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Abstract

Alternative splicing significantly contributes to proteomic diversity and mis-regulation of splicing 

can cause diseases in human. Although both genomic and chromatin features have been shown to 

associate with splicing, the mechanisms by which various chromatin marks influence splicing is 

not clear for the most part. Moreover, it is not known whether the influence of specific genomic 

features on splicing is potentially modulated by the chromatin context. Here we report a deep 

neural network (DNN) model for predicting exon inclusion based on comprehensive genomic and 

chromatin features. Our analysis in three cell lines shows that, while both genomic and chromatin 

features can predict splicing to varying degrees, genomic features are the primary drivers of 

splicing, and the predictive power of chromatin features can largely be explained by their 

correlation with genomic features; chromatin features do not yield substantial independent 

contribution to splicing predictability. However, our model identified specific interactions between 

chromatin and genomic features suggesting that the effect of genomic elements may be modulated 

by chromatin context.
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1. INTRODUCTION

Almost all genes in human have multiple isoforms. Thus, alternative splicing (AS) is a major 

contributor to proteomic diversity [1,2]. Further, alternative splicing is much more prevalent 

Request permissions from Permissions@acm.org.

Correspondence to: Sridhar Hannenhalli.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: correlation and regression. analysis, experimental design, nonparametric statistics.

HHS Public Access
Author manuscript
ACM BCB. Author manuscript; available in PMC 2017 August 16.

Published in final edited form as:
ACM BCB. 2015 September ; 2015: 345–354. doi:10.1145/2808719.2808755.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in human and mouse compared to invertebrates [3], andhas direct role in normal 

development and disease [4]. Aberrant splicing is known to have major phenotypic 

consequence e.g. Hutchinson-Gilford Progeria Syndrome (HGPS), a rare and devastating 

disease manifesting early ageing symptoms, is caused by splicing aberrations in Lamin A 

gene [5]. In cancer, a wide array of splicing aberrations due to somatic mutations have been 

previously noted [6,7].

Splicing is catalyzed by the spliceosome complex, containing five ribonucleo-proteins U1, 

U2, U4, U5, U6 and many associated auxiliary proteins [8]. Splice site recognition and 

“exon definition” are critical steps in splicing regulation [9,10]. Specific genomic and 

chromatin context as well as availability of various proteins can result in alternative usage of 

splice sites resulting in alternative isoforms [9–12]. While “AG” at acceptor site and “GT” at 

donor site are hallmarks of exon definition during splicing, the choice of specific sites is 

influenced by auxiliary proteins (SR protein or hnRNPs) that bind to the splicing enhancer 

or silencer elements. The splicing enhancer and silencer are divided into four categories 

based on their locations and function: ESE (exonic splicing enhancer), ESS (exonic splicing 

silencer), ISE (intronic splicing enhancer), ISS (intronic splicing silencer). In addition, due 

to its coupling with transcription, splicing can also be influenced by chromatin state via 

multiple mechanisms [11,12]. For instance, Pol II elongation rate is known to influence the 

usage of specific splice site; slow elongation rate, influenced by nucleosome density, allows 

more time for splice machinery to recognize weak splicing sites, thus changing the relative 

proportion of alternative isoform [12]. Certain chromatin marks are associated with specific 

chromatin remodeling proteins that can recruit splicing factors thereby regulating splicing. 

Interestingly, the same chromatin mark can have opposing effect on splicing depending on 

the mediating partner. For instance, H3K36me3 can recruit SRSF1 via Psip1 to enhance 

exon inclusion [13]. However if H3K36me3 recruits PTB via MRG15, it represses inclusion 

[14].

Recent availability of RNA-seq data has spurred several computational investigations into 

the determinants of alternative splicing [15–19]. While several different types of alternative 

splicing events have been documented, due to ease and robustness of inference, most 

investigations have focused on alternative exon inclusion/exclusion events, specifically 

cassette exons, where an alternative internal exon is immediately flanked by two 

ubiquitously included exons. A previous work has suggested existence of a ‘splicing code’ 

composed of numerous genomics features including splice sites signals, conservation score, 

ESE, ESS, ISE, ISS, etc, that can accurately predict exon inclusion in a cell type relative to 

other cell types [17,18]. On the other hand, Shindo et al have shown correlation between 

several chromatin marks and splicing [19]; they found H3K36me3 and H3K79me1 around 

the exon-intron boundaries and within exons to be strongly correlated with splicing. Zhou et 

al have shown a correlation between H3K36me3 and splicing [16]. Another report suggested 

that DNA methylation within exon body may have a positive effect on exon inclusion [15]. 

Finally, a linear regression model to predict exon inclusion based on multiple chromatin 

features showed several chromatin features, especially H3K36me3 and H4K20me1 to be 

correlated with exon expression [20]. However, this previous approach suffers from a 

technical limitation in that it does not distinguish exon expression and gene expression, and 

an alternative measure – percentage-spliced-in (PSI), better quantifies alternative exon 
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inclusion. Moreover, the ability of chromatin marks to affect splicing can be overestimated 

without using genomics features as control since genomics features can, presumably 

causally, predict chromatin features very accurately [21]. Overall, the relative contributions 

of genomic and chromatin contributions to alternative splicing, specifically, alternative exon 

inclusion event, is not clear. Here, based on deep neural network model, we carefully 

analyzed the relative contributions of genomic and chromatin features on exon inclusion 

levels, in multiple cell lines. To contrast our work with previous similar works, our focus is 

comparative assessment of genomic and chromatin features in terms of their effectiveness in 

predicting splicing, and not to develop a tool to predict splicing.

Our analyses showed that genomics features could predict exon inclusion much more 

accurately than chromatin features, and an integration of the two types of features does not 

improve the prediction accuracy. We specifically assessed the contributions made by either 

genomic or chromatin feature in addition to the other type of feature using multiple 

approaches, and found that, while genomic features make a significant additional 

contributions to predictability of exon inclusion, the converse is not true, suggesting that 

genomic features encode most of the information relevant to exon inclusion. Besides the 

assessment of predictability, we specifically model the position-specific contribution of each 

feature. Finally, even though chromatin features do not make a substantial contribution 

independent of the genomic features, our model detected specific interactions between 

genomic and chromatin features, suggesting that the effect of specific genomic features may 

be sensitive to the chromatin context.

Overall, we provide a first direct comparative assessment of genomic and chromatin 

features, and interaction thereof, in predicting cell type specific alternative splicing.

2. RESULTS

2.1 Approach Overview

We obtained a list of 16,000 cassette exons based on prior annotations by MISO, which is 

based on integration of transcript data from a wide variety of cell types and conditions [22]. 

Given the annotation, for a given RNA-seq sample, we estimated the inclusion rate for each 

annotated cassette exon using MISO package and classified them as either skipped or 

included based on specific thresholds (M&M). For each annotated exon, we obtained 1,366 

genomic and cell type-specific chromatin features, including the feature-location 

combinations, from ENCODE database (M&M). Broadly, our features, both genomic and 

chromatin, were quantified in 7 distinct genomic loci relative to the cassette exon (M&M 

and Fig. 9). We formulated the exon inclusion prediction problem as a 2-class supervised 

classification problem and, using deep neural network model (M&M), performed several 

analyses: (i) estimating splicing predictive power of genomic and chromatin feature 

independently in three tissues (GM12878, h1-hESC, K562), (ii) cross-tissue predictability of 

a model trained in one of the cell lines, (iii) prioritization and interpretation of most relevant 

features in splicing, (iv) estimating relative contributions made by chromatin features in 

addition to those made by the genomic features alone, and (v) characterization of 

interactions between genomic and chromatin features.
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2.2 Chromatin Features are Weak Predictors of Exon Inclusion

Previous studies have reported correlations between various types of splicing events and 

proximal chromatin features [15, 16, 19, 20]. We directly assessed the cross-validation 

predictability of exon inclusion using chromatin features alone. Fig. 1A shows the 8-fold 

cross-validation classification accuracy in three different cell lines. The prediction 

accuracies in all cell types are significantly higher than the random expectation of 50%, 

albeit, modest. Notably, prediction accuracy is much higher in h1-ESC relative to the other 

two cell lines. This may be either because the chromatin state is indeed more closely 

associated with splicing in pluripotent cells or alternatively, because of better quality of 

chromatin modification data in h1-ESC cell line; these need to be explored in future.

2.3 Genomic Features are Robust Predictors of Exon Inclusion

Previous studies have shown that genomic features can accurately predict change in exon 

inclusion propensity in a cell line relative to other cell lines [17, 18]. We emphasize that our 

goal here is not necessarily to improve exon inclusion predictability, but rather to contrast 

the independent and synergistic contributions of chromatin and genomic features and also to 

assess location specificity of various features relative to splice sites. Nevertheless, we first 

establish a baseline for predictability of exon inclusion using genomic features in our 

datasets and using tissue-specific performance metric. Also, in contrast to previous genomic 

element-based relative exon inclusion prediction approach [17,18], here we only employ 

genomic features with a potential mechanistic link to splicing machinery and excluded 

features such as ‘exon translatability’ that was shown to be the single-most powerful 

predictor but is not linked to the splicing mechanisms per se. We used only the cis-elements 

discussed above to predict splicing. However, we note that by excluding translatability as a 

feature, our approach does not account for nonsense mediated decay of the mRNA caused 

by pre-mature stop codon [23,24].

Similar to chromatin features, we employed 8-fold cross validation to estimate prediction 

accuracy. As shown in Fig. 1B, genomic features can predict exon inclusion very accurately, 

consistent with previous studies [17,18], and importantly, much more accurately than 

chromatin features. This suggests that exon inclusion, even in a specific context, is largely 

determined by genomic sequences.

2.4 Location-Specific Map of Chromatin Features

In our deep learning model, we assessed the effect of each chromatin mark in 3 regions 

(multiple sub-regions in each broad region) relative to the cassette exon; each mark-locus 

combination is a distinct feature in our model. Here we report the locus-specific effect size 

of various chromatin marks. Fig. 2A, S1, and S2, show, respectively for h1-hESC, 

GM12878, and K562, the most significant chromatin features (M&M) in all locations 

considered – the cassette exon, the 5′ flanking intron and in the 3′ flanking intron. 

Interestingly, by and large, almost all features in exonic regions have negative effect on exon 

skipping, i.e., their presence in specific exonic regions is associated with higher inclusion 

levels, discussed later. Also the trends are largely consistent across cell types, particularly 

across h1-hESC and K562.
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We further ascertained the importance of features selected above as follows. We partitioned 

the entire set of exons into two sets based on the feature values (top and bottom half). We 

then randomly sampled (100 times) 1000 exons from each of the two groups and compared 

their inclusion levels using Wilcoxon test. We noted the fraction of tests (out of 100 tests) 

that yielded significant results consistent with the directionality of the feature’s effect 

according to the model above. To rank the features in terms of their overall relevance, which 

captures both significance and effect size, we multiplied each feature’s effect size (obtained 

from the model) with the fraction of Wilcoxon tests that were significant (significance). This 

procedure yields a view of every single feature’s independent contribution (without 

considering interactions). Fig. 2B, S3, S4 shows the relevance for all the three tissues (Fig. 

S3 and S4 are in the supplementary file). We ranked the features based on their relevance as 

estimated above. Our results suggest that H3K36me3 is one of the most relevant features 

consistent with previous reports [16,19]. The analysis also reveals H3K79me2, H4K20me1, 

H3K27me3, H3K9ac to be highly relevant to exon inclusion. Interestingly, we found that 

leukemia and stem cell lines have more and stronger feature signals for enhancing inclusion, 

however, blood cell lines have more features associated with repression of exon inclusion.

2.5 Chromatin features Contribute Very Little to Exon Inclusion Independent of Genomic 
Features

We have shown in section 2.3 that chromatin features are modestly predictive of exon 

inclusion. Even though specific mechanisms linking histone modifications to splicing have 

been reported [11, 12, 14], it is not clear to what extent the predictive power of chromatin 

features are independent of genomic features. To specifically investigate this, we assessed 

the extent to which chromatin features can explain the variance in exon inclusion that is 

unexplained by genomic features. We used two approaches to assess this: (i) we trained a 

model using chromatin (genomics respectively) features and then assessed the prediction 

accuracy using genomic (chromatin respectively) features with an additional feature 

representing the prediction score using the chromatin-based (genomic-based respectively) 

model; an improvement in prediction accuracy associated with the added feature represents 

additional contribution of that feature. (ii) we quantified the extent to which chromatin 

(genomics respectively) features could explain the residuals of a linear model based on 

genomic-based (chromatin-based respectively) model. A high explanatory power of the 

residual is consistent with an independent contribution.

Fig 3A and 3B show the results for the first analysis, which suggest that while adding 

chromatin-based model score to genomic features does not improve prediction accuracy, 

adding genomic-based model score to chromatin features substantially improves the 

prediction accuracy. Analogously, Fig. 4A and 4B show the result of the residual analysis, 

consistent with the first analysis, namely, chromatin features explain very small fraction of 

variance of the residual from the genomics-based model, as opposed to the converse. 

Overall, these analyses strongly suggest that that genomics features provide robust 

prediction of exon inclusion, largely independent of chromatin features and that the previous 

observed associations between chromatin features and splicing can largely be explained by 

the links between genomics and chromatin features, also noted previously [21].
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2.6 Cross Tissue Generalization of Chromatin and Genomics Predictors

Next, to assess the extent to which similar rules govern exon inclusion in different cell lines, 

for each pair of tissues we trained the model on one tissue and tested on the other. First, for 

chromatin-based modeling, as shown in Table 1, GM12878 model cannot predict exon 

inclusion in the other cell types and conversely, model trained on other cell types cannot 

predict exon inclusion in GM12878. However, cross-tissue predictability is much higher 

than random expectation between h1-hESC and K562. As shown in Table 2, genomics-based 

model exhibits a similar trend, however the absolute prediction is much greater for the 

genomics-based models. These results suggest that, even though a large portion of cis 

elements contribute to exon inclusion across cell types, exon inclusion also depends on 

specific cis elements that are recognized by cell type specific splicing factors (including 

splice enhancers and repressors). And the cross-cell type predictability for chromatin feature 

follow similar trend likely because chromatin features are largely encoded in cis elements 

[21].

2.7 Interactions between Chromatin Features and Genomic Features

Our results thus far suggest that previously observed links between chromatin features and 

splicing may be largely explained by their correlations with genomic features, which are 

more directly and likely mechanistically linked with splicing. Nevertheless, it is possible that 

the effect of some of the location-specific genomic features may be modulated by chromatin 

context. In other words, there may be interactions between specific genomic and chromatin 

features. However, these interactions cannot be directly quantified in our DNN model. 

Therefore, we applied L1 norm to the first layer of the DNN model to make the connections 

sparse, then explicitly assessed the interactions among the selected features based on a linear 

regression model, using the model selection package “stepwiselm” in Matlab [25]. We 

investigated both chromatin-genomic and chromatin-chromatin interactions. The results are 

summarized in Fig. 5–7 for each cell line respectively. Our results suggest that chromatin 

context can potentially modulate the effect of genomic features on splicing. Moreover, both 

chromatin-genomic and chromatin-chromatin interactions are position specific, which is 

consistent with a mechanisms that relies on specific genomic and RNA conformation and 

binding of splicing factors. What’s more, many cis-elements within the skipped exons tend 

to interact with chromatin features. However, interactions between chromatin and genomic 

features in the context of splicing has not been studied before making it difficult to directly 

assess the observed interactions based on existing literature and more experimental work is 

needed to further investigate our findings.

3. MATERIAL AND METHODS

3.1 Training Datasets

We downloaded MISO skipped exon splicing events annotations [22]. Based on the MISO 

skipped exon splicing events annotations and the RNA-seq data in three cell lines, we used 

MISO package [22] to estimate the sample-specific exon inclusion fractions for all annotated 

cassette exons. We excluded the genes which are not expressed in any given cell type based 

on expression data from Gene Expression Omnibus as an independently ascertained 

expression data. Figure 8 shows the distributions of exon inclusion levels in the three cell 
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lines. Since the distributions are bimodal, suggesting that most exons tend to be either 

included or excluded in a given context. Moreover, these extreme cases are more likely to be 

robust. We therefore considered 40% of events from each end (total of 80% of data) of the 

distributions for three tissues for the investigation of determinants of exon inclusion. Exons 

whose inclusion levels are closer to 0 represent excluded exons, whereas the exons to the 

right of the spectrum are considered included exons. We thus formalize the problem as a 

two-class classification problem.

We obtained processed Histone modification (Chip-seq), CTCF (ChIP-seq), RNA-seq, DNA 

Methylation (Methyl RRBA), Dnase-seq data for each other for Blood tissue (GM12878), 

Embryonic Stem cell tissue (H1-hESC), Leukemia tissue (K562) respectively from 

ENCODE project (www.encode.org). The chromatin features include histone modifications 

(H2AFZ, H3K36me3, H3K27ac, h3K27me3, H3K4me1, H3K4me2, H3K4me3, 

H3K79me2, H3K9me3, H3K9ac, H4K20me1), DNA methylations, DNAse hypersensitivity 

(DHS), and CTCF binding. The genomics features include a total of 560 motifs (which 

include validated known splicing motifs [18,26] and new potential splicing motifs [27,28], 

splice sites scores, exon length, intron length and conservation scores for the 7 regions.

For each cassette exon, given the flanking exons and the introns, we selected seven regions 

for feature extraction as shown in Fig. 9. Regions 1, 4, 7 are exons whose length varied. 

Regions 2, 3, 5, 6 are 450 bps intron regions proximal to the 3 exons. A previous work used 

the regions 1–7 for genomics features [18]. For chromatin features we only used regions 3, 

4, and 5 because we found signals from region 1, 2, 6, 7 not to be effective by comparing the 

prediction accuracies before and after we include these regions (results not shown). For each 

region, we divided it into 9 windows and used as the chromatin feature value, the fraction of 

the windows overlapping a broad peak for each feature.

3.2 Deep Neural Network Model

As mentioned earlier we treat the exon inclusion prediction problem as a two-class 

classification problem. We applied the deep neural network model, which has been widely 

used in computer vison and nature language processing field. DNNs are probabilistic 

generative network models with multiple hidden layers [29]. All nodes at a layer have 

complete directed connections to the nodes in the next layer. Each layer includes multiple 

neural units, which contain a transfer function. Transfer function can be customized based 

on the application.

The activation ac of each node depends on the input features f, connection weights w, the 

bias b and transfer function T:

We used logistic function as the transfer function:
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The DNN architecture is shown in Fig. 10. There is a one-to-one mapping between features 

and the nodes in the input layer. The number of nodes for the output layer is two since this is 

a two-class classification problem; one of the nodes outputs the probability pe for an exon to 

be excluded, and the other node outputs the probability of being included pi. The predicted 

class c is based on maximum of the two probabilities:

We utilized previously developed convenient deep neural network toolbox [30].

3.3 Restricted Boltzmann Machine Pre-training

A Restricted Boltzmann Machine (RBM) is an undirected stochastic neural network model 

[31], composed of a visible layer and a hidden layer. In neural network architecture this 

model could efficiently provide better initialization compared to random initialization based 

on maximum likelihood approach [31]. We treat each pair of adjacent layers as RBMs to 

perform supervised learning pre-training greedily. Hinton et al. [31] have shown that RBM 

pre-training substantially improves the training with a backward fine-tuning phase.

3.4 Dropout

Overfitting is a potential concern in supervised learning, especially for complex model with 

numerous parameters. Dropout technique introduced by Hinton et al. [32] could be used to 

significantly reduce overfitting. Essentially, it tries to randomly drop some nodes along with 

all their connections in every round, followed by a fine-tuning phase. In this way, dropout 

can randomly sample diverse network structures and combine them in prediction step.

3.5 Feature Selection

We counted the occurrences of motifs within the regions of interest as motif features. For 

both chromatin states and sequence conservation, we determined the average signal within 

our regions of interest as feature values. We performed greedy feature selection based on the 

feature contributions derived from the first model. We used all the features to build the 

model and then employed Milne’s method [33] to calculate all the features’ contributions by 

making use of the connection weights from the model as follows:

Where 1h is the number of units in the first hidden layer, 2h indicates the number of units in 

the second hidden layer, rc(i) is the raw contribution of the ith feature, nc(i) is the 

normalized contribution of the ith feature, w is the connection weight, fea is the number of 

input features.

Then we ranked all features based on their contributions, and greedily added features to the 

feature set till convergence of prediction accuracy.
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4. DISCUSSION

In this study, we formalized the exon inclusion prediction problem as a 2-class supervised 

learning problem. Our primary goals here were to assess the relative contributions of 

chromatin and genomic features and specifically test the possibility that the previous 

reported associations between chromatin features and exon skipping might be largely due to 

their correlations with genomic features [21]. Our additional goal was to test whether the 

effect of specific cis elements may be modulated by the chromatin context. Based on a 

comprehensive set of genomic and chromatin features in 7 and 3 regions respectively, and 

using deep learning model, we first verified that the genomics features are robust predictors 

of exon inclusion consistent with previous studies [17], [18]. At the same time we found 

that, not only chromatin features can only modestly predict exon inclusion, they do not lend 

substantial information beyond what is captured by genomic features. However, our analysis 

reveals specific significant interactions between chromatin and genomic features suggesting 

that the effect of latter on exon inclusion may depend on the context provided by the former.

We employed DNN with pre-training and dropout methods, which have been widely used 

and proved effective in computer vision and natural language processing domains, relative to 

other machine learning approaches [29], [31]. Essentially, DNN, as a model with greater 

number of hidden layers, can represent higher level of abstract features, which should 

contribute to modeling of the association between splicing inclusion and features, in a 

situation such as splicing where the precise mechanisms are not known and there are likely 

to be several interactions among features and stepwise decision being made,. However, 

complex model are more vulnerable to overfitting. Pre-training and dropout algorithms are 

meant to reduce overfitting. Finally, it is not easy to quantify interactions within this 

complicated network model. While we rely on DNN to rank features by significance, to 

assess interaction we employed a simpler model. In our study we used standard linear 

regression to model interactions because of their high interpretability.

Previous works relying entirely on genomic features have proposed a highly accurate 

context-specific splicing code [18]. We rely on the dictionary of cis elements compiled in 

these previous works. However, there are some notable differences between our work and 

these previous works. Our focus is not to optimize the prediction accuracy, but rather to 

explore relative contributions of genomic and chromatin features. We have therefore 

explicitly excluded operational, but non-mechanistic, features such as ‘translatability’. 

Moreover, while we estimate prediction accuracy within a cell line independent of other cell 

lines, these previous works in fact predict increase/decrease in exon inclusion in a cell line 

relative to other cell lines, and as such they rely on data from all cell lines simultaneously 

and boost the accuracy through information shared across cell lines. Therefore the absolute 

prediction accuracy reported here are not directly comparable to the previous reports.

Even though, by and large, the chromatin features are not highly predictive of exon 

inclusion, we found specific features to be highly significant. H3k36me3 is one of the most 

significant features and is consistent with previous report. For each feature revealed by our 

model as significant, we also directly verified the association between that specific feature 

and splicing inclusion, and examined the joint effect-size and significance as the feature 
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relevance (Fig 2B, S3, S4). We found that most of the detected relevant features are 

consistent with previous correlation study [16,19,20]. In both GM12878 and h1-hESC, 

H3K36me3 is one of the most significant chromatin marks contributing to splicing, 

consistent with previous reports [16,19,20]. While previous computational association 

studies suggest that H3K36me3 at exon-intron boundary and exon has a positive effect on 

exon inclusion, in contrast, our analyses suggest that this mark can have both positive and 

negative effect in GM12878, depending on its precise location, which is consistent with 

various potential mechanisms based on experimental studies [11]. H4k20me1 is significant 

in all three tissues, consistent with [20]. Moreover, H3K79me2, H3K9ac, H3K27me3, 

H3K9me3 also showed varying degrees of significance. In addition, in stem cell most 

chromatin features within skipped exon have strong positive correlation with exon inclusion, 

which may imply that they can contribute to define exon or recruit SR proteins during 

splicing.

Our finding that genomic signals carry almost all of the information predictive of exon 

inclusion, and that predictive power of chromatin features is not independent of genomic 

elements should not come as a surprise. Despite previously shown associations between 

chromatin marks and splicing, it is likely that the chromatin signals themselves may be 

ultimately governed by the underlying genomic elements and the proteins binding to them. 

This could be true even in the rare cases where a direct mechanistic link has been inferred 

from a specific chromatin feature and splicing [12,14]. Recent reports showing highly 

accurate predictability of chromatin features by genomic sequence strongly suggests that not 

just for splicing, but, unsurprisingly, numerous other cellular processes, such as transcription 

initiation, poly-Adenylation, etc., even when there strong association and mechanistic links 

with chromatin features, the ultimate drivers are likely to be the underlying genomic 

elements.

We performed cross tissue test using genomics and chromatin model respectively. We found 

that the rules learnt from one cell type are reasonably applicable to a different cell type. The 

differences can be attributed to cell type specific splicing factors. We expect that chromatin 

features, after being largely determined by genomic features, should have conserved rules 

governing exon inclusion across cell types. We found high cross-cell type predictability for 

stem cell and leukemia. This specific observation is consistent with known broad similarities 

in active cellular processes between stem cell and cancers [34–36].

Even though our analyses suggest that chromatin features are not likely to be the primary 

drivers of alternative splicing, they might still be able to affect splicing at the molecular 

level, as suggested by our interaction study (Fig. 5, 6, 7). First, chromatin features may serve 

to provide the recognition specificity for specific factors, similar to genomics features. At 

the molecular level, in most of the reported potential mechanism, chromatin features interact 

with many other molecules to affect splicing, such as chromatin remodeling protein and SR 

protein. We speculate that the spatial position of those chromatin marks may influence their 

protein recruitment or conformational changes after recruiting other factors. Moreover, 

recruitment of different protein factors can have different effect on splicing. For example, 

H3K36me3 can both facilitate or suppress splicing by recruiting MRG15 or Psip1 

respectively [12,14]. In GM12878 cell line, we observed interaction between H3K27me3 
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and H3K4me1, which have been suggested to together mark poised enhancer [37,38]; In h1-

hESC cell line we identified interaction between CTCF and H3K9me3, which have been 

shown to co-localize [39]. In K562, we observed interactions between H3K79me2 and 

H3K36me3, which are both markers of gene bodies [40,41], that is likely to be important for 

exon definition process in splicing regulation. While we do observe interactions between 

chromatin and genomic features, very little is known in the literature to reasonably 

corroborate our findings. Moreover, the mapping between specific cis element and 

corresponding splicing factor is not known for the most part, making it difficult to interpret 

the results pertaining to cis element interactions. In GM12878 sample, we detected a 

potential interaction between H3K9ac and motif “GGCTGC”. Even though the protein 

interacting with the cis elements is not known, we speculate that a splicing repressor like 

hnRNP binds to the motif to repress inclusion when H3K9ac is present. In h1-hESC, we 

identified an interaction between SRSF9 protein and H3K79me2. However, the specific 

locations of the two features are genomically distal from each other (Fig. 6). Such distal 

interactions are entirely possible due to looping at both DNA and RNA level [42–44]. In 

K562 sample, the interactions of H3K36me3 with different motifs have different effects on 

exon inclusion suggesting diverse potential mechanisms discussed earlier.

5. CONCLUSION

We present a first comprehensive model-based comparison of relative contributions of 

genomic and chromatin features in determining exon inclusion. We have shown that both 

genomics and chromatin features are associated with exon inclusion, however genomics 

features are more robust and better predictors, and incorporating chromatin features does not 

improve splicing prediction substantially. Genomics elements are thus likely to be the 

ultimate drivers of splicing event, which can affect chromatin marks. However, in some 

cases, the effect of genomic elements on splicing may be modulated by the chromatin 

context.
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Figure 1. Cross-validation prediction accuracy of exon inclusion using chromatin features for 
three cell types
GM12878 (blood), h1-hESC (human embryonic stem cell) and K562 (leukemia). The 

accuracy is the mean accuracy of 8-fold cross validation. (A) Prediction accuracy using 

chromatin features; (B) Prediction accuracy using genomic features.
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Figure 2. 
(A) The effect size of chromatin features at different genome locations in h1-hESC cell line; 

(B) The relevance of chromatin features at different genome locations in h1-hESC cell line.
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Figure 3. Cross-validation prediction accuracy using raw genomics (chromatin respectively) 
features and chromatin (genomics respectively) feature prediction score as an additional feature, 
for three cell types, GM12878 (blood), h1-hESC (human embryonic stem cell) and K562 
(leukemia)
The accuracy is the mean accuracy of 8-fold cross validation. RG indicates the raw 

genomics features, PC indicates prediction score using chromatin features. RC indicates raw 

chromatin features, PG means prediction score using genomics features. (A) Comparison 

between accuracy using RG + PC and only RG; (B) Comparison between accuracy using RC 

+ PG and only RC.
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Figure 4. R-squared for explaining residuals of genomics feature prediction using chromatin 
features and residuals of chromatin feature prediction using genomics features, in three cell 
lines, GM12878 (blood), h1-hESC (human embryonic stem cell) and K562 (leukemia)
Chro-res: chromatin feature explain residuals of genomics model. Gen: genomics model. 

Gen_res: genomics feature explain residuals of chromatin model. Chro: chromatin model. 

(A) R-squared of Chro-res and Gen; (B) R-squared of Gen-res and Chro.
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Figure 5. Potential interactions for chromatins-genomics, chromatins-chromatins in GM12878
The red line means negative to exon exclusion, green line means positive to that. The 

numbers on the line indicate feature location (Fig. 9).

Wang et al. Page 18

ACM BCB. Author manuscript; available in PMC 2017 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Potential interactions for chromatins-genomics, chromatins-chromatins in h1-hESC
The red line means negative to exon exclusion, green line means positive to that. The 

numbers on the line indicate feature location (Fig. 9).
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Figure 7. Potential interactions for chromatins-genomics, chromatins-chromatins in K562
The red line means negative to exon exclusion, green line means positive to that. The 

numbers on the line indicate feature location (Fig. 9).
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Figure 8. Distribution of exon inclusion level for three cell lines. X-axis is the exon inclusion level, 
which is between 0 and 1
(A) Distribution for GM12878; (B) Distribution for h1-hESC; (C) Distribution for K562.
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Figure 9. Predictive model for exon inclusion prediction. We extracted features from the 7 
regions in yellow in the skipping exon event structure
We employed deep neural network model to perform supervised learning to predict exon 

inclusion.

Wang et al. Page 22

ACM BCB. Author manuscript; available in PMC 2017 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
The deep neural network architecture we used.
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Table 1

Cross tissue test using chromatin model

GM12878 49.2% 51.6%

46.8% h1-hESC 60.2%

50.1% 64.4% K562

In each row, we used one tissue model to predict exon inclusion of the rest. Accuracy in red means not significant, ones in green means significant.
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Table 2

Cross tissue test using genomics model

GM12878 80.56% 78.9%

75.82% h1-hESC 80.27%

75.14% 80.79% K562

In each row, we used one tissue model to predict exon inclusion of the rest. Accuracy in red means not significant, ones in green means significant.

ACM BCB. Author manuscript; available in PMC 2017 August 16.


	Abstract
	1. INTRODUCTION
	2. RESULTS
	2.1 Approach Overview
	2.2 Chromatin Features are Weak Predictors of Exon Inclusion
	2.3 Genomic Features are Robust Predictors of Exon Inclusion
	2.4 Location-Specific Map of Chromatin Features
	2.5 Chromatin features Contribute Very Little to Exon Inclusion Independent of Genomic Features
	2.6 Cross Tissue Generalization of Chromatin and Genomics Predictors
	2.7 Interactions between Chromatin Features and Genomic Features

	3. MATERIAL AND METHODS
	3.1 Training Datasets
	3.2 Deep Neural Network Model
	3.3 Restricted Boltzmann Machine Pre-training
	3.4 Dropout
	3.5 Feature Selection

	4. DISCUSSION
	5. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Table 1
	Table 2

