drive encoding through a comparator operation in the hippocampus 

(Lisman & Grace, 2005; Vinogradova, 2001), or the prediction error associated with event 

boundaries may potentiate the dopamine pathway (Zacks, Kurby, Eisenberg, & Haroutunian, 

2011), thereby leading to improved hippocampal encoding (Kempadoo, Mosharov, Choi, 

Sulzer, & Kandel, 2016; Takeuchi et al., 2016). Notably, the positive relationship between 

hippocampal activity and subsequent cortical reinstatement was specific to hippocampal 

activity at the end of an event; there was no significant relationship between hippocampal 

activity at the start of an event and subsequent reinstatement, and higher hippocampal 

activity during an event was associated with worse reinstatement (a similar relationship was 

observed in parietal cortex by Lee, Chun, & Kuhl, 2016). In this respect, our results differ 

from other results showing that the hippocampal response to novel events drives memory for 

the novel events themselves (for a review, see Ranganath & Rainer, 2003) – here, we show 
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that the hippocampal response to a new event is linked to subsequent memory for the 

previous event.

Most extant models of memory consolidation (McClelland et al., 1995) and recall (Polyn, 

Norman, & Kahana, 2009) have been formulated under the assumption that the input to the 

memory system is a series of discrete items to be remembered. Although this is true for 

experimental paradigms that use lists of words or pictures, it was not clear how these models 

could function for realistic autobiographical memory. Our model connects naturalistic 

perception with theories about discrete memory traces, by proposing that cortex chunks 

continuous experiences into discrete events; these events are integrated along the processing 

hierarchy into meaningful, temporally extended, episodic structures, to be later encoded into 

memory via interaction with the hippocampus. The fact that the hippocampus is coupled to 

both angular gyrus and posterior medial cortex, which have slightly different timescales, 

raises the interesting possibility that these event memories could be stored at multiple 

temporal resolutions.

Our event segmentation model

Temporal latent variable models have been largely absent from the field of human 

neuroscience, since the vast majority of experiments have a temporal structure that is defined 

ahead of time by the experimenter. One notable exception is the recent work of Anderson 

and colleagues, which has used HMM-based models to discover temporal structure in brain 

activity responses during mathematical problem solving (Anderson & Fincham, 2014; 

Anderson, Lee, & Fincham, 2014; Anderson, Pyke, & Fincham, 2016). These models are 

used to segment problem-solving operations (performed in less than 30 seconds) into a small 

number of cognitively distinct stages such as encoding, planning, solving and responding. 

Our work is the first to show that (using a modified HMM and an annealed fitting procedure) 

this latent-state approach can be extended to much longer experimental paradigms with a 

much larger number of latent states.

For finding correspondences between continuous datasets, as in our analyses of shared 

structure between perception and recall or perception under different modalities, several 

other types of approaches (not based on HMMs) have been proposed in psychology and 

machine learning. Dynamic time warping (Kang & Wheatley, 2015; Silbert, Honey, Simony, 

Poeppel, & Hasson, 2014) locally stretches or compresses two timeseries to find the best 

match, and more complex methods such as conditional random fields (Zhu et al., 2015) 

allow for parts of the match to be out of order. However, these methods do not explicitly 

model event boundaries.

Future work will be required to investigate what types of neural correspondences are well 

modeled by continuous warping versus event-structured models. Logically, a strictly event-

structured model (with static event patterns) cannot be a complete description of brain 

activity during narrative perception, since subjects are actively accumulating information 

during each event, and extensions of our model could additionally model these within-event 

dynamics (see Fig. S4b).
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Perception and memory in the wild

Our results provide a bridge between the large literature on long-term encoding of individual 

items (such as words or pictures) and studies of memory for real-life experience (Nielson, 

Smith, Sreekumar, Dennis, & Sederberg, 2015; Rissman, Chow, Reggente, & Wagner, 

2016). Since our approach does not require an experimental design with rigid timing, it 

opens the possibility of having subjects be more actively and realistically engaged in a task, 

allowing for the study of events generated during virtual reality navigation (such as spatial 

boundaries, Horner, Bisby, Wang, Bogus, & Burgess, 2016) or while holding dialogues with 

a simultaneously-scanned subject (Hasson, Ghazanfar, Galantucci, Garrod, & Keysers, 

2012). The model also is not fMRI-specific, and could be applied to other types of 

neuroimaging timeseries such as electrocorticography (ECoG), electroencephalography 

(EEG), or functional near-infrared spectroscopy (fNIRS), including portable systems that 

could allow experiments to be run outside the lab (Mckendrick et al., 2016).

Conclusion

Using a novel event segmentation model that can be fit directly to neuroimaging data, we 

showed that cortical responses to naturalistic stimuli are temporally organized into discrete 

events at varying timescales. In a network of high-level association regions, we found that 

these events were related to subjective event annotations by human observers, predicted 

hippocampal encoding, generalized across modalities and between perception and recall, 

and showed anticipatory coding of familiar narratives. Our results provide a new framework 

for understanding how continuous experience is accumulated, stored, and recalled.

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Christopher Baldassano (chrisb@princeton.edu).

Experimental Model and Subject Details

Interleaved Stories dataset—22 subjects (all native English speakers) were recruited 

from the Princeton community (9 male, 13 female, ages 18–26). All subjects provided 

informed written consent prior to the start of the study in accordance with experimental 

procedures approved by the Princeton University Institutional Review Board. The study was 

approximately 2 hours long and subjects received $20 per hour as compensation for their 

time. Data from 3 subjects were discarded due to falling asleep during the scan, and 1 due to 

problems with audio delivery.

Method Details

Interleaved Stories dataset—To test our model in a dataset with clear, unambiguous 

event boundaries, we used data from subjects who listened to two unrelated audio narratives 

(J. Chen, Chow, Norman, & Hasson, 2015). We used data from 18 subjects who listened to 

the two audio narratives in an interleaved fashion, with the audio stimulus switching 

between the two narratives approximately every 60 seconds at natural paragraph breaks. The 
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total stimulus length was approximately 29 minutes, during which there were 32 story 

switches. The audio was delivered via in-ear headphones.

Imaging data were acquired on a 3T full-body scanner (Siemens Skyra) with a 20-channel 

head coil using a T2*-weighted echo planar imaging (EPI) pulse sequence (TR 1500 ms, TE 

28 ms, flip angle 64, whole-brain coverage 27 slices of 4 mm thickness, in-plane resolution 

3 × 3 mm , FOV 192 × 192 mm). Preprocessing was performed in FSL, including slice time 

correction, motion correction, linear detrending, high-pass filtering (140 s cutoff), and 

coregistration and affine transformation of the functional volumes to a template brain (MNI). 

Functional images were resampled to 3 mm isotropic voxels for all analyses.

The analyses in this paper were carried out using data from a posterior cingulate region of 

interest, the posterior medial cluster in the “dorsal default mode network” defined by whole-

brain resting state connectivity clustering (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 

2012).

Sherlock Recall dataset—Our primary dataset consisted of 17 subjects who watched the 

first 50 minutes of the first episode of BBC’s Sherlock, and were then asked to freely recall 

the episode in the scanner without cues (J. Chen et al., 2017). Subjects varied in the length 

and richness of their recall, with total recall times ranging from 11 minutes to 46 minutes 

(and a mean of 22 minutes). Imaging data was acquired using a T2*-weighted echo planar 

imaging (EPI) pulse sequence (TR 1500 ms, TE 28 ms, flip angle 64, whole-brain coverage 

27 slices of 4 mm thickness, in-plane resolution 3 × 3 mm , FOV 192 × 192 mm). A 

standard preprocessing pipeline was performed using FSL, including motion correction. 

Since acoustic output was not correlated across subjects (J. Chen et al., 2017), shared 

activity patterns at recall are unlikely to be driven by correlated motion artifacts. All subjects 

were aligned to a common MNI template, and analyses were carried out in this common 

volume space. We also conducted an alternate version of the segmentation analysis that does 

not rely on precise MNI alignment (P.-H. (Cameron) Chen et al., 2015) and obtained similar 

results (see Fig. S4c).

We restricted our searchlight analyses to voxels that were reliably driven by the stimuli, 

measured using intersubject correlation (Hasson, Nir, Levy, Fuhrmann, & Malach, 2004). 

Voxels with a correlation less than r=0.25 during movie-watching were removed before 

running the searchlight analysis.

We defined five regions of interest based on prior work. In addition to the posterior cingulate 

region defined above, we defined the angular gyrus as area PG (both PGa and PGp) using 

the maximum probability maps from a cytoarchitectonic atlas (Eickhoff et al., 2005), early 

auditory cortex as voxels within the Heschl’s gyrus region (Harvard-Oxford cortical atlas) 

with high intersubject correlation during an audio narrative (“Pieman”, Simony et al., 2016), 

early visual cortex as voxels near the calcarine sulcus with high intersubject correlation 

during an audio-visual movie (“The Twilight Zone”, Chen, Honey, et al., 2016), and hV4 

based on a group maximum-probability atlas (Wang, Mruczek, Arcaro, & Kastner, 2014).
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Sherlock Narrative dataset—To investigate cross-modal event representations and the 

impact of prior memory, we used a separate dataset in which subjects experienced multiple 

versions of a narrative. One group of 17 subjects watched the first 24 minutes of the first 

episode of Sherlock (a portion of the same episode used in the Sherlock Recall dataset), 

while another group of 17 subjects (who had never seen the episode before) listened to an 18 

minute audio description of the events during this part of the episode (taken from the audio 

recording of one subject’s recall in the Sherlock Recall dataset). The subjects who watched 

the episode then listened to the same 18 minute audio description. This yielded three sets of 

data, all based on the same story: watching a movie of the events, listening to an audio 

narration of the events without prior memory, and listening to an audio narration of the 

events with prior memory. Imaging data was acquired using the same sequence as in 

Sherlock Recall dataset; see Zadbood et al. (2016) for full acquisition and preprocessing 

details.

As in the Sherlock Recall experiment, we removed all voxels that were not reliably driven 

by the stimuli. Only voxels with an intersubject correlation of at least r=0.1 across all three 

conditions were included in searchlight analyses.

Event annotations by human observers—Four human observers were given the video 

file for the 50-minute Sherlock stimulus, and given the following directions: “Write down 

the times at which you feel like a new scene is starting; these are points in the movie when 

there is a major change in topic, location, time, etc. Each ‘scene’ should be between 10 

seconds and 3 minutes long. Also, give each scene a short title.” The similarity among 

observers was measured using Dice’s coefficient (number of matching boundaries divided 

by mean number of boundaries, considering boundaries within three timepoints of one 

another to match).

Event Segmentation Model—Our model is built on two hypotheses: 1) while processing 

narrative stimuli, observers experience a sequence of discrete events, and 2) each event has a 

distinct neural signature. Mathematically, the model assumes that a given subject (or 

averaged group of subjects) starts in event s1=1 and ends in event sT=K, where T is the total 

number of timepoints and K is the total number of events. In each timepoint the subject 

either remains in the same state or advances to the next state, i.e. st+1 ∈ {st, st+1} for all 

timepoints t. Each event has a signature mean activity pattern mk across all V voxels in a 

region of interest, and the observed brain activity bt at any timepoint t is assumed to be 

highly correlated with mk, as illustrated in Fig. 2.

Given the sequence of observed brain activities bt, our goal is to infer both the event 

signatures mk and the event structure st. To accomplish this, we cast our model as a variant 

of a Hidden Markov Model (HMM). The latent states are the events st that evolve according 

to a simple transition matrix, in which all elements are zero except for the diagonal 

(corresponding to st+1 = st) and the adjacent off-diagonal (corresponding to st+1 = st+1), and 

the observation model is an isotropic Gaussian , 

where z(x) denotes z-scoring an input vector × to have zero mean and unit variance. Note 

that, due to this z-scoring, the log probability of observing brain state bt in an event with 
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signature mk is simply proportional to the Pearson correlation between bt and mk plus a 

constant offset.

The HMM is fit to the fMRI data by using an annealed version of the Baum-Welch 

algorithm, which iterates between estimating the fMRI signatures mk and the latent event 

structure st. Given the signature estimates mk, the distributions over latent events p(st=k) can 

be computed using the forward-backward algorithm. Given the distributions p(st=k), the 

updated estimates for the signatures mk can be computed as the weighted average 

. To encourage convergence to a high-likelihood solution, we anneal the 

observation variance σ2 as 4 · 0.98i where i is the number of loops of Baum-Welch 

completed so far. We stop the fitting procedure when the log-likelihood begins to decrease, 

indicating that the observation variance has begun to drop below the actual event activity 

variance. We can also fit the model simultaneously to multiple datasets; on each round of 

Baum-Welch, we run the forward-backward algorithm on each dataset separately, and then 

average across all datasets to compute a single set of shared signatures mk.

The end state requirement of our model - that all states should be visited, and the end state 

should be symmetrical to all other states - requires extending the traditional HMM by 

modifying the observation probabilities p(bt|st = k). First, we enforce sT = K by requiring 

that, on the final timestep, only the final state K could have generated the data, by setting 

p(bT|sT = k) = 0 for all k ≠ K. Equivalently, we can view this as a modification of the 

backwards pass, by initializing the backwards message β(sT = k) to 1 for k = K and 0 

otherwise. Second, we must modify the transition matrix to ensure that all valid event 

segmentations (which start at event 1 and end at event K, and proceed monotonically 

through all events) have the same prior probability. Formally, we introduce a dummy 

absorbing state K+1 to which state K can transition, ensuring that the transition probabilities 

for state K are identical to those for previous states, and then set p(bt|st = K + 1) = 0 to 

ensure that this state is never actually used.

Since we do not want to assume that events will have the same relative lengths across 

different datasets (such as a movie and audio-narration version of the same narrative), we fix 

all states to have the same probability of staying in the same state (st+1 = st) versus jumping 

to the next state (st+1 = st+1). Note that the shared probability of jumping to the next state 

can take any value between 0 and 1 with no effect on the results (up to a normalization 

constant in the log-likelihood), since every valid event segmentation will contain exactly the 

same number of jumps (K-1).

Our model induces a prior over the locations of the event boundaries. There are a total of 

 equally likely placements of the K-1 event boundaries, and the number of ways 

to have event boundary k fall on timepoint t is the number of ways that k-1 boundaries can 

be placed in t-1 timepoints times the number of ways that (K-1)-(k-1)-1 boundaries can be 
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placed in T-t timepoints. Therefore . An 

example of this distribution is shown in Fig. S1. During the annealing process, the 

distribution over boundary locations starts at this prior, and slowly adjusts to match the event 

structure of the data.

After fitting the model on one set of data, we can then look for the same sequence of events 

in another dataset. Using the signatures mk learned from the first dataset, we simply perform 

a single round of the forward-backward algorithm to obtain event estimates p(st=k) on the 

second dataset. If we expect the datasets to have similar noise properties (e.g. both datasets 

are group-averaged data from the same number of subjects), we set the observation variance 

to the final σ2 obtained while fitting the first dataset. When transferring events learned on 

group-averaged data to individual subjects, we estimate the variance for each event across 

the individual subjects of the first dataset.

The model implementation was first verified using simulated data. An event-structured 

dataset was constructed with V=10 voxels, K=10 events, and T=500 timepoints. The event 

structure was chosen to be either uniform (with 50 timepoints per event), or the length of 

each event was sampled (from first to last) from N(1,0.25)*(timepoints remaining)/(events 

remaining). A mean pattern was drawn for each event from a standard normal distribution, 

and the simulated data for each timepoint was the sum of the event pattern for that timepoint 

plus randomly distributed noise with zero mean and varying standard deviation. The noisy 

data were then input to the event segmentation model, and we measured the fraction of the 

event boundaries that were exactly recovered from the true underlying event structure. As 

shown in Fig. S1, were able to recover a majority of the event boundaries even when the 

noise level was as large as the signature patterns themselves.

Finding event structure in narratives—To validate our event segmentation model on 

real fMRI data, we first fit the model to group-averaged PCC data from the Interleaved 

Stories experiment. In this experiment, we expect that an event boundary should be 

generated every time the stimulus switches stories, giving a ground truth against which to 

compare the model’s segmentations. As shown in Fig. S2, our method was highly effective 

at identifying events, with the majority of the identified boundaries falling close to a story 

switch.

The following subsections describe how the model was used to obtain each of the 

experimental results, with subsection titles corresponding to subsections of the Results.

Timescales of cortical event segmentation—We applied the model in a searchlight 

to the whole-brain movie-watching data from the Sherlock Recall study. Cubical 

searchlights were scanned throughout the volume at a step size of 3 voxels and with a side 

length of 7 voxels. For each searchlight, the event segmentation model was applied to group-

averaged data from all but one subject. We measured the robustness of the identified 

boundaries by testing whether these boundaries explained the data in the held-out subject. 
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We measured the spatial correlation between all pairs of timepoints that were separated by 

four timepoints, and then binned these correlations according to whether the pair of 

timepoints fell within the same event or crossed over an event boundary. The average 

difference between the within- versus across-event correlations was used as an index of how 

well the learned boundaries captured the temporal structure of the held-out subject. The 

analysis was repeated for every possible held-out subject, and with a varying number of 

events from K=10 to K=120. After averaging the results across subjects, the number of 

events with the best within- versus across-event correlations was chosen as the optimal 

number of events for this searchlight.

Since the topography of the results was similar to previous work on temporal receptive 

windows, we compared the map of the optimal number of events with the short and medium/

long timescale maps derived by measuring inter-subject correlation for intact versus 

scrambled movies (J. Chen et al., 2016). The histogram of the optimal number of events for 

voxels was computed within each of the timescale maps.

Comparison of event boundaries across regions and to human annotations—
We defined four equally-sized regions along the cortical hierarchy by taking the centers of 

mass of the early visual cortex, hV4, angular gyrus and PCC ROIs in each hemisphere, and 

finding the nearest 150 voxels to these centers (yielding 300 bilateral voxels for each 

region). For each region, we calculated its optimal number of events using the same within- 

versus across-event correlation procedure described in the previous section, and then fit a 

final event segmentation model with the optimal number of events (using the Sherlock 

Recall data). We measured the match between levels of the hierarchy by computing the 

fraction of boundaries in the “upper” (slower) level that were close to a boundary in the 

“lower” (faster) level. We defined “close to” as “within three timepoints,” since the typical 

uncertainty in the model about exactly where an event switch occurred was approximately 

three timepoints.

To measure similarity to the human annotations, we first constructed a “consensus” 

annotation from the four observers, consisting of boundary locations that were within three 

timepoints of boundaries marked by at least two observers. We then measured the match 

between the consensus boundaries and the boundaries from each region, treating the 

consensus boundaries as the “upper” level. To ensure that differences between regions were 

not driven by timescale differences, for this comparison we refit the event segmentation 

model to each cortical region using the same number of events as in the consensus 

annotation (rather than using each region’s optimal timescale).

Shared event structure across modalities—After fitting the event segmentation 

model to a searchlight of movie-watching data from the Sherlock Narration experiment, we 

took the learned event signatures mk and used them to run the forward-backward algorithm 

on the audio narration data, to test whether audio narration of a story elicited the same 

sequence of events as a movie of that story. Since both the movie and audio data were 

averaged at the group level, they should have similar levels of noise, and therefore we simply 

used the fit movie variance σ2 for the observation variance.
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Relationship between cortical event boundaries and hippocampal encoding—
After applying the event segmentation model throughout the cortex to the Sherlock Recall 

study as described above, we measured whether the data-driven event boundaries were 

related to activity in the hippocampus. For a given cortical searchlight, we extracted a 

window of mean hippocampal activity around each of the searchlight’s event boundaries. We 

then averaged these windows together, yielding a profile of boundary-triggered hippocampal 

response according to this region’s boundaries. To assess whether the hippocampus showed 

a significant increase in activity related to these event boundaries, we measured the mean 

hippocampal activity for the 10 timepoints following the event boundary minus the mean 

activity for the 10 timepoints preceding the event boundary.

Reinstatement of event patterns during free recall—For each region of interest, we 

fit the event segmentation model as described above (on the group-averaged Sherlock Recall 

data). We then took the learned sequence of event signatures mk and ran the forward-

backward algorithm on each individual subject’s recall data. We set the variance of each 

event’s observation model by computing the variance within each event in the movie-

watching data of individual subjects, pooling across both timepoints and subjects. The 

analysis was run for 10 events to 60 events in steps of 5.

We operationalized the overall reinstatement of an event k, as Σt p(st = k); that is, the sum 

across all recall time points of the probability that the subject was recalling perceptual event 

k at that time point. We measured whether this per-event re-activation during recall could be 

predicted during movie-watching, based on the hippocampal response at the end of the 

event. For each subject, we computed the difference between hippocampal activity after 

versus before the event boundary as above. We then averaged the event re-activation and 

hippocampal offset response across subjects, and measured their correlation. For comparison 

purposes, we also performed the same analysis but with hippocampal differences at the 

beginning of each event, rather than the end, and with the mean hippocampal activity 

throughout the event.

Anticipatory reinstatement for a familiar narrative—To determine whether memory 

changed the event correspondence between the movie and narration, we then fit the 

segmentation model simultaneously to group-averaged data from the movie-watching 

condition, audio narration no-memory condition, and audio narration with memory 

condition, yielding a sequence of events in each condition with the same activity signatures. 

We computed the correspondence between the movie states sm,t and the audio no-memory 

states sanm,t as as p(sm,t1 = sanm,t2) = Σk p(sm,t1 = k) · p(sanm,t2 = k), and similarly for the 

audio memory states sam,t. We computed the differences between the group correspondences 

as Σt1Σt2(p(sm,t1 = sanm,t2) − p(sm,t1 = sam,t2))2. For visualization, we also computed how far 

the memory correspondence was ahead of the no-memory correspondence as the mean over 

t2 of the difference in the expected values Σt1 t1p(sm,t1 = sanm,t2) − Σt1 t1p(sm,t1 = sam,t2). We 

also performed the same analysis but with only the two narration conditions, computing the 

correspondence between the audio memory and audio no-memory states as p(sam,t1 = 

sanm,t2) = Σk p(sam,t1 = k) · p(sanm,t2 = k). Since deviation from a diagonal correspondence 

would indicate anticipation in the memory group, we measured the expected deviation from 
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the diagonal as , and for visualization calculated the 

amount of anticipation as Σt tp(sam,t1 = sanm,t2) − T/2.

Quantification and Statistical Analysis

Permutation or resampling analyses were used to statistically evaluate all of the results. As 

above, the analyses for each subsection are presented under a corresponding heading.

Timescales of cortical event segmentation—To generate a null distribution, the same 

analysis was performed except that the event boundaries were scrambled before computing 

the within- versus across-event correlation. This scrambling was performed by reordering 

the events with their durations held constant, to ensure that the null events had the same 

distribution of event lengths as the real events. The within versus across difference for the 

real events compared to 1000 null events was used to compute a z value, which was 

converted to a p value using the normal distribution. The p values were Bonferroni corrected 

for the 12 choices of the number of events, and then the false discovery rate q was computed 

using the same calculation as in AFNI (Cox, 1996).

Comparison of event boundaries across regions and to human annotations—
For each pairwise comparison between regions or between a region and the human 

annotations, we scrambled the event boundaries using the same duration-preserving 

procedure described above to produce 1000 null match values. The true match value was 

compared to this distribution to compute a z value, which was converted to a p value. To 

assess whether two cortical regions had significantly different matches to human 

annotations, we scrambled the boundaries from the regions (keeping the human annotations 

intact), and computed the fraction of scrambles for which the difference in the match to 

human annotations was larger in the null data than the original data.

Shared event structure across modalities—We compared the log-likelihood of the fit 

to the narration data against a null model in which the movie event signatures mk were 

randomly re-ordered, and computed the z value of the true log-likelihood compared to 100 

null shuffles, then converted to a p value. This null hypothesis test therefore assessed 

whether the narration exhibited ordered reactivation of the events identified during movie-

watching.

Relationship between cortical event boundaries and hippocampal encoding—
For each searchlight, we compared the difference in hippocampal activity for the 10 

timepoints after an event boundary compared to 10 timepoints before an event boundary, 

both on the true boundaries and on shuffled event boundaries (using the duration-preserving 

procedure described above). The z value for this difference was computed to a p value, and 

then transformed to a false discovery rate q.

Reinstatement of event patterns during free recall—As in the movie-to-narration 

analysis, we compared the log-likelihood of the movie-recall fit to a null model in which the 

order of the event signatures was shuffled before fitting to the recall data, which yielded a z 
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value that was converted to a p value. When measuring the match to human annotations, we 

compared to the same shuffled-event null models.

To assess the robustness of the encoding activity versus reinstatement correlations, we 

performed a bootstrap test, in which we resampled subjects (with replacement, yielding 17 

subjects as in the original dataset) before taking the average and computing the correlation. 

The p value was defined as the fraction of 1000 resamples that yielded correlations with a 

different sign from the true correlation.

Anticipatory reinstatement for a familiar narrative—To determine if the 

correspondence with the movie was significantly different between the memory and no-

memory conditions, we created null groups by averaging together a random half of the no-

memory subjects with a random half of memory subjects, and then averaging together the 

remaining subjects from each group, yielding two group-averaged timecourses whose 

correspondences should differ only by chance. We calculated a z value based on the 

correspondence difference for real versus null groups, which was converted to a p value and 

then corrected to a false discovery rate q. The analysis using only the narration conditions 

was performed similarly, computing a z value based on the expected deviation from the 

diagonal in the real versus null groups.

Data and Software Availability

All of the primary data used in this study are drawn from other papers (J. Chen et al., 2017; 

Zadbood et al., 2016), and the “Interleaved Stories” posterior cingulate cortex data are 

available on request. Implementations of our event segmentation model, along with 

simulated data examples, are available on GitHub at https://github.com/intelpni/brainiak 

(python) and at https://github.com/cbaldassano/Event-Segmentation (Matlab).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Event boundaries during perception can be identified from cortical activity 

patterns

• Event timescales vary from seconds to minutes across the cortical hierarchy

• Hippocampal activity following an event predicts reactivation during recall

• Prior knowledge of a narrative enables anticipatory reinstatement of event 

patterns

Baldassano et al. Page 26

Neuron. Author manuscript; available in PMC 2018 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Theory of event segmentation and memory
During perception, events are constructed at a hierarchy of timescales (1), with short events 

in primary sensory regions and long events in regions including the angular gyrus and 

posterior medial cortex. These high-level regions have event boundaries that correspond 

most closely to putative boundaries identified by human observers (2), and represent abstract 

narrative content that can be drawn from multiple input modalities (3). At the end of a high-

level event, the situation model is stored into long-term memory (4) (resulting in post-

boundary encoding activity in the hippocampus), and can be reinstated during recall back 

into these cortical regions (5). Prior event memories can also influence ongoing processing 

(6), facilitating prediction of upcoming events in related narratives. We test each of these 

hypotheses using a data-driven event segmentation model, which can automatically identify 

transitions in brain activity patterns and detect correspondences in activity patterns across 

datasets.
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Figure 2. Event segmentation model
(a) Given a set of (unlabeled) timecourses from a region of interest, the goal of the event 

segmentation model is to temporally divide the data into “events” with stable activity 

patterns, punctuated by “event boundaries” at which activity patterns rapidly transition to a 

new stable pattern. The number and locations of these event boundaries can then be 

compared across brain regions or to stimulus annotations. (b) The model can identify event 

correspondences between datasets (e.g. responses to movie and audio versions of the same 

narrative) that share the same sequence of event activity patterns, even if the duration of the 

events is different. (c) The model-identified boundaries can also be used to study processing 

evoked by event transitions, such as changes in hippocampal activity coupled to event 

transitions in the cortex. (d) The event segmentation model is implemented as a modified 

Hidden Markov Model (HMM) in which the latent state st for each timepoint denotes the 

event to which that timepoint belongs, starting in event 1 and ending in event K. All 

datapoints during event k are assumed to be exhibit high similarity with an event-specific 

pattern mk. See also Figs. S1, S2, S3.
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Figure 3. Event segmentation model for movie-watching data reveals event timescales
The event segmentation model identifies temporally-clustered structure in movie-watching 

data throughout all regions of cortex with high intersubject correlation. The optimal number 

of events varied by an order of magnitude across different regions, with a large number of 

short events in sensory cortex and a small number of long events in high-level cortex. For 

example, the timepoint correlation matrix for a region in the precuneus exhibited coarse 

blocks of correlated patterns, leading to model fits with a small number of events (white 

squares), while a region in visual cortex was best modeled with a larger number of short 

events (note that only ~3 minutes of the 50 minute stimulus are shown, and that the 

highlighted searchlights were selected post-hoc for illustration). The searchlight was masked 

to include only regions with intersubject correlation > 0.25, and voxelwise thresholded for 

greater within- than across-event similarity, q<0.001. See also Figs. S3, S4, S8.
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Figure 4. Cortical event boundaries are hierarchically structured and are related to human-
labeled event boundaries, especially in posterior medial cortex
(a) An example of boundaries evoked by the movie over a four-minute period shows how the 

number of boundaries decreases as we proceed up the hierarchy, with boundaries in posterior 

medial cortex most closely related to human annotations of event transitions. (b) Event 

boundaries in higher regions are present in lower regions at above-chance levels (especially 

pairs of regions that are close in the hierarchy), suggesting that event segmentation is in part 

hierarchical, with lower regions subdividing events in higher regions. (c) All four levels of 

the hierarchy show an above-chance match to human annotations (the null distribution is 

shown in gray), but the match increases significantly from lower to higher levels († p=0.058, 

* p<0.05, ** p<0.01).
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Figure 5. Movie-watching model generalizes to audio narration in high-level cortex
After identifying a series of event patterns in a group of subjects who watched a movie, we 

tested whether this same series of events occurred in a separate group of subjects who heard 

an audio narration of the same story. The movie and audio stimuli were not synchronized 

and differed in their duration. We restricted our searchlight to voxels that responded to both 

the movie and audio stimuli (having high intersubject correlation within each group). Movie-

watching event patterns in early auditory cortex (dotted line) did not generalize to the 

activity evoked by audio narration, while regions including the angular gyrus, 

temporoparietal junction, posterior medial cortex, and inferior frontal cortex exhibited 

shared event structure across the two stimulus modalities. This analysis, conducted using our 

data driven model, replicates and extends the previous analysis of this dataset (Zadbood et 

al., 2016) in which the event correspondence between the movie and audio narration was 

specified by hand. The searchlight is masked to include only regions with intersubject 

correlation > 0.1 in all conditions, and voxelwise thresholded for above-chance movie-audio 

fit, q<10−5. See also Fig. S8.
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Figure 6. Hippocampal activity increases at cortically-defined event boundaries
To determine whether event boundaries may be related to long-term memory encoding, we 

identify event boundaries based on a cortical region and then measure hippocampal activity 

around those boundaries. In a set of regions including angular gyrus, posterior medial cortex, 

and parahippocampal cortex, we find that event boundaries robustly predict increases in 

hippocampal activity, which tends to peak just after the event boundary. The searchlight is 

masked to include only regions with intersubject correlation > 0.25, and voxelwise 

thresholded for post-boundary hippocampal activity greater than pre-boundary activity, 

q<0.001. See also Figs. S5, S8.
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Figure 7. Movie-watching events are reactivated during individual free recall, and reactivation is 
related to hippocampal activation at encoding event boundaries
(a) We can obtain an estimated correspondence between movie-watching data and free-recall 

data in individual subjects by identifying a shared sequence of event patterns, shown here for 

an example subject using data from posterior cingulate cortex. (b) For each region of 

interest, we tested whether the movie and recall data shared an ordered sequence of latent 

events (relative to a null model in which the order of events was shuffled between movie and 

recall). We found that both angular gyrus (blue) and posterior cingulate cortex (green) 

showed significant reactivation of event patterns, while early auditory cortex (red) did not. 

(c–d) Events whose offset drove a strong hippocampal response during encoding (movie-

watching) were strongly reactivated for longer fractions of the recall period, both in the 

angular gyrus and the posterior cingulate. Error bars for event points denote s.e.m. across 

subjects, and error bars on the best-fit line indicate 95% confidence intervals from 

bootstrapped best-fit lines. See also Fig. S6.
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Figure 8. Prior memory shifts movie-audio correspondence
The event segmentation model was fit simultaneously to a data from a group watching the 

movie, the same group listening to the audio narration after having seen the movie 

(“memory”), and a separate group listening to the audio narration for the first time (“no 

memory”). By examining which timepoints were estimated to fall within the same latent 

event, we obtained a correspondence between timepoints in the audio data (for both groups) 

and timepoints in the movie data. We found regions in which the correspondence in both 

groups was close to the human-labeled correspondence between the movie and audio stimuli 

(black boxes), but the memory correspondence (orange) significantly led the non-memory 

correspondence (blue) (indicated by an upward shift on the correspondence plots; note that 

the highlighted searchlights were selected post-hoc for illustration). This suggests that 

cortical regions of the memory group were anticipating events in the narration based on 

knowledge of the movie. The searchlight is masked to include only regions with intersubject 

correlation > 0.1 in all conditions, and voxelwise thresholded for above-chance differences 

between memory and no memory groups, q<0.05. See also Fig. S7, S8.
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