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Abstract

Theoretical approaches have long shaped neuroscience, but current needs for theory are elevated 

and prospects for advancement are bright. Advances in measuring and manipulating neurons 

demand new models and analyses to guide interpretation. Advances in theoretical neuroscience 

offer new insights into how signals evolve across areas and new approaches for connecting 

population activity with behavior. These advances point to a global understanding of brain 

function based on a hybrid of diverse approaches.

Theoretical approaches have a long history of contributing to neuroscience research, but 

never before has the need for them been so high nor the prospects for advancement so great. 

The explosion in technologies available for measuring and manipulating neurons has created 

a call for analysis techniques that are scalable to extremely large data sets, that take into 

account the heterogeneity of neurons, and that can predict and interpret the effects of 

complex manipulations of activity. The growing importance of theory is also driven by 

developments in theoretical neuroscience itself, advances that expand the reach of theoretical 

approaches and extend their ability to offer insight into long-standing puzzles. In the coming 

years, we will obtain enormous quantities of behavioral, recording (both electrical and 

optical), connectomic, gene expression and other forms of data. Obtaining deep 

understanding from this onslaught will require, in addition to the skillful and creative 

application of experimental technologies, substantial advances in data analysis methods and 

intense application of theoretic concepts and models.

The path from data to understanding requires three stages of analysis (Fig. 1). First, 

extracting relevant signals from the raw data: for example, image stabilization and isolation 

of regions-of-interest for imaging. Second, reducing large and complex data into forms that 

summarize the results in a more compact and understandable way. Third, using modeling to 

link the results to underlying mechanisms and overlying principles. The perspectives and 

reviews in this issue primarily address the third, and some of the second, stage, surveying 

new developments and modeling-based insights in topics ranging from understanding and 
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interpreting network spiking activity1–3, exploring visual processing4 and memory5, and 

studying the representation and computation of probability6, to investigations of higher level 

cognition and mental illness7. In addition, major advances in the other stages of analysis 

have driven the entire program to evolve considerably in recent years. Two such advances 

and their accompanying challenges are described below.

First, there are new challenges in data analysis driven by advances in our ability to 

simultaneously measure responses from many neurons. Specifically, it is not clear how to 

reduce large and complex data sets into forms that are understandable. Simply averaging 

responses of many neurons could obscure important signals: neural populations often have 

massive diversity in cell type8, projection target9 and response property10. One solution to 

this problem is to leverage methods that are naturally suited to multi-neuron measurements. 

Correlations across neurons, for example, can offer insight into the connectivity and state of 

a network1. Another solution to this problem is the use of machine-learning-based readouts 

and classifiers to interpret activity at the population level and relate it to behavior. Classifiers 

work by determining how best to combine neurons to extract differences in population 

activity across conditions (Fig. 1). This approach differs critically from traditional averaging 

in that neurons contribute in varying degrees, or even negatively (Fig. 1), to the extracted 

signal. Simple classifiers are becoming a standard tool for interpreting neural data10,11. 

More complex classifiers, such as those with multiple processing layers, are rapidly being 

developed in both neuroscience and industry12. One example is the hierarchical 

convolutional neural network (HCNN), which is based on ideas developed in studies of the 

visual system. As discussed in this issue, HCNNs can be used to interpret activity at various 

stages along the primate visual pathway during object recognition4.

Second, new challenges for data analysis arise from advances in experimentalists’ ability to 

manipulate neural activity with temporal, pathway and cell-type precision. The results of 

such manipulations can be difficult to interpret. For example, the neuronal heterogeneity 

described above implies that a population of neurons may encode a parameter through a 

mixture of firing rate increases and decreases. Thus, a pan-neuronal firing rate change from 

optogenetic stimulation or suppression could have mixed effects. This could occur even for 

manipulations of an identified class of cells because recent experimental findings indicate 

heterogeneity far beyond the currently identified categories13,14. Furthermore, as with more 

traditional methods of stimulation, propagation of activity to neighboring areas can create 

‘off target’ effects that may erroneously suggest that an area has a causal role when, in fact, 

it does not15. Circuit-level modeling is a basic theoretical tool for dealing with these issues, 

but it must be extended to the multi-area level to address them more fully16.

Beyond the work described in this issue, what form might future models take? Work on the 

worm C. elegans provides insights that we expect will apply to other systems as well. In a 

study involving large-scale imaging of the C. elegans nervous system, a principal 

component–based description of neural activity was extracted, and patterns of activity across 

the entire neuronal population were correlated with behavioral states of the worm17. This 

analysis may ultimately lead to a model that provides an accurate, high-level description of 

neural activity and accounts for important aspects of worm behavior. The ‘units’ of this type 

of model are projections across a large neuronal population, not neurons themselves. Such a 

Churchland and Abbott Page 2

Nat Neurosci. Author manuscript; available in PMC 2017 August 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model could be criticized for leaving unexplained the responses of individual neurons; 

indeed, there is a temptation to require such models to dig down and explain fine-grained 

phenomena as well. As an alternative, we suggest a hybrid, rather than hierarchical, 

approach in which high-level and fine-grained models coexist, each explaining different 

features of the data. For example, in C. elegans the activity of a small number of modulatory 

neurons can alter the state transitions predicted by the high level model18, but these neurons 

are unlikely to be described well at the population level. The best approach may be to 

combine high-level and fine-grained components into a hybrid model that provides a more 

complete account of nervous system function than either component could by itself.

The perspectives and reviews in this issue embody this diversity of approach. Some of the 

articles in this issue start with basic, although simplified, biophysics and try to derive 

conclusions by assembling well-understood elements into less well-understood 

networks1–3,5. Others start with a general principle or idea of how a computation should be 

performed and work down from this ‘normative’ starting point to infer how functionality is 

achieved6,7. Yet another approach is to draw on analogies with another system, such as an 

HCNN4, even if it is quite different at the mechanistic level. Given the range of phenomena 

studied in neuroscience, demanding unity of viewpoint, methodology or depth of 

understanding, even in a single system, seems both unrealistic and counterproductive. Global 

understanding, when it comes, will likely take the form of highly diverse panels loosely 

stitched together into a patchwork quilt.
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Figure 1. 
Multiple stages of analysis needed for neural data to Inform our understanding of neural 

mechanism. Top, extracting raw signals from data. Image shows neurons in mouse parietal 

cortex measured using a two-photon microscope (courtesy of F. Najafi). Regions of interest 

corresponding to single neurons are circled. Arrows point to schematized firing rates from 

the neurons, grouped by behavioral condition. Middle, dimensionality reduction is used to 

summarize responses of a large population. In the example, a weight is assigned to each 

neuron, and contributions are summed to extract a population response that correlates with 

behavioral conditions of interest. Bottom, models then link this reduced dimensionality 

representation of the data to mechanism. Adapted from ref. 4.
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