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Abstract

Randomly connected networks of neurons exhibit a transition from fixed-point to chaotic activity 

as the variance of their synaptic connection strengths is increased. In this study, we analytically 

evaluate how well a small external input can be reconstructed from a sparse linear readout of 

network activity. At the transition point, known as the edge of chaos, networks display a number 

of desirable features, including large gains and integration times. Away from this edge, in the 

nonchaotic regime that has been the focus of most models and studies, gains and integration times 

fall off dramatically, which implies that parameters must be fine tuned with considerable precision 

if high performance is required. Here we show that, near the edge, decoding performance is 

characterized by a critical exponent that takes a different value on the two sides. As a result, when 

the network units have an odd saturating nonlinear response function, the falloff in gains and 

integration times is much slower on the chaotic side of the transition. This means that, under 

appropriate conditions, good performance can be achieved with less fine tuning beyond the edge, 

within the chaotic regime.

The dynamic state of a network of neurons influences its information processing capabilities 

[1]. A network of recurrently connected neurons generates complex dynamics that have been 

utilized for various computational purposes [2–4]. Large networks of this type exhibit a 

sharp transition from nonchaotic to chaotic dynamics [5,6], and performance has been 

characterized as optimal at the edge of this transition [4,7–9]. The location of the transition 

depends on properties of the inputs to the network [10,11], so maintaining a network right at 

the edge of chaos would require finely tuning parameters for each input, which is 

impractical. Therefore, it is important to determine how performance degrades away from 

this optimal transition point. Here, using a model that is amenable to analytic calculation, we 

find that, under many circumstances, performance degrades more slowly on the chaotic side 

of the transition than on the nonchaotic side, showing that it is advantageous to work in the 

chaotic regime when fine tuning to the edge of chaos cannot be achieved.

Our study is based on a dynamic mean-field calculation applied to randomly connected 

networks. We compute the signal-to-noise ratio for reconstructing a small external input 
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from a sparse linear readout, a standard network task. This ratio bounds decoding accuracy 

for both static [12] and dynamic [13] stimuli. To quantify the behavior of the signal-to-noise 

ratio near the transition point, we evaluate its critical exponents. The analytic expression for 

the signal-to-noise ratio provides an intuitive picture of the tradeoff between increasing the 

signal through a larger gain and increasing chaotic noise. The presence of observation noise 

emphasizes the importance of increasing the signal over decreasing the internally generated 

noise, providing an advantage to the chaotic state. As outlined above, in the presence of 

observation noise, the signal-to-noise ratio is maximized at the edge of chaos, where the 

network time constant shows a critical slowing and small inputs are highly amplified. In 

addition, at a given distance from the transition point, the chaotic state is often more 

informative than the nonchaotic state and provides longer-lasting memory.

I. MODEL AND METHOD

We use the dynamic mean-field method [5,10,11,14]to analyze responses of randomly 

connected networks to external input. For simplicity, we study a discrete-time model with N 
units. The dynamics of the recurrent input to unit i on trial a (where each trial starts from a 

different initial condition; what we call trials are also known as replicas) is described by

(1)

where Jij is the coupling strength from unit j to unit i,

(2)

is an abbreviation used for a saturating response nonlinearity, ϕ, and θ(t) is a spatially 

uniform external input. Our goal is to determine how accurately and over what time period 

θ(t) can be decoded from a linear readout of network activity [15,16]. Each coupling 

strength is independently and randomly drawn from a distribution with zero mean and 

standard deviation . For the purposes of calculation, we use a Gaussian distribution, 

but distributions that include a δ function at zero, corresponding to sparse connections, or 

that have discrete support, corresponding to a finite number of possible connection strengths, 

give the same results in the limit of large N.

We introduce a mean-field distribution for the set of state variables  through a 

Dirac delta function constraint,

(3)
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with [·]J denoting an average over random Gaussian couplings. In the following, we make 

use of two other averages: E[·| J], which is an average over trials with a fixed {Jij}, and E[·] 

≡ [E[·| J ]]J. In other words, to compute E[·| J], we average over h using the distribution 

inside the brackets in Eq. (3), removing the average over {Jij}. To compute E[·], we average 

over h weighted by the full J-averaged distribution of Eq. (3).

Calculations using the dynamic mean-field method [10,14], in the limit of large N, give the 

moment-generating function for h (see Appendix A),

(4)

where  is the parameter of the generating function, f is the free energy, and the 

order parameters q = {qab(t,s)} and  are determined self consistently by the 

saddle-point equations

(5)

In principle, all the moments of h can be obtained by evaluating the derivatives of the 

generating function. In particular, the average is  and the correlation is

(6)

All higher-order cumulants above the second order are O(1/N).

When the input is constant in time, the system converges to a stationary state. In this case, 

the self-consistent solution for the order parameter is determined by only two parameters,

(7)

satisfying, self consistenly,

(8)
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with

(9)

For θ = 0, using a hyperbolic tangent nonlinearity ϕ(x) = tanh(x), q = 0 is a stable solution, 

so the order parameter simplifies to

(10)

with q0 increasing from zero in the chaotic region, g>1 [Fig. 1(a)].

The chaotic state is characterized by a Lyapunov exponent given in Ref. [10]

(11)

which increases more rapidly below the transition to chaos (g<1) than above the transition 

[g>1; Fig. 1(b)]. This difference foreshadows the asymmetric behavior of the signal 

detection and integration properties analyzed below, but it is important to point out that our 

later results do not follow directly from this feature of the Lyapunov exponent. The 

Lyapunov exponent, which determines how two trajectories starting from nearby initial 

conditions diverge, and the parameter we use to characterize signal detection and integration 

measure different things and, depending on the nonlinearity used, can take dissimilar values.

II. SIGNAL-TO-NOISE RATIO

We now evaluate the signal-to-noise ratio for sparse linear decoders designed to optimally 

read out a dynamic input θ(t) from a fixed subset of K(≪N) units. We assume that the 

measurement of the total input to network unit i on trial a, , is corrupted by 

Gaussian measurement noise, σobsη, of mean zero and variance , so that the actual 

measured value is

(12)

We limit our analysis to odd nonlinear functions, ϕ(x)= −ϕ(−x), because this simplifies the 

analysis. To evaluate the signal-to-noise ratio, we consider a small deviation of the external 

input from θ = 0 occurring at time t0. We could alternatively consider decoding information 

from the nonlinear function of the total input, ϕ(θ + h)+σobsη, but the result is unaltered to 

the leading order for finite σobs around the edge of chaos because ϕ(θ + h) ≈ θ + h there.

The average (over networks) signal-to-noise ratio for an optimal linear decoder reading out 

this perturbation after a measurement period lasting from t0 to T is [12]
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(13)

where

(14)

and the sums over i and j are restricted to the values of the K units being used in the readout. 

The quantities in R(t)are all evaluated at θ = 0. The matrix D ≡ C−1 is the inverse of the trial-

averaged covariance of the observed K units for a given network (i.e., for a specific {Jij}), 

whose elements are described by

(15)

It is important for what follows that this covariance matrix has dimensions K×K, not N×N, 

and that D is the inverse of this K×K matrix.

The memory curve for an optimal linear decoder, which is sometimes used to quantify the 

ability of networks to buffer past input [15,16], is identical to Eq. (13) for small input. 

Equation (13) characterizes the accuracy of a readout based on the trial-mean μ. Generally, 

information could also be readout from higher-order statistics by using nonlinear decoders 

[12,17,18]. In this sense, Eq. (13) is a lower bound on the information available from more 

general nonlinear decoders. Note that the optimal linear readout weights depend on the 

specific {Jij}, so it is necessary to adjust the decoder for each network.

From the mean-field analysis, we find that each element of the covariance matrix converges 

to its averaged value in the limit of large N (see Appendix B), i.e.,

(16)

with

(17)

evaluated at θ = 0. The O(N−1/2) term in Eq. (16) introduces corrections of order 

into R [Eq. (13)]. To avoid these corrections, we restrict our analysis to the case 

. This assures that the O (N−1/2), J-specific residuals in Eq. (16) do not 

contribute to R for large N, and we find
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(18)

with

(19)

for a ≠ b. This means that, to evaluate R, we need to evaluate the second derivative of the 

order parameter, q. This calculation simplifies for an odd nonlinear response function (see 

Appendix C), and we obtain

(20)

with

(21)

which corresponds to g times the effective gain (slope) of the response nonlinearity.

Equation (20) tells us that, at any particular time during the measurement period, R receives 

a contribution from the past input being detected that decays exponentially in time. The 

decay constant γ therefore determines the memory lifetime of the network, which is −1/

ln(γ), and γ near 1 indicates a long memory lifetime. The denominator in Eq. (20) sums two 

sources of noise, the measurement noise  and internal network noise quantified by q0. 

The best strategy for increasing R is to minimize the internally generated noise, q0, and to 

make γ as close to 1 as possible to allow long-time integration of the signal. In the presence 

of large observation noise σobs ≫q0, the value of R is dominated by how close γ is to 1.

The lifetime variable  reaches its maximum value γ = 1 at the edge of chaos and, 

importantly, it decreases more slowly in the chaotic regime than in the nonchaotic regime 
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(Fig. 2). This indicates that, although optimal performance occurs at the edge of chaos and 

requires fine tuning of g to 1, for a given magnitude of detuning from this value (i.e., a given 

|g −1|), γ is closer to 1 in the chaotic regime (g> 1; Fig. 2).

Assuming an infinitely long observation period,

(22)

which is plotted as a function of g in Fig. 3 for some σobs. When the decay constant γ 
approaches 1, which happens at the edge of chaos, R diverges because any input 

perturbations cause perpetually lasting changes in network activity. These analytic results 

agree well with simulation results (Fig. 4).

III. CRITICAL BEHAVIOR NEAR THE EDGE OF CHAOS

We next analyze the critical behavior of the system near the edge of chaos. By definition, the 

derivative of ϕ at 0 is 1, so we can expand any odd, monotonically increasing ϕ as

(23)

The Landau expansion of Eq. (8) for small q0 yields that the sign of α3 determines the 

nature of the phase transition around q0 = 0. The system shows a first-order transition if the 

nonlinearity is accelerating (α3 > 0). In this case, q0 jumps discontinuously from zero to a 

positive value at g = 1 as g increases. The transition is second order if the nonlinearity is 

saturating (α3 < 0). In this case, q0 increases from zero continuously at g = 1 as g increases. 

The analysis of the critical behavior is much easier for the second-order transition (α3 < 0), 

the case we examine.

We analyze the critical behavior of R near the edge of chaos, that is, for small Δg≡g −1, 

using Eqs. (20) and (21). In the nonchaotic regime (Δg < 0), q0 = 0 so the decay factor is γ = 
g2. From Eq. (22), we find that

(24)

In the chaotic regime (Δg > 0), we expand Eq. (8) for small q0 and find that the order 

parameter is

(25)
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Based on this expression, the effective gain is  to leading order. Hence, to 

leading order,

(26)

near the edge but on the chaotic side. Interestingly, the dependencies of  and R on ϕ (such 

as α3 and α5) disappear up to this order. In contrast to the nonchaotic regime with R ~ Δg−1, 

the divergence is stronger in the chaotic regime with R ~ Δg−2, yielding larger R at an equal 

distance, |Δg|, away from the edge (Fig. 5).

We have determined analytically that the signal-to-noise ratio of large randomly connected 

networks diverges at the edge of chaos, and the memory lifetime of the network also 

diverges. Observation noise is an important element for this property. Without observation 

noise, any network without internally generated noise yields an infinite R. On the other 

hand, addition of observation noise emphasizes the benefit of increasing signal over 

increasing internally generated noise. Hence, if a deterministic network performs sensory or 

memory processing and if a receiver of its output has limited observational resolution, it is 

advantageous to increase the signal by increasing the network gain. Generally, setting 

network parameters right at the edge of chaos requires fine tuning. We have shown that at 

the same small distance away from the edge, R is larger in the chaotic regime than in the 

nonchaotic regime for any saturating odd nonlinear function.

Although, we have concentrated on a rather special situation in this paper for mathematical 

simplicity, several lines of generalization are possible without losing analytic tractability. 

First, we have neglected internal stochastic noise within the network. Although neurons 

behave irregularly in networks, they respond reliably in isolation. This observation has lead 

to a speculation that the dominant apparent stochasticity of cortical circuits is generated by 

the chaotic dynamics of, individually, essentially deterministic neurons [6]. The mean-field 

analysis with system noise has been studied previously [10]. With an addition of small 

system noise, R is peaked (but does not diverge) near the edge of chaos on the nonchaotic 

side. Second, we have concentrated on a class of odd nonlinear response functions. This 

assumption is a mathematical convenience that simplifies the final expression of R. For a 

general response nonlinearity, R depends not only on γ and q0 but on other factors as well. 

Third, although we considered discrete temporal dynamics, it is possible to analyze a 

continuous-time model in a similar way [5,11]. We believe that qualitative aspects of the 

signal-to-noise ratio are common in the two models. Fourth, although we consider 

unstructured networks in this paper, it would be interesting to study how structured 

connections change chaotic dynamics [19] and influence signal extraction and integration 

[20].
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APPENDIX A: MEAN-FIELD CALCULATION

In this appendix, we calculate the moment-generating function of Eq. (4). We denote 

 and . In this section, we follow the convention that 

summation is implied when the same index appear twice in an expression (e.g., 

). A calculation of the moment-generating function (as a function of ξ) 

yields

(A1)

where ,

(A2)

and

(A3)

Next, we use the saddle-point method to evaluate Z(ξ). To leading order, the integrals of q 

and  are approximated by the saddle-point value, i.e.,

(A4)
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and the saddle-point, [q(ξ), ], is determined self consistently by solving

(A5)

with the average, 〈·〉ℒ, defined as

(A6)

Equation (A5) is especially easy to solve when ξ = 0 because  is a self-consistent 

solution of Eq. (A5). To confirm this, we define , 

and find that

(A7)

Hence, when ξ = 0, a solution of the saddle-point condition is

(A8)

Note that, in the above expression,  describes a Gaussian average of h with mean zero 

and covariance . The possibility of a  solution is not within the scope of this 

paper (see Ref. [14], for example). Thus, we concentrate on the  solution Eq. (A8) in 

the following.

In principal, we can obtain all higher-order cumulants of h by differentiating the cumulant-

generating function ln Z(ξ) = Nf (ξ,q(ξ),  by ξ and, then, setting ξ = 0. From the 

normalization constraint, ln Z(0) = 0. The first derivative is

(A9)

because ∂f/∂q = 0 and  at the saddle-point Eq. (A5). Hence, the first-order 

cumulant is
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(A10)

The calculation of high-order cumulants becomes easier if we neglect O(1/N) factors. First, 

 for n ⩾ 1 at ξ = 0. Moreover, the nth (n ⩾ 1) derivatives of the order 

parameters are  and  at ξ = 0 from Eq. (A5). This 

means that perturbations to a single unit contribute only ~1/N to the mean-field variables, 

which are defined by averaging over N units. Hence, terms that contain derivatives of order 

parameters contribute only to O (1 /N) terms. Thus, for the calculation of higher-order 

cumulants, the full derivatives of ξ can be approximated by its partial derivatives, d/dξ ≈ ∂/
∂ξ, and the order parameters can be approximated, using their ξ = 0 values as q(ξ) ≈ q(0) 

and . Neglecting O(1/N) terms, we find

(A11)

This shows that the mean-field distribution P(h) is a Gaussian distribution for independent 

units with mean zero and covariance  up to O(1/N) terms. Hence, to this precision, 

the two averages E[·] and  are indistinguishable.

APPENDIX B: NETWORK SPECIFIC STATISTICS

In this appendix, we evaluate statistics of the state variable, h, for given {Jij}. The trial-mean 

of a quantity A(h) is written as E[A(h)| J], where each trial has different initial conditions at 

t→ −∞. When the system is ergodic this trial average does not depend on a specific set of 

initial conditions. From this definition and Eq. (A11), to the leading order, we can derive the 

following:

(B1)

where a ≠ b, and  and . Now we define the network specific covariance as 

Γij;ts ≡ Cov[hit,hjs|J] and evaluate how Γ is different from one realization of {Jij} to another. 

The variance of Γ across networks is, from Eq. (A11),
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(B2)

where a,b,c,d are all different. Therefore, each component of Γ converges to its network 

average as

(B3)

APPENDIX C: PERTURBATION EXPANSION OF THE ORDER PARAMETER

In this appendix, we evaluate the signal component of Eq. (19) by calculating the responses 

of the order parameter, , to perturbations in the external input, . Dynamic 

evolution of the order parameter is described by the saddle-point Eq. (A8), which we repeat 

here for convenience

where . To simplify expressions, we omit the temporal index so that 

and  in the following, and find that, for general smooth functions ϕ and ѱ, the 

Gaussian integral is expressed as
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(C1)

with . Note that this expression implies that ha and hb have variances 

of qaa and qbb, respectively, and covariance qab under the average, . The first derivative 

of this average is

(C2)

with vectors  and 

.

In the second line of Eq. (C2), we used the following relations

(C3)

(C4)

obtained from integration by parts. Similarly, using Eq. (C2) repeatedly, the second 

derivative is
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(C5)

where, applying Eq. (C2) once again to each component of , we find  with

(C6)

Although we had to distinguish ϕ and ψ to derive Eq. (C5), we only have to consider the 

derivatives of  in the following, so we can replace ψ by ϕ. When the external input 

is constant in time, the order parameter takes only two distinctive values, 

 in the stationary state [see Eq. (7)]. Moreover, when the response 

nonlinearity is an odd function and the input is zero, θ = 0, we know that q = 0 is a stable 

solution. Hence, in this case, it is easy to check that

(C7)

for all integers m and n, where ϕ(n) is the nth derivative of ϕ. When θ = 0, the order 

parameter qab = 0 for a ≠ b, meaning that ha and hb are independent Gaussian random 

variables of mean zero. In this case, Eq. (C7) results because either ϕ(m) or ϕ(n) (with an even 

m or n) is an odd function. When a = b, on the other hand, ϕ(m)(ha)ϕ(n)(ha) is an odd function 

of a Gaussian random variable, ha with zero mean. Using Eq. (C7), Eq. (C2) can be 

simplified to

(C8)

Because , we obtain the self-consistent update equations

(C9)

when a = b, and
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(C10)

when a ≠ b, respectively. We can see from Eq. (C9) and Eq. (C10) that the stability condition 

of the order parameter is  and . Under this 

stability condition, both dqaa and dqab should converge to zero in time.

Next, we evaluate the quantity of interest:  for a ≠ b in Eq. (19). By using 

a simplified notation for partial derivatives (i.e., ) we find 

, , and 

. Furthermore, because ∂qab → 0for large t from Eq. (C9) and 

Eq. (C10), we can use , , and 

 for sufficiently large t. Hence, from Eq. (C5), the dynamics of 

the second derivative of the order parameter is

(C11)

where Θ(x) is the step function, which is one for x ⩾ 0 and zero otherwise.
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FIG. 1. 
(Color online) The self-consistent solution for the order parameters, q0 and q (which is 0), in 

the stationary state (a), and the Lyapunov exponent (b) plotted as a function of the synaptic 

variability, g. The dotted line at g =1 indicates the edge of chaos.
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FIG. 2. 

(Color online) The factor  plotted for ϕ(x) = tanh(x) as a function of the synaptic 

variability, g.  takes the maximum value of 1 at the edge of chaos (g = 1; dotted line) and 

falls off more slowly in the chaotic regime (g>1) than for g<1.
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FIG. 3. 
(Color online) The factor K/R plotted for ϕ(x) = tanh(x) as a function of the synaptic 

variability, g. In the presence of observation noise, R is maximized at the edge of chaos and 

falls off more slowly in the chaotic regime (g > 1) than for g< 1 reflecting γ shown in Fig. 2.
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FIG. 4. 
(Color online) Numerical calculation of Eq. (13)(circles) with σobs = 0.1. compared with the 

analytic result of Eq. (22) (solid line). The numerical result was obtained by linearly 

decoding a simulated network with N = 3000 and K = 20. The small circles describe 

performances of each network and the large circles describe the average performance across 

different networks. The analytic results matched well with the numerical results.
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FIG. 5. 
(Color online) The critical behavior of R does not depend on details of the nonlinearity or on 

the noise level. For any saturating odd nonlinear response function, R diverges linearly on 

the nonchaotic and quadratically on the chaotic side of the edge or transition. The solid line 

describes the asymptotic behavior; the dash-dotted line describes ϕ(x) = tanh(x) and σobs = 

0.1; and the dashed line describes  and σobs = 0.3.
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