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Abstract

Classification of the human gut microbiome into distinct types, or “enterotypes,” provides an 

attractive framework for understanding microbial variation in health and disease. However, as 

discussed here, several different methods of collapsing enterotype variation into a few discrete 

clusters suggest that enterotype distribution is continuous and can vary widely within an 

individual.

Introduction

Interindividual variation in the human gut microbiome is large when considering relative 

shifts in both dominant and rare taxa (Costello et al., 2009; Huttenhower et al., 2012; 

Yatsunenko et al., 2012) and, with deeper sequencing, has been related to diverse human 

diseases (Clemente et al., 2012). Understanding the nature of microbial variation in healthy 

adults, how this variation becomes altered in human disease, and whether we can use 

microbial features to predict specific conditions are among the key challenges in the field at 

present.

It has been suggested that human gut microbiomes fall into three distinct types or 

“enterotypes” (Arumugam et al., 2011). Although in the original finding these clusters were 

reported as “densely populated areas in a multidimensional space of community 

composition” that are “not as sharply delimited as, for example, human blood groups,” the 

popular press and secondary literature have tended to focus on the idea of discrete types. The 
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utility of discrete clustering in microbiome analyses remains a topic of debate. Here we 

describe several conceptual qualifications that should be considered when using an 

enterotype framework to analyze data. As suggested previously by Jeffery et al. (2012), we 

find that most human gut microbiome data collected to date support continuous gradients of 

dominant taxa rather than discrete enterotypes. Our analysis also indicates that an 

individual’s enterotype can be highly variable and that putative discrete clusters are less 

effective as disease biomarkers than a predictive model constructed from the raw taxon-

relative abundances. Because the concept of enterotypes has important implications for how 

to conduct microbiome-related disease research, and because similar analyses continue to be 

performed in more recently published studies, we believe it is important to describe 

alternative interpretations of the enterotype concept and the assumptions that underlie these 

different interpretations so that investigators can choose the model that best fits their study 

system.

Why Should We Care Whether There Are Discrete Clusters?

To nonspecialists, the argument over enterotypes might seem somewhat esoteric: why does it 

matter if variation tends to be continuous or discrete? This argument is important because 

our model of how microbial diversity is structured has a large impact on framing research 

questions, and informing the approaches we should take in order to understand the 

considerable variability in the human microbiome.

One of the most surprising—and at times baffling—findings from culture-independent 

observations of taxonomic microbiome variation has been the extraordinary within- and 

between-individual diversity in the human gut. It is now well established that a single human 

gut microbiome can harbor hundreds of unique species. Furthermore, individuals share little 

of their microbial communities (Costello et al., 2009; Huttenhower et al., 2012) and a single 

person has persistent and distinctive strains of bacteria (Faith et al., 2013; Schloissnig et al., 

2013). If human microbiomes could indeed be divided into three separate groups, we could 

collapse this highly multidimensional human microbiome variation into just a few easily 

understood categories.

The existence of discrete enterotypes would have broad implications in the study of 

microbiome-related human disease. For example, if patients could be grouped according to 

enterotype (as with blood type), we could more readily pursue personalized microbiome-

based diagnostics and therapeutics. This could greatly simplify the tasks of inferring 

biomarkers for disease, predicting the effects of perturbation on the microbiome, and 

mapping the complex network of interactions between microbial taxa. On the other hand, if 

human microbiomes fall along multidimensional gradients, the task of discovering 

biomarkers for disease requires more sophisticated statistical methodologies, and 

substantially larger sample sizes to support hypothesis testing.

There are also cases where properties of specific genes or microbes in the microbiome are 

related to health outcomes, as in classic single-pathogen paradigms. In such cases, focusing 

on overall community-based categories or patterns may be less helpful, because these broad 
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categories could mask important underlying variation in individual strains that drives 

phenotypes or clinical outcomes.

How Well Do Discrete Enterotypes Link to Human Disease?

One potential advantage of enterotype analysis is that enterotypes may relate to human 

disease. However, collapsing global microbiome variation into dominant clusters need not 

necessarily identify disease associations better than a more directly data- or hypothesis-

driven approach. For example, if there is a bacterium whose increased abundance is 

associated with a given disease and with a putative enterotype cluster, then relying on the 

cluster membership for diagnosis and biomarker discovery may mask potentially important 

disease-related variation within each putative cluster (Figure 1). In a cluster-based approach, 

a person in the disease-related cluster would be classified as being high risk, while people in 

the other clusters would be classified as low risk, regardless of the individual’s position 

along the spectrum of intracluster variation. In contrast, an approach directly modeling 

association of the disease with specific bacteria can support more sensitive and specific 

diagnostic tools. Although disease status might be statistically associated with discrete 

enterotype membership in some cases, this need not imply that discrete clusters are the best 

biomarkers for a given disease relative to other descriptions of the data (for example, 

abundances of particular taxa or locations of samples in multivariate spaces defined by 

different distance metrics and dimensionality reduction criteria). It may still be useful to 

discretize a biomarker to make it actionable for clinical purposes, but we believe that it 

makes more sense to discover the biomarker in a supervised way, linking it directly to 

disease risk, rather than relying on unsupervised clusters found in population structure.

We expect that a predictive model using taxon-relative abundances would be more effective 

than a model using cluster labels from unsupervised enterotype clustering. To test this 

hypothesis, we compared the performance of a machine-learning-based classifier (Knights et 

al., 2011), trained on the full relative abundance measurements for all taxa, to the 

performance of a classifier that used comembership information from unsupervised clusters, 

on two different health-related human gut microbiome classification tasks. The cluster-based 

classifier estimated the probability that a sample belonged to a particular category using the 

fraction of coclustered samples that also belonged to the category of interest. The 

classification tasks were classifying lean versus obese adults (Turnbaugh et al., 2009) and 

classifying healthy subjects versus patients with Crohn’s disease (Morgan et al., 2012). In 

each case, the taxon-based classifier outperformed substantially the cluster-based classifier (t 

test comparing areas under the receiver operating characteristic curves, p = 2.2 × 10−12, p < 

2.2 × 10−16, respectively; see Supplemental Information available online), with an increased 

predictive strength of 7.1% and 35.0%, respectively (increased area under the receiver 

operating characteristic curve; Figures S1 and S2).

Several more subtle aspects of analysis should be considered when exploring potential 

enterotype-disease associations. First, diseases associated with the gastrointestinal tract can 

involve substantial shifts in microbiome taxonomic profile, as in the case of inflammatory 

bowel disease (Morgan et al., 2012). Subjects with such diseases might therefore cluster 

separately from healthy individuals, but the disease cluster would represent less a naturally 
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occurring discrete enterotype than simply an altered host state. Another consideration when 

using the discrete enterotype paradigm for disease associations is how well it can 

incorporate temporal dynamics. As described below, some healthy individuals’ enterotypes 

are highly variable over time. This lack of stability itself could be a biomarker or 

precondition for certain diseases and is much harder to characterize in a discrete framework. 

Relying on discrete cluster membership only allows us to determine whether a subject’s 

microbiome crossed an established threshold toward another profile but does not permit 

characterization of the extent or trajectory of change. It would also mask within-subject 

variability when the microbiome profile remained within a putative cluster, although this 

variability might also be important.

Why Might We Think There Are Clusters when There Are Not?

The current balance of evidence indicates that human gut microbial communities vary 

continuously along a complex multidimensional distribution. Furthermore, the existence of 

discrete clusters in the human microbiomes is a strong claim requiring substantial evidence.

A major challenge in clustering high-dimensional data is accurately determining whether 

discrete clusters are actually present. Appropriate statistical tests based on established 

thresholds for cluster quality evaluation should be used to determine whether cluster 

structure exists (Koren et al., 2013). A thorough quantitative investigation of established 

clustering methods and tests for microbiome data, for example from the gene expression 

literature, would be a useful resource for the community.

We find that continuous gradients of several dominant genera are strongly associated with 

interindividual variation in a number of published human gut microbiome data sets. 

Dominant genera including Bacteroides and Ruminococcus tend to vary continuously 

between and within putative enterotypes. There is evidence that some dominant taxa, most 

notably Prevotella, are absent from a fraction of the human population, leading to a discrete 

effect; however, we have found that even Prevotella varies substantially within putative 

enterotypes. These taxa increase toward one extreme margin of a putative enterotype and 

decrease toward the other, therefore implying that the putative discrete clusters may be 

masking potentially important variation.

We also find that certain visualizations such as scatter diagrams or “starburst” plots can 

cause the eye to perceive discrete clusters to be stronger than they are, as demonstrated by 

comparison in Figure 2. We recommend that such plots be accompanied by unmodified 

unsupervised ordination plots. Supervised ordination plots can be used to find the projection 

that most clearly shows clustering assessed using other approaches. However, this approach 

may show such clusters visually even if they are not statistically significant, so it should be 

used with caution when the presence of cluster structure is under consideration. We find that 

supervised ordination plots are likely to show false cluster structure when the number of 

features in the data is much higher than the number of samples (Figures 2A and 2D), as is 

often the case in microbiome analyses.
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Skewed or biased sampling frames can also confound discrete cluster analysis. We know that 

certain host and environmental factors have large effects on the gut microbiome profile, and 

choice of sampling frame across these factors is strongly linked to the resulting conclusions 

about the nature and extent of microbiome variation. For example, discrete cluster analysis 

in a hypothetical study involving adults with and without recent antibiotic usage would 

probably produce one or more clusters linked to the treatment group, but this would not 

indicate that discrete clusters were present in the normal variation of the healthy untreated 

gut microbiome.

We hypothesized that discrete clustering within nested sampling frames in a study involving 

multiple host factors with nested effect sizes would illustrate the sensitivity of putative 

discrete clusters to the choice of sampling frame. Using previously published data 

(Yatsunenko et al., 2012), we performed discrete clustering of gut enterotypes within nested 

sampling frames from individuals of wide-ranging age in three different countries. We used 

these host factors to choose nested subsets of the full data set in order of effect size: age, 

westernized versus nonwesternized diet, and nationality of the host (Yatsunenko et al., 

2012). Cluster analysis of all samples produced two clusters strongly linked to age; after 

removing subjects under the age of two, cluster analysis produced clusters associated with 

westernized/nonwesternized status of the host diet; after removing subjects from the USA, 

cluster analysis produced two clusters associated with the two remaining nonwesternized 

nations (Figure 3C). The cluster quality metrics for the first two sampling frames 

approached or exceeded the suggested threshold of 0.5 for claiming discrete clusters 

(average silhouette width = 0.52, 0.49, respectively; final cluster average silhouette width = 

0.2). In all cases, the optimal number of clusters chosen via silhouette width was two. This 

analysis demonstrates that cluster comembership between samples can be driven by 

sampling frame and selection bias, rather than by inherent natural discrete variation. 

Furthermore, if one performs cluster analysis in a study comprised of only populations that 

differ strongly in host and/or environmental factors, then apparent clustering could simply be 

an artifact of lack of sampling between the extremes. This analysis also demonstrates that 

putative clusters will not generalize among studies involving different ranges of host factors. 

We would like to note, however, that the original enterotype clusters claimed were not linked 

to the country of origin of the subjects (Arumugam et al., 2011), making it less likely that 

choice of sampling frame influenced the results.

Is an Individual’s Enterotype Stable over Time?

One implicit assumption in the discrete enterotype claim is that an individual’s enterotype is 

relatively fixed over time. If an individual were to switch enterotypes regularly, then that 

individual’s microbiome would have to transition between clusters, leading to intermediate 

states and a blurring of putative cluster boundaries. Essentially every study that has 

addressed the question has shown that serial samples from the same individual tend to be 

relatively similar compared to differences among individuals. However, because of 

substantial variation observed within individuals in studies with a small number of time 

points for each individual (Costello et al., 2009; Huttenhower et al., 2012), we hypothesized 

that some individuals cross the putative enterotype boundaries on a regular basis. To test this 

hypothesis, we projected a dense time series of 1 year’s worth of daily gut microbiome 
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samples from a single individual (Caporaso et al., 2011) onto the published putative 

enterotype clusters (Arumugam et al., 2011). We performed ordination and putative cluster 

identification according to the exact methods described in the original finding and then 

overlaid two courses of consecutive days in which the microbiome of the time series 

individual traverses from one putative cluster to another (Figure 3A). We also compared the 

mixtures of Bacteroides, Prevotella, and other genera in the time series individual to those in 

the putative clusters (Figure 3B). Bacteroides and Prevotella were the dominant genera, 

representing the two most robust clusters in the previously claimed discrete enterotypes. The 

comparison indicates that the microbiome of the single time series individual occupies, at 

times, nearly every region of the space of mixtures observed in the multisubject, single time 

point data. Although this analysis requires validation in a large cohort, it demonstrates that 

for some healthy subjects, enterotype can vary widely and continuously over time.

Conclusions

In light of our findings, we believe that previous analyses produced overconfidence in the 

claim of discrete enterotypes and that continuous variation is the simpler and therefore 

better-supported conclusion. Furthermore, we have demonstrated that discrete clustering 

methodologies can be sensitive to sampling frame bias and selection bias. We also evaluated 

the utility of unsupervised putative discrete clusters for building predictive biomarkers but 

found strong evidence that they are outperformed by predictors that model complex and 

multidimensional taxon distributions. Consequently, although discrete clusters may be 

significantly correlated with a disease state, they may not be appropriate for predicting that 

disease state due to masking of important within-cluster variation in critical taxa. Finally, in 

a meta-analysis including both dense single-individual time series data and cross-sectional 

multiple-individual data, we demonstrated that a healthy adult human’s microbiome can 

traverse much of the total variation space of healthy human gut microbiomes throughout the 

course of a year, providing evidence that enterotypes are fluid and continuous.

In particular, it is critical to note the following confounding factors in considering the 

existence of discrete community types:

1. Confounding environmental variables where only the extremes of the range are 

sampled.

2. Null models that provide apparent support for clustering because of poor model 

fit rather than because clustering is an appropriate statistical description of the 

data.

3. Stability over time, which could arise because people resemble themselves over 

time in general rather than because there are specific barriers to switching cluster 

types.

4. Association of clusters with clinical variables, which may mask more precise 

underlying relationships but still yield a statistically significant result.

We conclude that although the enterotype hypothesis is a conceptually appealing one, and 

microbial community variation will certainly be important for diagnosing and predicting 
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many microbiome-associated diseases, the appropriate statistical description of the 

microbiome is still an emerging area of inquiry. Also, the evidence against discrete 

community types, including those with barriers preventing switching among them, is 

accumulating rapidly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clustering Continuous Data May Mask Within-Cluster Variation
(A) Hypothetical clustering of complex bacterial communities. Each cluster is colored by its 

dominant strain (green, red, or blue). In this example, most taxa are present in every cluster, 

with the exception of the green taxon, which only appears in cluster one. It is assumed that 

the blue and green taxa are respectively associated with “blue disease” and “green disease.”

(B and C) Disease risk for samples plotted on a continuous axis showing proportion of a 

given representative taxon. (B) When disease risk is correlated with taxa found in only one 

cluster, associations between disease risk and enterotype will be strong, but clustering may 

still mask meaningful variation within the disease cluster. (C) When disease risk is 

correlated with taxa found in more than one cluster, clustering may cause even more extreme 

masking of important disease risk variation within clusters.
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Figure 2. Common Visualizations Can Support Different Conclusions
(A) Between-class analysis of soil samples with varying pH (Lauber et al., 2009). The 

ordination method used is supervised, meaning that the plot is intended to make the clusters 

look as separate as possible, while assuming that the clusters are valid based on simulated 

data.

(B) Unsupervised principal coordinates plot of soil samples in (A), colored by membership 

in putative, but nonsignificant, clusters.

(C) Exactly the same plot as (B) but without colors or annotation, revealing a lack of clear 

discrete structure in the data.

(D–F) The same types of plots as (A)–(C) but using simulated data with three dominant taxa 

and with no discrete cluster structure (Supplemental Information).

Knights et al. Page 9

Cell Host Microbe. Author manuscript; available in PMC 2017 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Enterotypes Can Be Unstable, Continuous, and Driven by Sampling Frame
(A and B) Genus-level enterotype time series superimposed on putative clusters derived 

from 33 subjects (Arumugam et al., 2011). (A) Two selected trajectories of consecutive daily 

samples are shown for a single male subject (Caporaso et al., 2011). Meta-HIT samples are 

colored by putative enterotype cluster. The two selected trajectories show the subject’s 

microbiome profile “walking” from one putative enterotype to another over the course of 

several days. (B) Ternary plot of composition of Bacteroides, Prevotella, and other genera 

daily for a year for a single subject (Caporaso et al., 2011) and for published cross-sectional 

samples (Arumugam et al., 2011). These analyses demonstrate the temporal fluidity of 

enterotypes and provide clear proof by counterexample that enterotypes are not discrete 

states that separate individuals.

(C) Clustering performed on nested sampling frames from individuals of wide-ranging age 

in three different countries (Yatsunenko et al., 2012). Methods were described previously 

(Arumugam et al., 2011). Insets show relative sizes of sample subsets (columns) in putative 

clusters 1 and 2 (rows). Clustering of all individuals, those over age 2, and those over age 2 

and not living in the USA identify clusters driven by age, USA versus non-USA citizenship, 

and Malawi versus Venezuela citizenship, respectively (chi-square test, p = 2.5 × 10−66, 2.5 

× 10−63, 8.6 × 10−4, respectively), demonstrating that cluster comembership between 

samples is driven by sampling frame.
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