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Prospective Genomic Profiling of
Prostate Cancer Across Disease
States Reveals Germline and Somatic
Alterations That May Affect Clinical
Decision Making
See accompanying editorial doi:https://doi.org/10.1200/PO.17.00064

abstract

Purpose A long natural history and a predominant osseous pattern of metastatic spread are
impediments to the adoptionof precisionmedicine inpatientswithprostate cancer.Toestablish
the feasibility of clinical genomic profiling in this disease, we performed targeted deep se-
quencing of tumor and normal DNA from patients with locoregional, metastatic noncastrate,
and metastatic castration-resistant prostate cancer.

Patients andMethodsPatients consented to genomic analysis of their tumor andgermlineDNA.
A hybridization capture-based clinical assay was used to identify single-nucleotide variations,
small insertions and deletions, copy number alterations, and structural rearrangements inmore
than 300 cancer-related genes in tumors and matched normal blood.

Results We successfully sequenced 504 tumors from 451 patients with prostate cancer. Po-
tentially actionable alterations were identified in DNA damage repair, phosphatidylinositol
3-kinase, and mitogen-activated protein kinase pathways. Twenty-seven percent of patients
harbored a germline or a somatic alteration in a DNA damage repair gene that may predict for
response to poly (ADP-ribose) polymerase inhibition. Profiling of matched tumors from in-
dividual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from
patients who eventually developed metastatic disease. In contrast, comparative analysis across
disease states revealed that APC alterations were enriched in metastatic tumors, whereas ATM
alterations were specifically enriched in castration-resistant prostate cancer.

Conclusion Through genomic profiling of prostate tumors that represent the disease clinical
spectrum, we identified a high frequency of potentially actionable alterations and possible
drivers of disease initiation, metastasis, and castration resistance. Our findings support the
routine use of tumor and germlineDNAprofiling for patients with advanced prostate cancer for
the purpose of guiding enrollment in targeted clinical trials and counseling families at increased
risk of malignancy.

Precis Oncol 00. © 2017 by American Society of Clinical Oncology

INTRODUCTION

Prostate cancer is a disease characterized by dis-
tinct clinical stateswithhighly variableoutcomes.1

Surgery and radiation therapy are potentially cu-
rative for patients with localized disease, whereas
androgen-deprivation therapy (ADT) is effective
but palliative for patients who develop metasta-
ses with a testosterone level in the noncastrate
range (metastatic noncastrate prostate cancer).2

Metastatic noncastrate prostate cancer inevitably
evolves into castration-resistant prostate cancer
(mCRPC) —the lethal form of the disease.

Recent molecular profiling efforts, including the
Stand Up to Cancer-PCF (SU2C-PCF) mCRPC
project and The Cancer Genome Atlas (TCGA)
primary localized prostate cancer study, have
identified distinct molecular subsets of prostate
cancer and potentially targetable alterations that
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occur somatically as well as in the germline.3-7 Of
note, there are limited genomic data onmetastatic
noncastrate disease. Althoughmolecular profiling
is not yet considered a standard-of-care for pa-
tients with this disease, new evidence points to
enhanced treatment response in specificmolecular
contexts, paving the way for therapy selection on
the basis of tumor molecular characteristics. In
particular, genomic alterations in genes that are
involved inDNAdamage repair (DDR) by homol-
ogous recombination may predict for increased
sensitivity to poly-ADP ribose polymerase (PARP)
inhibitors and platinum-based therapy.8,9 We
sought to determine whether routine prospective
genomic profiling in the clinical practice setting
was feasible and informative for patients with pros-
tate cancer, as well as to define the frequency of
potential driver genomic alterations across the
disease clinical spectrum.

PATIENTS AND METHODS

Patients and Samples

Patients with prostate cancer consented to an in-
stitutional review board–approved protocol for
tumor genomic profiling using the Memorial
Sloan Kettering-Integrated Mutation Profiling of
Actionable Cancer Targets (MSK-IMPACT) se-
quencing assay. Specific consent was required for
analysis of germline variants in an identifiable
manner. After consent, either archival or new tu-
mor samples were obtained and blood was drawn
for germline DNA. Archival tumor samples were
formalin fixed and paraffin embedded. New bi-
opsies were obtained under radiographic guidance
and were formalin fixed. Bone biopsies were non-
decalcified. All tumors were reviewed by patholo-
gists who specialize in genitourinary oncology for
confirmation of malignant histology of prostatic
origin.

Sequencing and Analysis

We used the MSK-IMPACT assay as previously
described10,11 (Fig1A).Theassaywasperformed ina
Clinical Laboratory Improvement Amendments–
certified laboratory anddesigned to robustly identify
single-nucleotide variations, small insertions and de-
letions (indels), somaticcopynumberalterations,and
structural rearrangements in more than 300 cancer-
related genes in formalin-fixed and paraffin-
embedded tumors and matched normal blood.

Somatic variant analysis was performed as
described,10,11 with germline variants identified
in matched blood samples filtered out in the
somatic analysis process. Somatic findings were
reported in the electronic medical record and

anonymized and uploaded to cBioPortal for visu-
alization and analysis.12-14 Clonality of mutations
was estimated as cancer cell fraction15 and imple-
mented in the FACETS algorithm.16

Beginning in May 2015, patients were given the
option to consent to analysis of germline variants
that were identified via sequencing of normal
blood samples. Germline analysis of 76 known
cancer-predisposing genes was performed as pre-
viously described.16a

Additional methods are provided in the Data
Supplement.

RESULTS

Targeted DNA Sequencing of Tumor-
Normal Pairs From Patients With Prostate
Cancer

Using the MSK-IMPACT assay, we successfully
profiled 504 tumors from 451 patients with pros-
tate cancerwhopresented to the clinic (Fig 1A and
Data Supplement). In total, 348 patients (77%)
had metastatic prostate cancer, 53 (12%) had bio-
chemical recurrence after definitive therapy, and
50 (11%) had locoregional disease (Fig 1B). The
504 tumors were either archival or newly acquired
primary prostate or metastatic tumors of prostate
origin, with 44 patients having more than one
tumor profiled. Metastatic tumors that were suc-
cessfully profiled were obtained from lymph node
(45%), bone (22%), liver (14%), lung (5%), and
other soft tissue sites (14%; Fig 1C). Disease state
at the time of collection of the tumor is shown in
Fig 1B. Unlike the TCGA and SU2C-PCF stud-
ies, tumors that were profiled represented all
three prostate cancer clinical states: locoregional,
metastatic noncastrate, and metastatic castration
resistant.

We began with 746 biopsy/surgical samples to
successfully sequence the 504 tumors reported
above, with an overall success rate of 68% (Ap-
pendix Fig A1). The highest success rates were for
prostate tumor samples that were obtained from
diagnostic prostate needle biopsy, radical prosta-
tectomy, or transurethral resection of prostate
performed for palliation. For metastatic samples,
success rates of > 69% were observed for lymph
node, liver, and other soft tissue samples, whereas
bone and lung samples were more challenging
(42% to 52% success rate).

Somatic and Germline Alterations Identified
in the MSK-IMPACT Data Set

Somatic alterations in biologically relevant genes
in prostate cancer were identified in all disease
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states and are shown inFig 2, grouped in pathways
that are potentially clinically actionable.

Overall, the frequency of alterations in genes of
interest in prostate cancerwas similar formCRPC
tumors that were profiled in the MSK-IMPACT
and SU2C-PCF mCRPC data sets4 (Appendix
Fig A2) but demonstrated now in a clinical practice
setting. However, notable differences were ob-
served when comparing primary localized tumors
in the MSK-IMPACT data set with those that
were profiled in the prospective TCGA study,
including a higher frequency of alterations in
TP53 and FOXA1 in MSK-IMPACT tumors
(Appendix Fig A3). This is most likely a result
of the more aggressive nature of the primary
localized tumors in the MSK-IMPACT cohort,
whichwerepredominantly obtained frompatients
who subsequently developedbiochemically recur-
rent andmetastatic disease (Fig 1B) relative to the

prospectively acquired primary TCGA tumors
(Appendix Fig A3).

In total, 24% of patients carried somatic alter-
ations in the PI3K/AKT pathway, including in
PTEN, PIK3CA, PIK3CB, PIK3R1, AKT1, and
AKT3 (Appendix Fig A4). The majority of point
mutations in PIK3CA, AKT1, and AKT3 were
known activating hotspot mutations in those
genes.11 In addition, 5% of patients harbored
somatic alterations in mitogen-activated protein
kinase pathway genes (Appendix Fig A5), includ-
inghotspotmutations inBRAF,HRAS,KRAS, and
MAP2K1.

Fifteen percent of patients carried somatic alter-
ations in theWnt-b catenin pathway, including in
APC, CTNNB1, and RNF43 (Appendix Fig A6).
Consistent with the results of the SU2C-PCF
study, 22% of patients harbored a somatic alter-
ation in a gene that is involved in DDR by
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Fig 1. Clinical sequencing of tumors and germline for patients with prostate cancer. (A) MSK-IMPACT assay workflow. (B) Four hundred fifty-one
patients underwent tumorprofiling in the clinic.Their last knowndisease statewhen seen in the clinic is represented at the top.Their disease state at the time
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homologous recombination, including BRCA2,
BRCA1, ATM, FANCA, RAD50, PALB2, and
CDK1217-21 (Fig 3A and Appendix Fig A7).

A recentmulti-institutional study identified a high
frequency of DDR gene alterations in the germ-
line of patients with advanced prostate cancer.22

Of patients in our data set, 221 underwent formal
germline analysis, the first 124 of whom were
included in the previously reported study.22 Of
these 221 patients, 42 (19% of total) had a known
or likely pathogenic germlinemutation in BRCA2
(9% of total), CHEK2 (4%), ATM (2%), BRCA1
(1%), FH (1%), and PMS2, NBN, PALB2, and
BRIP1 (, 1% each; Fig 3B and Appendix Table
A1). Whereas germline DDR gene alterations
may predict for response to PARP inhibition or
platinum agents, somatic-only alterations in these
genes without a germline event may still predict
for drug response.9 Of the 221 patients who un-
derwent germline analysis, 27% demonstrated
alterations in BRCA2, BRCA1, ATM, or CHEK2,
either in the germline or somatically (Fig 3C). Of
note, germline analysis alone accounted for ap-
proximately one half of these patients only, which
suggests that both germline and somatic analysis
should be performed to identify patients with
DDR gene deficiency.

In total, 3% of patients had tumors with somatic
alterations in mismatch repair (MMR) genes

MSH2, MLH1, PMS2, or MSH6. These tumors
accounted for the majority of samples with the
highest mutation counts onMSK-IMPACT pro-
filing (Fig 3D), which were confirmed to be
enriched for previously described MMR and
microsatellite instability signatures23,24 (Appendix
FigA8). Identification ofMMR-deficient prostate
cancers may have immediate clinical applicability,
given recent data that suggest sensitivity of such
tumors to immune checkpoint blockade in colo-
rectal cancer and other malignancies.25-27

Overall, 36% of patients were found to have a
potentially actionable alteration by using the
OncoKB annotation platform27a (Appendix Fig A9).
This platform does not include non-BRCA/ATM
germline alterations, missense alterations of un-
known significance, and genes whose clinical signif-
icance is less clear, includingCDK12 andFANCA.As
genomicalterationsundergofurthercharacterization
andnewtrialsanddrugtargetsemerge, thefrequency
of alterations that are defined as actionable may
increase.

Comparative Analysis of Somatic Alterations
Across Disease States

A unique aspect of this data set is that it includes
genetic profiles of tumors that represent all three
clinical states: locoregional, metastatic nonca-
strate, and metastatic castration resistant. The
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number of nonsynonymous mutations per tumor
increased significantly from tumors in the locore-
gional disease state to those in themCRPCdisease
state (1.74 v 4.02 mean mutations/megabase;
P, .001), whereas tumors in the metastatic non–
castration-resistant state had a mutation burden

similar to locoregional tumors (2.08 mutations/
megabase).Consistentwithprevious studies,3,4we
identified recurrent areas of copynumber loss that
involved chromosomes 6q, 8p, 13q, and 16q, and
areas of copy number gain that involved chromo-
somes 1q, 3q, 7, 8q, andX (Fig 4).mCRPCtumors
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displayed the highest burden of copy number
alterations, whereas those that represented
locoregional disease displayed the lowest (Fig 4
and Appendix Fig A10).

Aiming to identify possible genomic drivers of
disease progression, we performed a selective
enrichment analysis to identify genes that were
more frequently altered in mCRPC compared
with locoregionaldisease (Fig5A).ARamplification/
mutation was the most enriched alteration in
mCRPC, as shown in previous studies.3,4 Other
genes thatweremore commonly altered inmCRPC
included TP53, RB1, PTEN, APC, ATM, FANCA,
and CDK12.

We performed a similar analysis that compared
alterations in mCRPC with metastatic noncastrate
prostate cancer (Fig 5B). AR was again the most
enriched gene in this analysis. The high enrich-
ment of alterations in AR in mCRPC relative to

both locoregional and metastatic non-castrate dis-
ease serves as a positive control, consistent with
the known role of AR as a driver of castration
resistance.28-31 Beyond frequent amplification of
the gene, AR antiandrogen resistance mutations
were identified in tumors from patients with
mCRPC (Appendix Fig A11), including an F877L
enzalutamide/ARN509 resistance mutation32,33

that was found in the tumor of a patient who
experienced progression after 4 years of treat-
ment on ARN509. Of note, a 4% alteration
frequency in AR was identified in tumors from
patients with metastatic noncastrate disease
(Figs 2 and 5D). These were tumors that were
exposed to ADT and were likely transitioning
to a castration-resistant phenotype that had not
yet manifested clinically. Four locoregional
tumors were found to have mutations in AR, in-
cluding an H875Y mutation that is known to con-
fer resistance to flutamide29,34 in a prostatectomy
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sample fromapatientwhowas treatment-naı̈vebut
who had received dutasteride for benign prostate
enlargement.

In addition toAR, we again identified enrichment
of alterations in TP53, RB1, PTEN, and ATM in
mCRPC compared with metastatic noncastrate
disease. Enrichment of these genes in mCRPC
relative to both earlier disease states implicates
them in thedevelopmentof castration resistance, a
finding that is of particular interest for ATM, a
gene that is involved in DDR. FANCA and
CDK12, two other DNA repair genes, did not
show statistically significant enrichment in
mCRPC compared with metastatic noncastrate
disease as they did versus locoregional disease,

although there is a trend that suggests a role in
castration resistance as well (Fig 5D).When anal-
ysis was limited to metastatic tumors or lymph
nodes only, similar trends for enrichment were
observed, although statistical significance was not
always reached because of smaller sample size
(Appendix Fig A12).

Only two genes were enriched in metastatic non-
castrate versus locoregional disease:APC and, to a
lesser extent, ARID5A (Fig 5C). Enrichment of
APCalterations inbothmetastatic states relative to
locoregional disease (Fig 5D) implicates this gene
in metastasis. Conversely, alterations in SPOP7,35

were enriched in locoregional disease—and pos-
sibly metastatic noncastrate disease, although this
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does not meet statistical significance—compared
with mCRPC (Figs 5A and 5D), which suggests
increased sensitivity of SPOP mutant tumors to
ADT. These findings will require functional val-
idation in the laboratory.

MatchedSamples IdentifyClonal Alterations
in Prostate Cancer

In total, 44 patients had more than one tumor site
profiled by MSK-IMPACT, including 16 with a
matched primary localized tumor and a subse-
quent metastatic tumor. Tumors from the same
patient that were acquired at a later time point
typically had a higher mutation count (Fig 6A).
Given the high frequency ofTP53 alterations that
were observed in primary localized tumors in
this data set and prior reports of aggressive be-
havior of prostate tumors that harbor TP53
alterations,36-37a we sought to determine whether
TP53 alterations were present in tumors early in
their evolution or whether they were acquired
later at disease progression. As shown in Fig 6B,
TP53 alterations arose early in affected patients
and were identified in all tumors from the same
patient. TP53mutations were clonal, including in
cases in which both a primary localized tumor
and a later metastasis were available (cancer cell
fraction>0.9 in the latermetastasis).Likewise,we
found that somatic alterations in BRCA2 were
present inmatched tumors,which again suggested
that somatic BRCA2 loss of function alterations
occur early in tumorigenesis for affected patients.
Conversely, alterations in AR did not occur early
in matched samples (Fig 6B, patients P-0003597
and P-0004910), which is consistent with
treatment-related changes that promote castra-
tion resistance. Of note, other potentially ac-
tionable alterations may arise later in disease
evolution, as was the case for patient P-0002149
(Fig 6B), who acquired an activating PIK3CA
E545K mutation (Appendix Fig A4B) in a recur-
rent tumor nearly 3 years after his radical
prostatectomy.

To confirm the above findings, we performed
phylogenetic analysis on cases in which several
matched tumors were available from the same
patient (Fig 6C). Both phylogenetic trees shown
reveal the early truncal nature of TP53 alter-
ations. For patient P-0000377, alterations in
EP300 and KDM5A—genes that are involved
in epigenetic modulation—occurred truncally
for metastatic tumors. An alteration in KMT2D
was identified subclonally in metachronous
metastases from bone obtained from separate
sites, but not in a liver metastasis. For patient

P-0003511, AR amplification was truncal in
castration-resistant tumors, which is consistent
with its well-characterized role in castration
resistance.28 As the number of patients with
prostate cancer who are profiled longitudinally
throughout their clinical care increases, such
findings may provide insight into clonal driver
events that promote disease progression and
site-specific metastasis.

DISCUSSION

Unlike previous prostate cancer genomic studies,
we profiled tumors that represent the clinical
spectrum of the disease, from locoregional to
metastatic noncastrate and metastatic castration-
resistant prostate cancer, which enabled compar-
isons of genomic landscape across disease states
using a single assay.Whereas locoregional tumors
in this data set typically represented more aggres-
sive disease than TCGA, patients with such tu-
mors are those in greatest need of new treatment
approaches andprofiling of their tumorsmayhave
particular clinical relevance.

An increase in copy number alterations and mu-
tation frequency was evident in mCRPC com-
pared with earlier disease states, as was an
increased frequency of alterations in AR, TP53,
RB1, and PTEN. SPOPmutations, however, were
more frequent in the earlier disease states, which
suggested better outcomes for patients with
SPOP-mutant tumors, possibly through increased
sensitivity to ADT. Importantly, the ability to
compare alteration frequencies across three pros-
tate cancer disease states can provide insight into
genes that promote metastasis versus castration
resistance. In this analysis, APC and ATM
emerged as candidate genes of interest that may
independently contribute to metastasis and cas-
tration resistance, respectively, pending func-
tional validation in the laboratory. Other genes
that emerged as being enriched in mCRPC, al-
though not to the same extent, are FANCA and
CDK12. These genes, like ATM, are involved in
DDR, alluding to a possible role for DNA re-
pair defects in the development of castration
resistance.

We also found that TP53 alterations are early
clonal events in matched tumor samples from
individual patients. This suggests that TP53 al-
terations in localized tumors may predict for
increased risk of progression to metastatic dis-
ease, which is consistent with recent reports of
aggressive behavior of TP53-altered prostate
cancers.37-39 As long-term outcomes from pro-
spective primary prostate cancer data sets become
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available, it will be possible to validate this finding,
guiding more aggressive treatment approaches
early on for these patients.

Overall, we identified potentially actionable alter-
ations, including hotspot activating alterations in
genes that are known drug targets, consistent with

findings of the SU2CmCRPCstudy, but this time
in a prospective clinical practice setting. In allow-
ing for separate somatic and germline analyses,
our study showed that 27% of patients with ad-
vanced prostate cancer have a combination of
either somatic or germline alterations in BRCA2,
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Fig 6. Somatic alterations identified inmatched tumors from the samepatients. (A) Somaticmutation count inpairs ofmatched tumors.The latter tumor
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BRCA1, ATM, or CHEK2, and that 3% harbor an
alteration in an MMR gene. These findings have
immediate therapeutic relevance, given the re-
cently reported sensitivity of these tumors to
PARP inhibition9 or immune checkpoint block-
ade.25 The higher frequency of DNA repair al-
terations that were identified via integrative
germline and somatic analyses strongly argues
for performing both germline and somatic geno-
mic analyses in all patients with advanced prostate
cancer who will require systemic treatment, irre-
spective of screening on the basis of family history.

In summary, this study shows that a large geno-
mic data set that represents the clinical spectrum
of prostate cancer can provide mechanistic in-
sight into possible genomic drivers of disease
initiation, metastasis, and drug resistance.Our
ability to profile metastatic tumors allowed
us to detect the evolution of potential driver
alterations in matched tumors from individual
patients, identifying alterations in TP53 and
BRCA2 as early events that may confer a
more aggressive phenotype. Our study reveals
that identifying actionable genomic alter-
ations is feasible in the clinical practice setting
for patients with prostate cancer, but several

challenges remain. First, the availability of trials
that target these alterations remains a limitation.
Trials of PARP inhibitors for patients with
prostate cancer with homologous recombina-
tion gene alterations are due to open shortly,
and the findings of this study and others should
prompt the development of multi-institutional
molecularly guided studies for smaller subsets
of patients with other molecular alterations.
Second, a criticaldifficulty is inobtaining sufficient
tumor material for sequencing, particularly for
patients with disease that is restricted to bone.
Circulating tumor DNA sequencing assays—
currently under investigation in prostate cancer—
mayoffer a solution to this problem.Overall, given
the high frequency of potentially actionable alter-
ations, earlybut compellingevidenceof theclinical
benefit of targeted therapy for patients with DNA
repair gene-deficient prostate cancers, and the
implication of germline findings for family mem-
bers, our data argue for the routine use of germline
and somatic genomic profiling assays as standard
practice for all patients with advanced prostate
cancer.
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APPENDIX

Prostate Samples Metastatic Samples

Sample 

Type

Passed

pathology

review

Successfully

sequenced

Lymph Node
130

Lymph Node
108 (83%)

Lymph Node
96 (74%)

Bone
117

Bone
75 (64%)

Bone
49 (42%)

Liver
36

Liver
35 (97%)

Liver
32 (89%)

Lung
23

Lung
19 (82%)

Lung
12 (52%)

Other soft tissue
54

Other soft tissue
47 (87%)

Other soft tissue
37 (69%)

Prostatectomy
237

Prostatectomy
234 (99%)

Prostatectomy
188 (79%)

Biopsy
142

Biopsy
128 (90%)

Biopsy
83 (58%)

TURP
7

TURP
7 (100%)

TURP
7 (100%)

Fig A1. Tumor
sequencing success rates.
Sequencing success rate for
prostate and metastatic
samples (includes archived
samples acquired for
sequencing as well as fresh
biopsies). Highest overall
success rates were observed
for prostate samples, with
failures occurring primarily
among older archived
tumors (median age of
failed primary sample: 41.2
months, median age of
successful primary sample:
13.9 months). Lowest
overall success rates were
for bone and lung
(42-52%).
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Fig A2. MSK-
IMPACT versus SU2C-
PCF dataset comparison.
Frequencies of alterations
in select genes inmetastatic
CRPC tumors from the
MSK-IMPACT dataset
(orange) versus the SU2C-
PCF dataset (red). Overall,
the frequencies of
alterations in these genes of
interest are similar in the
two datasets. (*) Does not
include germline
alterations.
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Fig A3. Comparison of
primary localized samples
from the MSK-IMPACT
dataset to TCGA. (A)
Gleason score comparison
for TCGA and MSK-
IMPACT primary
localized tumors. More
than 50% of primary
localized tumors from the
MSK-IMPACTdataset are
Gleason 8-10 tumors,
compared with
approximately 25% in the
TCGA dataset. (B)
Frequencies of alterations
in select genes in primary
localized tumors from the
MSK-IMPACT dataset
(dark blue) versus the
TCGA dataset (light blue).
P-values are represented
(Fisher’s exact test).
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Fig A4. Alterations in
the PI3K pathway. (A)
Oncoprint of somatic
alterations inPI3Kpathway
genes. 24% of patients
harbor a somatic alteration
in one of the genes listed.
(B) Mutations in PIK3CA,
AKT1 and AKT3. Known
activating hotspot
mutations are labeled.
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Fig A5. Alterations in
the MAP kinase pathway.
(A) Oncoprint of somatic
alterations in MAP kinase
pathway genes. 5% of
patients harbor a somatic
alteration in one of the
genes listed. (B) Missense
mutations in MAP kinase
pathway genes. Known
activating hotspot
mutations are labeled.
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Fig A6. Alterations in
the Wnt-b catenin
pathway. (A) Oncoprint of
somatic alterations inWnt-b
catenin pathway genes.
Fifteen percent of patients
harbor a somatic alteration
in one of the genes listed.
(B) Mutations in APC,
CTNNB1 and RNF43.
APC alterations are
primarily deletions and
truncating mutations
predicted to inactivate the
protein. CTNNB1
alterations are primarily
hotspot N-terminal
missense mutations
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phosphorylation and
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product b catenin.
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Fig A7. Somatic
mutations identified in
DNA damage repair genes.
Shown here are missense,
truncating and in-frame
mutations in BRCA2,
BRCA1, ATM and
CDK12. The majority of
somatic alterations in
BRCA2 are predicted to
result in a truncated version
of the protein product or in
loss of expression of the
gene, while somatic
alterations in ATM were
primarily missense
mutations occurring across
ATM coding regions.
Alterations inCDK12were
primarily truncation
mutations, as previously
reported in ovarian cancer.
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FigA 8. MMR/MSI
mutation signatures in
hypermutated tumors.
K-means clustering of
mutations/Mb (mut/Mb)
across all 504 tumors
identified two distinct
clusters: cluster1 with
Mutations/Mb10. The
latter represents
hypermutated tumors.
Tumors in the
hypermutated group
correspond to the 8patients
with . 20 MSK-IMPACT
mutations represented in
Figure A5B. Mutational
signature decomposition
analysis for hypermutated
tumors and control non-
hypermutated tumors with
.8mutation/Mb revealed
a high contribution of
MMR/MSI signatures
to all hypermutated tumors,
as measured by proportion
of mutations attributed to
a specific signature across
30 different mutational
signatures.22,33
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Fig A9. Fraction of

patientswith actionable and
oncogenic alterations per
OncoKB database. The
dataset was queried for
actionable and oncogenic
alterations using the
OncoKB genomic
alteration annotation tool
(www.OncoKB.org), and
frequencies are represented
for the 451 patients in the
study. Actionable
alterations are ranked by
level of evidence (Level 2B:
Standard of care biomarker
predictive of response to an
FDA-approved drug in
another indication, but not
standard of care for this
indication; Level 3A:
Compelling clinical
evidence supports the
biomarker as being
predictive of response to
adrug in this indication, but
neither biomarker nor drug
are standard of care; Level
3B: Compelling clinical
evidence supports the
biomarker as being
predictive of response to
a drug in another
indication, but neither
biomarker nor drug are
standard of care; Level 4:
Compelling biological
evidence supports the
biomarker as being
predictive of response to
a drug, but neither
biomarker nor drug are
standard of care). Only the
highest level actionable
alteration is represented
per patient.
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Fig A10. Copy number
variations represented as
fraction of the genome
altered across disease states.
Copy number alterations
increase from tumors in the
locoregional disease state to
tumors in the metastatic
non-castrate state to
tumors in metastatic
castrationresistant disease.

Fig A11. Mutations
identified in AR. Missense
mutations are represented
as green dots, and an in-
frame insertion as the single
black dot. Well-
characterized mutations in
the ligand binding domain
(blue box) are labeled.
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A
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N = 153 Metastatic

Tumors (%) 

P 
(Fisher’s exact

test, two-sided) 

AR AMP/MUT 51 6 < .01
TP53 MUT/DEL 49 26 < .01
ATM DEL/MUT 12 4 .08
RB1 DEL/MUT 18 11 NS

PTEN DEL/MUT 28 24 NS
PALB2 DEL/MUT 4 0 NS
PLCG2 DEL/MUT 7 1.4 NS

MLL/KMT2A MUT/DEL 6 1.4 NS
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N = 70 Metastatic

Tumors (%)  

P
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Fig A12. Frequency of
alterations in select genes in
metastatic castration-
resistant prostate cancer
(mCRPC) versus
metastatic noncastrate
tumors by site of biopsy.
The genes listed showed
a statistically significant
enrichment in mCRPC
when comparing all
samples in the two sets
(Figs. 5B and 5D). We
compared alterations in
these genes among (A)
metastatic samples only
(excluding prostate
samples) and (B) lymph
node samples only. Trends
for enrichment in mCRPC
still hold in most cases;
however, statistical
significance was often lost
as a result of the lower
number of samples
included in these subsets.
NS, not significant.
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Table A1. Germline Pathogenic Variants Identified in 42 of 221 Patients Who Underwent Germline Analysis

Germline Pathogenic Mutation Somatic 2nd Hit

ATM c.2554C.T (pQ852*) LOH

ATM c.742C.T (p.R248*) Not detected

ATM c.7775C.G (p.S2592C) LOH

ATM c.8786+1G.C ATM mutation

ATM c.8879G.A (p.W2960*) ATM mutation

BRCA1 c.5266dupC (p.Q1756fs*74) LOH

BRCA1 exon 8 deletion LOH

BRCA2 c.1813dupA LOH

BRCA2 c.2047_2050delTCTC
(p.S683Rfs*46)

Not detected

BRCA2 c.2094delA (Gln699Serfx*31) BRCA2 mutation

BRCA2 c.3922G.T (p.E1308*) BRCA2 mutation

BRCA2 c.4638delT (p.F1546Lfs*22) LOH

BRCA2 c.5364dupC (p.K1789fs*18) LOH

BRCA2 c.5946delT (p.S1982Rfs*22) Not detected

BRCA2 c.5946delT (p.S1982Rfs*22) Not detected

BRCA2 c.5946delT (p.S1982Rfs*22) LOH

BRCA2 c.5946delT (p.S1982Rfs*22) Not detected

BRCA2 c.5946delT (p.S1982Rfs*22) LOH

BRCA2 c.5946delT (p.S1982Rfs*22) Not detected

BRCA2 c.5946delT (p.S1982Rfs*22) and
CHEK2 c.1283C.T (p.S428F)*

BRCA2 LOH

BRCA2 c.5946delT (p.S1982Rfs*22) and
FH c.1431_1433dupAAA (p.K477dup)*

Not detected

BRCA2 c.6591_6592delTG (p.E2198fs*4) BRCA2 mutation

BRCA2 c.8754+4A.G Intron 21 BRCA2-INSC fusion

BRCA2 c.9382C.T (p.R3128*) LOH

BRCA2 c.1189_1190insTTAG
(p.Q397Lfs*25)

Not detected

BRCA2 c9117G.A (p.P3039P) LOH

BRIP1 c.2392C.T (p.R798*) Not detected

CHEK2 c.1100delC (p.T367Mfs*15) LOH

CHEK2 c.1100delC (p.T367Mfs*15) LOH

CHEK2 c.1100delC (p.T367Mfs*15) Not detected

CHEK2 c.190G.A (p.E64K) Not detected

CHEK2 c1283C.T (p.S428F) Not detected

CHEK2 c470T.C (p.I157T) LOH

CHEK2 c470T.C (p.I157T) Not detected

CHEK2 c470T.C (p.I157T) Not detected

FH c.1431_1433dupAAA (p.K477dup)

FH c.1431_1433dupAAA (p.K477dup)

MITF c952G.A (p.E318K)

(Continued on following page)
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Table A1. Germline Pathogenic Variants Identified in 42 of 221 Patients Who Underwent Germline Analysis
(Continued)

Germline Pathogenic Mutation Somatic 2nd Hit

NBN c.56delT (p.L19*) Not detected

PALB2 exon 11 deletion LOH

PMS2 c.137G.T (p.S46I) Not detected

RECQL4 c2993G.A (p.W998*) LOH

NOTE. Variants were considered pathogenic or likely pathogenic per American College of Medical Genetics and Genomics guidelines.
Somatic second hit is reported in column two for patients with germline DNA damage repair gene mutations. Of interest, several of the
patients who harbored a germline BRCA2 c.5946delT Ashkenazi founder mutation did not have a detectable somatic second hit in this gene,
suggesting a nonclassical pathogenic mechanism for this mutation. Although not detected in our cases, transheterozygosity involving
a germline mutation in a second DNA repair gene has been identified in patients who harbor this mutation without evidence of a somatic
second-hit in the BRCA2 gene (Rebbeck T, et al: Breast Cancer Res 18:112, 2016).
Abbreviations: ATM, ataxia telangiectasia-mutated: LOH, loss of heterozygosity.
*Two patients had two pathogenic germline variants identified.
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