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Abstract

Intratumor heterogeneity has been widely reported in human cancers, but our knowledge of how 

this genetic diversity emerges over time remains limited. A central challenge in studying tumor 

evolution is the difficulty in collecting longitudinal samples from cancer patients. Consequently, 

most studies have inferred tumor evolution from single time-point samples, providing very indirect 

information. These data have led to several competing models of tumor evolution: linear, 

branching, neutral and punctuated. Each model makes different assumptions regarding the timing 

of mutations and selection of clones, and therefore has different implications for the diagnosis and 

therapeutic treatment of cancer patients. Furthermore, emerging evidence suggests that models 

may change during tumor progression or operate concurrently for different classes of mutations. 

Finally, we discuss data that supports the theory that most human tumors evolve from a single cell 

in the normal tissue. This article is part of a Special Issue entitled: Evolutionary principles - 

heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
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1. Introduction

Tumor evolution begins when a single cell in the normal tissue transforms and expands to 

form a tumor mass. During this complex biological process, clonal lineages diverge and 

form distinct subpopulations, resulting in intratumor heterogeneity (ITH). ITH has long been 

observed by pathologists, such as Rudolf Virchow in the late 1800s who reported 

☆This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
*Corresponding author at: Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., 
nnavin@mdanderson.org (N. Navin). 

Transparency document
The Transparency document associated with this article can be found, in online version.

HHS Public Access
Author manuscript
Biochim Biophys Acta. Author manuscript; available in PMC 2017 August 16.

Published in final edited form as:
Biochim Biophys Acta. 2017 April ; 1867(2): 151–161. doi:10.1016/j.bbcan.2017.01.003.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



morphological differences between single tumor cells under the microscope [1]. Further 

development of karyotyping and cytogenetic technologies in the 1970s led to numerous 

studies reporting heterogeneity in amplifications of oncogenes and deletions of tumor 

suppressors within the same tumor [2–4]. The concept of ITH soon emerged, but was largely 

ignored in clinical practice, because it confounded the diagnosis and therapeutic treatment of 

cancer patients. In the late 1990s microarray technologies were developed [5], which were 

soon followed by the development of next-generation sequencing (NGS) technologies 

around 2005 [6,7]. These new genomic technologies led to a paradigm shift in the field, 

away from qualitative studies based on single markers, and towards large-scale quantitative 

ITH datasets. The subsequent application of NGS technologies to human tumors revealed 

that ITH is common in many human cancers [8–10]. However, despite the significant 

progress, a central question has remained: how did ITH emerge during tumor progression?

Tumor evolution is a field that applies knowledge of species evolution, ecology and 

population genetics to understand how tumor cell populations respond to selective pressures 

[11]. Formalizing the concept of tumor evolution is often accredited to Peter Nowell [12] 

and pioneers such as Isaiah Fidler who recognized the importance of clonal diversity in 

metastasis [13]. Over the following decades studies have showed that tumor cells encounter 

selective pressures in their microenvironment, including the immune system, pH changes, 

chemotherapy, radiation, nutrient deprivation and geographic barriers [14]. These selective 

pressures shape the evolutionary trajectory of the tumor and clonal lineages. Principles such 

as species richness, selection, fitness and population bottlenecks are useful concepts for 

understanding tumor evolution, however it is also important to note that many concepts from 

ecology and population genetics do not apply to tumors, most notably sexual selection and 

meiotic recombination [14,15].

Tumor evolution is difficult to study in human patients. The central problem is that patients 

cannot ethically be biopsied at multiple time points during the progression of the disease. As 

a consequence, most studies have inferred the evolutionary history from single time-point 

samples. This approach is conceptually feasible, because ITH provides a permanent record 

of the mutations that occurred during the natural history of the tumor [8,16]. Researchers 

can apply phylogenetic inference to reconstruct tumor cell lineages and order the chronology 

of mutations that occurred over time. However this approach provides an incomplete picture 

of how tumor cells evolve, particularly when intermediate clones are not persistent during 

progression. Consequently there has been much debate regarding the general models of 

tumor evolution. Several competing models have been proposed: Linear Evolution (LE), 

Branching Evolution (BE), Neutral Evolution (NE) and Punctuated Evolution (PE) (Fig. 1). 

The evidence supporting these models will serve as the basis of discussion for this review, 

but first we will review the genomic methods that are used to study ITH and clonal 

evolution.

2. Methods for resolving intratumor heterogeneity

NGS methods can measure thousands of mutations and generate large-scale genomic 

datasets on tumors [6,7]. However standard NGS methods require bulk tissue and therefore 

provide limited information on the subclonal architecture of a tumor. To address this 
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limitation, further methods were developed to delineate ITH: deep-sequencing, multi-region 

sequencing and single cell DNA sequencing (Fig. 2). Deep sequencing involves performing 

NGS at high coverage depth to measure mutant allele frequencies (MAFs) [17,18] (Fig. 2A). 

Using computational methods such as SciClone [19] or Pyclone [20], the mutation 

frequencies are then normalized and clustered to identify clonal subpopulations that are 

assumed to share similar MAFs. This approach is experimentally simple, but cannot 

accurately resolve clonal subpopulations when they share similar MAFs in the tumor. 

Another method is multi-region sequencing and involves sampling different geographical 

regions of the tumor for exome sequencing (Fig. 2B) [21–24]. This approach is 

experimentally straightforward, but has limited ability to resolve subclones that are 

intermixed within the same spatial regions. Another approach is single cell DNA sequencing 

(Fig. 2C) [25–29]. This approach involves isolating single tumor cells, performing whole 

genome amplification (WGA) and then sequencing and comparing multiple cells to resolve 

ITH and reconstruct clonal lineages [30]. The advantage of this approach is that it can fully 

resolve admixtures of clones, however due to cost and throughput, only a limited number of 

cells can be profiled, potentially leading to sampling bias [31].

3. Reconstructing tumor evolution from intratumor heterogeneity

After resolving ITH, the data can be used to reconstruct clonal lineages using phylogenetic 

inference to understand tumor evolution. In phylogenetic tumor trees, the internal nodes 

represent common ancestors, whose genotype can be deduced from the commonalities 

between their descendants. A phylogenetic tree thus provides a window into the past, by 

estimating the order in which mutations occurred as clones diverged in lineages and formed 

subpopulations. Phylogenetic trees can be constructed from ITH using different algorithms. 

The units of heterogeneity that appear at the tips of the tree are called taxons, and represent 

either clones, single cells, or spatial regions, depending on the experimental method that was 

used. The tree is often constructed using an algorithm to satisfy a parsimony criterion, in 

which the tree with the minimum number of changes leading to the observed data is 

inferred. For deep sequencing data, clones are inferred by clustering MAFs and are arranged 

into a tree using the sum condition that MAFs of child nodes must sum to those of their 

parents, and the ancestry condition that descendants have all the mutations in their parents. 

Many computational algorithms have been developed for this purpose [32–40]. There are 

also specialized algorithms for inferring phylogenetic trees from multiregion sequencing 

data [41,42]. Using single-cell data, it is possible to order mutations and attach cells to the 

mutation trees [43], or to additionally cluster cells into clones and construct a clone tree 

similar to those produced by deep sequencing analysis methods [44,45]. In summary, these 

methods enable tumor evolution to be reconstructed from ITH using single time-point 

samples. However these trees are based on the infinite sites assumption [46] which implies 

that mutations accumulate and are never lost. This assumptions is often violated in tumors, 

where chromosome deletions and LOH are common.

4. Evolutionary concepts and definitions

To understand models of tumor evolution, several concepts and definitions are necessary. A 

clone is defined as a group of tumor cells that shares a highly similar genotype and 
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mutational profile, while a subclone is a group of tumor cells that diverged in the 

evolutionary lineage and has acquired additional mutations [9]. Truncal mutations are 

ancestral mutations in the trunk of the phylogenetic tree that are shared by all clones, while 

subclonal mutations define a lineage that has diverged from the trunk [47]. Private mutations 
refer to mutations that are only detected in a single taxon. Another important concept is 

fitness, which refers to the ability of a tumor cell to survive and proliferate, so that it can 

propagate its genotype to the gene pool in the tumor. Tumor clones with increased fitness 

will become more prevalent in the tumor mass over time. Driver mutations confer a fitness 

advantage, while passenger mutations have no effect on fitness. Increased fitness can lead to 

clonal expansions in which one genotype expands in frequency in the tumor mass. A 

selective sweep describes the process in which a genotype emerges with an extremely high 

fitness that it outcompetes all other clones in the tumor [14].

5. Linear tumor evolution

One of the most renowned models for tumor evolution posited that mutations were acquired 

linearly in a step-wise process leading to more malignant stages of cancer [48]. In this linear 

evolution (LE) model new driver mutations provide such a strong selective advantage, that 

they outcompete all previous clones via selective sweeps that occur during tumor evolution 

(Fig. 1A). This model posits that selective sweeps occur after driver mutations are acquired, 

resulting in dominant clones when ITH is profiled at various stages of tumor growth (Fig. 

3A). The resulting LE phylogenetic tree is expected to show a major dominant clone, with 

only rare intermediates that are persistent from the previous selective sweeps (Fig. 4A). 

Experimental evidence for LE was originally based on profiling X-inactivation in tumors 

using histological staining, methylation analysis or PCR genotyping of glucose-6-phosphate 

dehydrogenase [49–53]. These studies showed that unlike most somatic tissues, which had 

random inactivation of the maternal or paternal X allele, human tumors often showed only a 

single clonal X-allele inactivated throughout the tumor mass. These data were interpreted 

that human tumors were clonal growths, due to selection of the dominant clones. Further 

work by Fearon & Vogelstein showed that colon cancers progress through a linear series of 

step-wise mutations leading to sequentially more malignant stages of tumor growth in 

colorectal cancer [48]. Conceptually, this linear model has been useful in understanding how 

the sequential acquisition of driver mutations can potentially lead to more advanced stages 

of malignant disease. However most data supporting LE stems from single gene studies that 

did not measure genome-wide markers and thus may have missed heterogeneous mutations 

that define different clones. In summary, there is limited experimental evidence supporting 

LE in most advanced human cancers.

6. Branching evolution

Branching evolution (BE) is a model in which clones diverge from a common ancestor, and 

evolve in parallel in the tumor mass resulting in multiple clonal lineages (Fig. 1B). In 

contrast to LE selective sweeps are uncommon in BE, and multiple clones expand 

simultaneously because they all have increased fitness. In this model the amount of ITH will 

fluctuate during tumor progression, but multiple clones are expected to be present at the time 

of clinical sampling (Fig. 3C). The phylogenetic trees resulting from BE are expected to 
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have intermediate taxa as well as taxa that have clonally expanded due to the positive 

selection of driver mutations in subclonal lineages (Fig. 4B). The BE model has been 

supported by numerous NGS studies in which point mutations have been profiled by single 

cell DNA sequencing [25,28,29,54–57], multi-region sequencing [21,23,58–65] and deep-

sequencing [17,18,66,67]. These studies have reported branching evolution in many human 

cancers, including leukemia [57,66] breast cancer [17,18,28,61], liver cancer [68], colorectal 

cancer [58,69,70], ovarian cancer [24,71], prostate cancer [64], kidney cancer [21,23], 

melanoma [72] and brain cancer [62,63,73]. Consistently, these studies have identified 

truncal mutations, subclonal mutations and private mutations in many human cancers.

While these studies often support BE, they differ in the number of clones that are reported 

and the shape of the evolutionary trees. In some tumors, the evolutionary trees have short 

trunks and many branches, indicating subclones with significant degrees of divergence. Long 

branches exist in some breast cancers and kidney cancers [21,28, 61]. Other trees have very 

long trunks and few branches, indicating subclones with many more similarities than 

differences, including breast and kidney cancers, as well as lung cancers [59,60]. The 

number of clonal subpopulations identified in BE also varies significantly in cancers and 

among patients with the same cancers. In a cohort of 104 triple-negative breast-cancer 

(TNBC) patients, resolving subclones with deep sequencing identified 1 to 19 subclones per 

patient [18]. Another study used multi-region sequencing of 50 breast cancers and identified 

only 1–4 major clonal subpopulations in each patient [61]. These data suggest a large 

amount of variation in the number of subclones that are present in human tumors, but this 

result may also depend on sequencing depth and the number of cells or regions that are 

sampled.

A defining feature of BE is ongoing clonal evolution, in which new driver mutations 

continue to accumulate gradually over time in tumor cells, leading to further clonal 

expansions within the tumor mass. Continued evolution and selection clones is supported by 

at least two lines of evidence: 1. subclonal driver mutations, and 2. convergent evolution. 

Subclonal driver mutations are frequently reported in multi-region and single cell 

sequencing studies of tumors. In one study, Wang et al. used single cell exome sequencing 

and identified subclonal driver mutations in AURKA, TGFB2 and CBX4 that lead to the 

clonal expansion of three subpopulations in patient with triple-negative breast cancer [28]. 

Another single cell exome sequencing study identified subclonal mutations in APC and 

TP53 that lead to the expansion of a tumor subpopulation [56]. A larger multi-region 

sequencing study of breast cancer patients identified subclonal driver mutations in 13 out of 

50 patients [61]. Similarly a large number of subclonal driver mutations have been reported 

in multi-region sequencing studies of kidney cancer [21,23], lung cancer [60], melanoma 

[72] and deep-sequencing of breast cancer genomes [17,18]. However other cancers such as 

lung cancer [59], glioblastoma [63], and liver cancer [68] have reported limited subclonal 

driver mutations. Another line of evidence for selection in tumor phylogenies is seen in 

cases of convergent evolution, where two independent lineages in the tumor mutate the same 

driver gene, leading to independent clonal expansions. Evidence for convergent evolution 

has been reported in 5 out of 10 cases of kidney cancer [60] and in 4 out of 50 cases of 

breast tumors [61], where multiple spatial regions had inactivation of the same cancer genes. 
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These data show that subclones can co-exist and expand in parallel and are not outcompeted 

by selective sweeps that dominate the tumor mass as posited by LE.

The co-existence of multiple subclones in BE raises interesting question about the 

possibility of clonal cooperation. Several recent studies have begun to investigate clonal 

interactions using in vivo systems to understand the functional significance of ITH. Marusyk 

et al. used an in vivo system and reported non-cell autonomous paracrine interactions, in 

which expression of IL6 increased the size of the tumor but not the size the secreting 

subpopulation [74]. In another study mammary mouse models with Wnt1 overexpression 

showed cooperative interactions between basal and luminal subpopulations that were 

codependent for driving tumor growth [75]. A different study used in vivo systems to show 

that small subpopulations of glioblastoma cells with mutated EGFR clones could promote 

the growth of neighboring wildtype cells through a paracrine interaction that involved LIF 

and IL6 cytokines [76]. These functional studies have begun to explain why multiple 

subclones co-exist in tumors, by revealing the cooperative interactions that drive tumor 

growth. However in other cases, tumor clones may co-exist due to a lack of direct 

competition, rather than cooperative interactions [77].

7. Neutral evolution

Neutral Evolution (NE) is an extreme case of branching evolution, which further 

hypothesizes that there is no selection or fitness changes during most of the lifetime of the 

tumor (Fig. 1C). This model assumes that random mutations accumulate over time leading 

to genetic drift and extensive ITH (Fig. 3C). Importantly, NE posits that ITH is a byproduct 

of tumor progression, and has no functional significance in driving tumor growth. The 

lineage tree resulting from NE will consist of many intermediate nodes and highly branched 

structure, without any evidence of single taxa that have expanded (Fig. 4C). NE was 

originally proposed in species evolution, challenging the idea of natural selection that is the 

cornerstone of Darwinian evolution [78,79]. As described above, natural selection is 

evidenced in tumors by subclonal driver mutations and convergent evolution. However, not 

all tumors have these features, leaving open the possibility of neutral evolution in some 

cases. Ling et al. used multi-region sequencing to profile 309 spatial regions of a single 

patient with a hepatocellular carcinoma and reported 35 polymorphic SNVs that defined 20 

subclones. The frequencies of mutations among sections, and their spatial arrangements, 

were consistent with a mathematical model of neutral evolution in an expanding population 

[68]. In another study, Williams et al. applied a model of neutral evolution to examine 

subclonal allele frequencies from the TCGA cohorts and reported consistency with NE in 

one-third (N = 323/904) of examined cancers [80]. Evidence for NE in this cases was 

constituted by a linear relationship between the number of mutations and inverse mutant 

allele frequency. Together these results provide evidence that neutral evolution may occur in 

a significant fraction of tumors. However, this evidence has several limitations. Ling et al.’s 

report is a case study, and Williams et al. relies on low-depth exome data to detect subclonal 

mutations, which may have included many sequencing errors.
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8. Punctuated tumor evolution

The linear, gradual and neutral models commonly assume that mutations are acquired 

sequentially and gradually over time. However, recent evidence has suggested that in some 

cancers, a large number of genomic aberrations may occur in short bursts of time, at the 

earliest stages of tumor progression (Fig. 1D). In this model ITH is very high at the earliest 

stages of tumor initiation, after which one or a few dominant clones stably expand to form 

the tumor mass (Fig. 3D). The resulting phylogenetic tree for PE is defined by the absence 

of intermediate taxa during tumor evolution, resulting a long root node and one or a few 

dominant clones (Fig. 4D). The term ‘Punctuated Evolution’ is borrowed from species 

evolution and was proposed by Gould and Eldredge as ‘Punctuated Equilibrium’ in 1970 to 

challenge the long-standing paradigm of gradual Darwinian evolution [81,82]. Importantly, 

punctuated equilibrium serves as an analogy to PE and the underlying mechanisms that 

cause rapid bursts of change are likely to be very different. Nevertheless, several key 

principles are relevant: 1. stasis (stable clonal expansions), 2. evolution in short bursts of 

time, and 3. lack of gradual intermediates that are persistent during evolution. PE is 

fundamentally different from the gradual tumor evolution models, since it posits that 

extensive ITH is generated at the earliest stages of tumor evolution, which is not ongoing 

during tumor progression. In this model, tumor cells are ‘hard-wired’ or ‘pre-programmed’ 

at the earliest stages of tumor growth and are therefore destined to become invasive, 

metastatic or resistant to therapy. This model has also been referred to as the ‘big bang’ 

model of tumor evolution [70]. In contrast to LE and BE, that are supported mainly by point 

mutations, PE has mainly been supported by experimental data on DNA copy number 

aberrations and chromosomal structural rearrangements.

The studies on punctuated evolution can be divided into two groups: 1) localized 

phenomenon on single chromosomes, or 2) whole-genome rearrangements leading to 

aneuploidy. One of the first observations of localized chromosome rearrangements was 

termed ‘firestorms’, and described patterns in which clusters of amplifications were 

constrained to single chromosome arms. These events were found to correlate with highly 

aggressive disease in breast cancer patients and were discovered by Hicks et al. using 

microarray CGH [83,84]. Subsequent work described a similar phenomenon called 

‘chromothripsis’ in about 25% of bone cancers and 2–3% of other cancers using paired-end 

sequencing [85,86]. Chromothripsis is more specifically defined by many oscillating copy 

number states in which breakpoints map between adjacent segments on a single 

chromosome, and has been reported in colorectal cancer [87], prostate cancer [88], and 

ovarian cancer [89], among other cancer types [90,91]. Although many studies speculated 

that chromothripsis is caused by erroneous non-homologous end joining (NHEJ) after DNA 

damage from sources such as ionizing radiation, a recent single cell DNA sequencing study 

by Zhang et al. showed that it may also be caused by micronuclei formation [86].

PE has also been implicated in the genesis of genome-wide aneuploidy. The genomic data 

supporting a model of punctuated copy number evolution (PCNE) comes from multiple 

studies using NGS, single cell DNA sequencing and microarray CGH [25,29,83–85,92,93]. 

One of the first studies to report PCNE used a method called Sector-Ploidy-Profiling (SPP) 

that combined tumor macro-dissection, flow-sorting by DNA ploidy and microarray CGH to 
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infer copy number lineages from 20 patients with invasive breast cancer [92]. In another 

study, the authors developed the first single cell DNA sequencing method and profiled 

genome-wide copy number in hundreds of single cells from two invasive breast cancer 

patients, revealing phylogenetic lineages consistent with PCNE [25]. A more recent study 

used high-throughput single cell DNA sequencing methods to profile thousands of single 

cells from 12 patients with TNBC and reported that PCNE was common in this subtype of 

breast cancer [29]. In prostate cancer a study of 57 patients, another group reported a 

phenomenon called ‘chromoplexy’, in which genome-wide translocations and CNAs were 

interdependent and occurred concurrently in short bursts of time [93]. In colon cancer, a 

study by Sottoriva et al. profiled CNAs, epigenetic markers and mutations in the spatial 

distribution of 349 individual glands (b1000 cells) of 15 colorectal cancer patients and 

reported a ‘big-bang’ model in which all of the mutations were hypothesized to occur at the 

earliest stages of tumor initiation [70]. Taken together, these studies suggest that CNAs and 

chromosome structural rearrangements may evolve through a PE model of tumor 

progression.

9. Computational modeling of tumor evolution

A limitation in the field of tumor evolution has been that most studies are based on a single 

time point samples, making it difficult to reconstruct clonal dynamics over time. To address 

this problem, mathematical models have been developed that simulate cancer evolution 

[28,29,68,80,94–110]. These methods allow adjustments of parameters to better understand 

how they affect ITH and clonal evolution. Multiple studies have analyzed ITH using 

multitype branching process models [29,94–97]. These models make two primary 

assumptions: 1) that the probabilities that a cell divides or dies are independent of all other 

cells, and 2) that each cell division may result in a mutation, which produces a cell of a 

different ‘type’, with different division and death rates. Another simple model, the Moran 

model, adds the assumption that each cell division is accompanied by a cell death [98]. 

Whereas branching processes provide good models of exponentially growing populations, 

the Moran model is a better model for a population of fixed size. Many variations on these 

models exist, with different assumptions about details such as the time between cell 

divisions and the number and nature of types. For example, the near critical age-dependent 

branching process provides a model of a tumor as it approaches a steady state population 

size [99]. Instead of a succession of types, complex forms of mutation such as gain and loss 

of double-minute chromosomes can be accommodated [100]. More complex models can be 

used to incorporating elements such as spatial limitation and microenvironment 

heterogeneity. Very complex models are difficult to mathematically analyze and are usually 

studied with computer simulations [101].

Mathematical modeling has been integral to the discovery of punctuated and neutral 

evolution. To determine the model of evolution governing a hepatocellular carcinoma, 

mutation frequencies in multiregion sequencing were compared to predictions from a neutral 

model [94], revealing a quantitative consistency that evidenced a history of neutral evolution 

[68]. Spatial arrangement of genotypes was also consistent with a spatial model of neutral 

evolution [68]. In a pan-cancer analysis of neutral evolution, MAFs from TCGA data were 

compared to quantitative predictions from a branching process model, with consistency with 
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the neutral model found in about a third of examined cases [80]. To determine if evolution in 

TNBC is punctuated or gradual, simulated single-cell sequencing data was produced from 

four variants of the multitype branching process model: one in which mutations are random 

and independent, one modeling epistatic interactions between mutational fitness, one in 

which there was a temporary global increase of the mutation rates, and one in which many 

mutations could be acquired in a single burst [29]. Only the last model with bursts of 

mutations was able to recapitulate the punctuated tree structures observed in single-cell copy 

number profiles of 12 TNBC tumors, whereas other gradual models were found unable to 

achieve the long-stemmed clonal trees in a reasonable physiological timeframe. 

Chromoplexy in punctuated evolution was evidenced by the inability of a model of gradual 

accumulation of structural variation to explain observed co-occurrence of breakpoints [93]. 

Future work may take advantage of advances in phylogenetic inference to test models using 

statistics defined by the phylogeny, such as average time to common ancestor, which is 

informative of the growth rate of the cells [99].

In addition to analyzing single time-point data, mathematical models also provide a 

theoretical understanding of the conditions that favor branching evolution. In a Moran model 

in which mutations produce new types with random fitness changes, when population size 

and mutation rate are sufficiently small, mutation frequencies go to 0 or 1 before the next 

mutation occurs, resulting in linear evolution [102]. Iwasa and Foo studied heterogeneity 

both mathematically and by simulation in a Moran model with both passenger and driver 

mutations. They performed simulations using higher mutation rates than those expected to 

lead to linear evolution, resulting in persistent ITH despite selection [103]. Other modeling 

studies have examined the effect of spatial limitations, which tend to increase ITH by 

limiting the rate of expansion of new clones [68,104–107]. More complex models of tumor 

evolution have also included cell migration [106–108], which mitigates the ITH increase 

caused by spatial limitations [107], and heterogeneity in the microenvironment [109].

A surprising result from mathematical modeling is that, even if fitter populations completely 

displace less fit ones, linear evolution does not necessarily follow. The reason is that 

mutations providing similar fitness increases may emerge at similar times in different cells 

of the tumor, so that the new population does not originate from a single driver event but a 

patchwork of driver events that provide similar fitness advantages. This phenomenon has 

been studied in multitype branching processes, by considering independent mutations to the 

same type to result in different ‘labels’. Durrett et al. calculated the expected value of a 

diversity index for labels within a type, and found that expected diversity was high when the 

fitness increases provided by a mutation are low [94]. Since fitness increases after tumor 

initiation may be low [110,111], this provides a theoretical explanation of branching 

evolution, and is consistent with observations of different driver mutations in different 

subclones. In a different multitype branching process, McDonald and Kimmel have provided 

a detailed mathematical characterization of the frequency distributions of labels [96].

A major limitation of mathematical models is that the results depend on the values of 

difficult-to-determine parameters. These parameters include cell division rate, cell death 

rate, tumor size, population size, mutation rate, and the fitness advantage conferred by driver 

mutations. Parameters such as cell birth can be measured with immunohistochemistry using 
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Ki-67 staining, while parameters for cell death can be measured with Caspase-3 or TUNEL 

assays [28,29,108]. Mutation rates can be estimated in cell lines through single-cell 

sequencing if the number of generations is known precisely [27]. Incorporating 

experimentally derived parameters can greatly improve models that simulate tumor growth 

and ITH. However more indirect, model-dependent estimation is required to estimate 

mutation rates [28,80], fitness changes [111], and early birth and death rates [112] in human 

cancers. Selective sweeps can be detected by changes in effective population size, which can 

be estimated mathematically from variant frequency distributions [113]. Another important 

consideration is the inter-patient variation in parameters, which can show broad ranges in 

within a very specific cancer type. In the modeling of disease progression in patients with 

acute myelogenous leukemia it was necessary to model distributions of proliferation rates 

that vary in patient populations [114]. Similarly, modeling variation in cell proliferation and 

death rate parameters in melanoma patients in response to therapy was required to fit the 

distribution of changes in tumor size [115].

10. Mixed models of tumor evolution

Although most studies have reported a single model of tumor evolution, there is emerging 

evidence that models may undergo transitions over time, or that multiple models may be 

operating concurrently for different classes of mutations. While LE has not been supported 

by studies in advanced carcinomas, mathematical modeling suggests that this model may 

occur at the earliest stages of tumor progression in small, fixed population sizes [102]. Thus 

tumor evolution may shift from LE to BE as the population size continues to expand. More 

work will be needed to compare early stage cancers (e.g. colon adenomas, ductal-carcinoma-

in-situ, prostatic intraepithelial neoplasia) to advanced carcinomas to determine if LE is 

more common in early neoplasias. Similarly, it has been proposed that tumor evolution may 

shift from PE to NE in colon cancer [116]. This hybrid model suggests that all driver 

mutations are acquired in the initial stages of tumor evolution, after which clones expand 

without further selection. An interesting observation in the literature is that much 

experimental data suggests that point mutations follow a BE model, while CNAs and 

chromosomal structural variants follow a PE model. These models may not be mutually 

exclusive, but instead operate simultaneously during tumor progression as two independent 

molecular clocks. Studies using single cell copy number pro-filing and single cell exome 

sequencing from the same breast cancer patients, have shown that CNAs occur in early 

punctuated bursts of evolution, and stably expand, while point mutations evolve gradually 

over the lifetime of the tumor leading to clonal expansions [28]. Other studies using whole-

genome sequencing of matched longitudinal breast tumor samples of hyperplasias, DCIS, 

and invasive carcinomas, have also shown that copy number evolution occurred at the 

earliest stages of progression, while point mutational evolution was more gradual and 

branching throughout the course of the disease [117]. Collectively these studies make sense 

in the context of the molecular mechanisms that underlie the mutational processes. Complex 

aneuploid copy number changes may occur in just a few cell divisions due to mechanisms 

including endoreduplication, telomere attrition, breakage-fusion-bridge and chromosome 

mis-segregation events [118–120]. In contrast mutations accumulate gradually over time due 
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to defects in DNA repair pathways and errors in DNA polymerases, since most mutations 

are passenger events with no effect on fitness [121,122].

11. Tumors evolve from single cells

A long standing debate in the cancer field has been whether human tumors originate from a 

single normal cell, or alternatively multiple initiating cells that give rise to the same tumor 

mass [123]. In cancers that are multifocal (e.g. prostate, liver cancer), or where there are 

known exogenous mutagens (UV, cigarette smoke) or germline mutations (BRCA, TP53, 
APC) many studies have proposed the concept of a cancer ‘field effect’ that can give rise to 

multiple initiating cells [124]. However, a surprising result of all the tumor evolution studies 

published to date from deep-sequencing, multi-region sequencing and single cell sequencing 

has been that almost every patient’s tumors have a shared set of truncal mutations that 

indicate a common evolutionary origin: a single normal cell. Numerous truncal mutations 

have been reported in primary tumors from breast cancer [17,18,61], prostate cancer [64], 

lung cancer [59,60], melanoma [72], colon cancer [69,70], pancreatic cancer [65], brain 

cancer [62,63,73] and bladder cancer [55]. What is perhaps unexpected is that even solid 

tumors such as lung cancers, where cigarette smoke is expected to cause a field effect in the 

lung epithelium, multi-region sequencing data has shown that all clones share a common 

evolutionary lineage and origin [59,60]. Similarly, in melanoma, where UV causes a field 

effect across the skin epithelium, multi-region sequencing has shown truncal mutation in 41 

biopsies from 8 patients, indicating evolution from a common origin [72].

These data suggest that the initiation of a tumor cell that can progress to a carcinoma is an 

extremely rare event, that only occurs once in the lifetime of most cancer patients (if it all). 

Studies using ultra-deep sequencing at higher sensitivity have reported rare subclonal 

expansions in potentially thousands of pre-malignant clones in eyelid cancers that were 

exposed to a lifetime of UV radiation, however these pre-malignant clones never progressed 

to an invasive tumors [125]. While the majority of cancer patients have shown evidence of a 

single cell ancestor, there has been a single report of a patient with independent tumor 

lineages contributing to the same tumor mass. In multifocal prostate cancer 1/5 patients was 

found to have no truncal mutations between two different geographically sequenced regions 

of the tumor mass, suggesting at least two independent initiating cells [125]. Collectively 

these data suggest that the vast majority of solid tumors initiated from a single normal cell 

that diverged and branched to form the tumor mass.

12. Clinical implications

Models of tumor evolution have different implications for the clinical diagnosis, prognosis 

and therapeutic treatment of cancer patients. From a diagnostic standpoint, LE and PE imply 

limited ITH at the time of clinical sampling, which simplifies diagnostic assays because 

single biopsy samples are representative of the tumor as a whole. In contrast both the BE 

and NE suggest that ITH is extensive and would require multi-sampling approaches from 

different spatial regions to detect all of the clinically actionable mutations in the tumor. 

Alternatively, single tumor samples using large pieces of tissue can be used for targeted 

deep-sequencing (N1000X) to detect subclonal mutations, as implemented by cancer gene 
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panels such as Foundation One [126] or the MD Anderson Institute for Personalized Cancer 

Therapy T200 Panel [127].

Intratumor heterogeneity may prove useful as a prognostic or predictive biomarker [128]. A 

‘diversity index’ from a patient’s tumor may be useful for predicting poor survival, poor 

response to therapy, or higher risk of metastasis or relapse. Data from Almendra et al. 

showed that breast cancer patients with lower copy number ITH were more likely to have 

complete pathological response to neoadjuvant chemotherapy [108]. Similarly, in head and 

neck cancers, increased ITH was shown to correlate with poor survival [129]. Another study 

showed that increased ITH is associated with higher probability of progression from 

Barrett’s esophagus to esophageal cancer [130]. Other studies have shown that multiclonal 

tumors with increased ITH are more likely to evolve resistance to therapy [129,131–133]. 

Notably, a strict NE model would imply that ITH has no clinical significance, since this 

model postulates that diversity is a by-product of tumor evolution that does not confer a 

fitness advantage to tumor cells [116].

Models of tumor evolution also have relevance to the therapeutic treatment of cancer 

patients. In LE and PE, the clonal subpopulations are assumed to be homogeneous, which 

would suggest that most CNAs or mutations can be targeted to eliminate the tumor mass. 

However, the BE and NE models imply extensive ITH that varies spatially throughout the 

tumor mass. In these models it would be necessary to target truncal driver mutations that 

occurred early in tumor progression and were subsequently inherited by all cancer cells 

[9,47,77,134]. This approach is currently being implemented in a large multi-region 

sequencing clinical trial of lung cancer patients called TRACERx [135]. Another therapeutic 

strategy is to target subclonal mutations to eliminate minor clones that may play an 

important role in invasion, metastasis or therapy resistance [136]. In a recent study Yates et 

al. used multi-region sequencing and found that 13/50 patients had clinically actionable 

subclonal mutations [61]. Targeting subclones may potentially lead to the extinction of the 

entire tumor mass if clones cooperate and are interdependent for driving tumor growth 

[74,75]. In contrast, NE assumes that targeting subclonal mutations is futile, since they do 

not provide a fitness advantage to tumor cells and are thus unlikely to be driving the cancer.

An alternative therapeutic approach is anti-evolution therapy. The conceptual basis of this 

approach involves targeting the mechanisms that fuel evolution, rather than the end-product 

(ITH). Lessons from species extinction in paleontology may provide insight into treating tu-

mors, since extinction is rarely caused by a single selective pressure, and geographic 

dispersion plays an important role in preventing extinction [137]. Thus targeting multiple 

selective pressures in combination may be needed to eradicate a tumor mass. Another 

evolutionary approach involves directing evolution towards a specific trajectory that will 

sensitize the tumor cells to subsequent drug treatments. This strategy was demonstrated 

using two therapies, where the first drug (anti-p53 vaccine) was introduced to increase the 

sensitive of residual cell populations to the second therapy (chemotherapy) [138,139]. Stress 

in the tumor microenvironment, such as hypoxia, pH changes and limited nutrients can 

accelerate evolution by leading to increased mutation rates or genome instability [140]. To 

mitigate stress responses in tumor cells, targeting hypoxia [141] or metabolism [142,143] 

have been proposed. Another approach proposed by Gatenby and colleagues [144] called 
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adaptive therapy, involves administering low-dose chemotherapy over extended periods of 

time under the framework of metronomic therapy to keep the tumor volume at a constant 

level, treating it as a chronic disease [145–147]. The evolutionary reasoning behind this 

strategy is based on a food chain, in which the goal is to keep the population sizes of 

dominant tumor clones (apex predators) in check so that minor species (resistant clones) do 

not expand in their place [148–150]. Other ecological strategies have involved targeting the 

tumor stroma and tumors cells concurrently to inhibit microenvironment interactions that are 

required for continued tumor growth [151,152].

13. Conclusions & future directions

In conclusion, the literature published to date supports a BE model for point mutations, and 

a PE model for copy number evolution. In contrast there is limited data supporting a neutral 

or linear evolution model, but notably there are a limited number of studies on NE. However, 

an important bias of most tumor evolution studies is that they have focused on the analysis 

of advanced, high-grade tumors, since large amounts of tissue were necessary for NGS 

methods. Therefore, tumor evolution models in early stage cancers remain understudied. 

While two papers have reported some evidence for NE [68,80], these studies are in conflict 

with a large body of literature that shows subclonal expansions in tumor lineages after 

specific driver mutations have been acquired during BE [21,23,28,55,60]. Future work will 

be needed to determine if selection and fitness changes are ongoing during tumor evolution, 

to better distinguish between these models.

An important conclusion from this review is that individual tumors may not follow a single 

model of tumor evolution. Instead several studies have suggested that multiple models may 

be operating at different stages of progression, or concurrently during tumor evolution. 

Mathematical and computational modeling shows that LE may occur at the earliest stages of 

tumor evolution, after which BE may take over when the tumor is actively growing [94,102]. 

Other studies have suggested mutations may occur through a PE model that is subsequently 

followed by NE in colon cancer progression [153]. Studies have also begun to show that PE 

and BE may occur concurrently during tumor evolution, representing two distinct molecular 

clocks for copy number evolution and point mutation evolution [28,93]. Future work will be 

needed to determine if point mutations, copy number changes structural variants, indels and 

epigenetic events follow different models of tumor evolution and operate concurrently in the 

tumor mass.

The central problem with most tumor evolution studies is that they were based on the 

genomic analysis of single time-point samples. Future work should be directed towards 

obtaining multiple longitudinal tumor samples to study clonal dynamics over time and in 

response to therapy. This work can be performed either in human patient samples, or using 

in vivo experimental systems, such as xenografts [154]. The major challenge with collecting 

longitudinal samples from human patients is that biopsies require invasive procedures. An 

exciting technological advance is the development of ‘liquid biopsy’ methods to isolate and 

profile circulating tumor cells (CTCs) [155–157] and circulating tumor-DNA (ctDNA) 

[158,159]. These methods can be performed on patients during multiple time-points during 

the progression of their disease using non-invasive blood samples. However, to date most 
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studies of CTCs and ctDNA have focused on tracking single targeted mutations or limited 

gene panels [159–161]. These approaches are not ideal for resolving ITH and clonal 

substructure, where thousands of markers are needed. However, recent studies have 

demonstrated the technical feasibility of performing whole-exome profiling of single CTCs 

[155,156] or ctDNA [162,163]. These methods will provide a unique opportunity to monitor 

genome evolution in ‘real-time’ to improve our understanding of tumor evolution.

Another approach for collecting longitudinal samples is in vivo systems, such as patient 

derived xenografts (PDXs) [154]. PDX mice are ideal systems for studying ITH, since they 

conserve the clonal diversity that was present in the original human tumor. NGS studies have 

shown that the genomic profile of matched primary tumors and xenograft passaged tumors 

have a high concordance of somatic mutations, suggesting that xenografts represent 

physiologically relevant systems for studying tumor evolution [164–166]. A recent study 

demonstrated the utility of using xenograft systems to study tumor evolution in TNBC using 

deep-sequencing and single cell sequencing methods to monitor clonal dynamics during 

multiple passages of PDX tumors [167]. However xenografts also have several technical 

limitations, including the lack of a functional immune system and a mouse stroma. These 

issues are beginning to be addressed by implanting tumors into physiologically relevant 

organ sites and reconstituting the immune system in immunocompromised mice after 

transplantation [168].

In closing, the current literature suggests that advanced carcinomas follow a branching 

evolution model for point mutations, and a punctuated evolution model for CNAs. While 

conceptually it is useful to distinguish these models, it is important to note that in reality 

multiple models may be operating concurrently. Future work using longitudinal samples 

from human patients, liquid biopsies and PDXs will provide more insight into these models 

and their relevance to human cancers. This work is justified from a clinical standpoint, since 

it has important implications for the diagnosis and therapeutic treatment of cancer patients. 

In the near future, we predict that clinical assays will soon be designed to account for ITH 

through the translation of novel technologies, such as single cell sequencing and multi-

region sequencing. Furthermore, we anticipate that new therapeutic strategies will shift from 

targeting the end-product of tumor evolution (ITH), towards the evolutionary mechanisms 

that give rise to clonal diversity in the first place. These efforts will undoubtedly lead to 

more effective treatments and prevent the ability of tumor cell populations to evolve 

resistance to therapies.
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Fig. 1. 
Models of tumor evolution. Illustration of tumor evolution models showing dynamic 

changes in clonal frequencies over time. This figure is based on the original publication by 

Marusyk and Polyak [8]. (A) Linear Evolution (B) Branching Evolution (C) Neutral 

Evolution (D) Punctuated Evolution. Colors indicate clones with different genotypes.
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Fig. 2. 
Sequencing methods for resolving intratumor heterogeneity. NGS methods for resolving 

intratumor heterogeneity. (A) Heterogeneous tumor with five clonal subpopulations 

indicated by different colors (B) Deep-sequencing and clustering of mutation frequencies 

(C) multi-region sequencing of different spatial regions in the tumor mass (D) single cell 

DNA sequencing of individual tumor cells isolated from the tumor.
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Fig. 3. 
Progression of ITH in tumor evolution models. Changes in intratumor heterogeneity during 

tumor progression in the context of different tumor evolution models. (A) Linear evolution 

(B) Branching Evolution (C) Punctuated Evolution (D) Neutral Evolution. Colors indicate 

different genotypes of clones.
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Fig. 4. 
Clonal lineages and phylogenetic trees. Phylogenetic trees expected from different models of 

tumor evolution (A) Linear Evolution (B) Branching Evolution (C) Neutral Evolution (D) 

Punctuated Evolution. Colors indicate clones with different genotypes.
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