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Gardner et al. recently reported on two cases of mixed lineage leukemia (MLL)+ acute 

myeloid leukemia (AML) occurring after CD19 chimeric antigen receptor (CAR) therapy 

for MLL+ B-acute lymphoblastic leukemia (ALL) (1). This report provides new insights into 

mechanisms of immune escape from targeted immunotherapy and strategies to prevent their 

occurrence with adapted immune interventions.

Adoptive cell therapy utilizing genetically engineered T cells expressing second generation 

CARs specific for CD19 has shown remarkable efficacy against a range of chemo-refractory 

and relapsed B cell malignancies, most remarkably in ALL (2). A single infusion of CD19 

CAR T cells may induce a complete remission in subjects whose leukemia has developed 

drug resistance and is unlikely to respond to allogeneic stem cell transplantation. This novel 

cell-based immunotherapy was highlighted, together with checkpoint blockade, as the basis 

for selecting cancer immunotherapy as the scientific breakthrough of the year in 2013 (3). 

CARs recognize tumor antigens irrespective of human leukocyte antigen (HLA) and can 

thus target tumor cells that have down-regulated HLA expression or proteasomal antigen 

processing, two mechanisms that contribute to tumor escape from T cell receptor (TCR)-

mediated immunity (4). The advent of second generation CARs not only enables to retarget 

T cells but also to augment their functional capabilities (5).

The two cases recently reported by Gardner et al. include a 52-yo woman and an 18-mo girl 

with an initial diagnosis of MLL-rearranged B-ALL, who presented a lineage switch at 

relapse after CAR therapy. Several facets of leukemia biology and resistance to CAR therapy 

need to be taken into account in analyzing these observations.

The MLL gene is frequently involved in chromosomal translocations found in human acute 

leukemias characterized as AML, ALL or biphenotypic (mixed lineage) leukemia (6–8). 

MLL rearrangements are found in >70% of infant leukemias, whether the immunophenotype 

is that of ALL or AML (9). MLL translocations are also found in about 10% of AML in 

adults, and in therapy-related leukemias that develop in patients previously treated with 
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topoisomerase II inhibitors for other malignancies. More than 50 different translocation 

fusion partners have been identified. Five of them account for 80% of all MLL-

translocation-bearing leukemias: t(4;11)(q21;q23) or MLL-AF4, as reported here in the adult 

subject (case 1); t(9;11)(p22;q23) or MLL-AF9; t(11;19)(q23;p13.3) or MLL-ENL; t(10;11)

(p12;q23) or MLL-AF10, as reported here in the infant subject (case 2); and t(6;11)

(q27;q23) or MLL-AF6 (10,11). Children patients with MLL-rearranged ALL have a 

particularly poor outcome compared to children with other forms of ALL (12). Adult AML 

with MLL-AF9 is associated with a more aggressive disease that is more likely to exhibit 

resistance to chemotherapy (13). Leukemias that bear translocations involving the MLL gene 

on chromosome 11q21 possess unique clinical and biological characteristics, including the 

activation of self-renewal properties. MLL rearrangements may direct leukemogenic 

transformation of committed myeloid progenitors (14), suggesting that myeloid leukemias 

can originate not only from hematopoietic stem cells (HSCs) but also from committed 

myeloid progenitors lacking self-renewal capabilities. Some MLL fusion proteins direct a 

partial stem cell gene expression program in committed progenitors, coinciding with a gain 

of self-renewal properties. This program has been designated a self renewal-associated 

signature (15). Given that MLL fusions modulate chromatin structure through histone 

modification (through the loss of H3K4 methyltransferase activity), it is likely that the 

process of reactivation of self-renewal can be initiated through modulation of the epigenetic 

state of a cell.

Given these features of MLL+ leukemias, the first question to address is whether the MLL+ 

cases reported by Gardner et al. represent a true lineage switch at relapse or biphenotypic/

bilineal leukemias at diagnosis. The authors excluded the second possibility based on the 

following phenotypic characterization:

I. Case #1

i. Diagnosis: MLL+CD45+CD19+CD22+CD38+HLA 

DR+CD15+CD33+CD13dimTdTdimlymphoblasts;

ii. Relapse: MLL+CD19−HLA-DR+CD64+CD15+CD3 

3+CD13dimCD71+MPO+ monocytic cells.

II. Case #2

i. Diagnosis: MLL+CD45+CD19+CD38+CD58+CD22dimH LA-

DR+CD34+lymphoblasts;

ii. Relapse: MLL+CD45+CD19−CD4+CD56+CD64+CD 

13+CD33+CD38+HLADR+CD34+CD71+myeloblasts.

Although specific lineages can be identified for most leukemias, there are instances in which 

both lymphoid- and myeloid-lineage markers, or T-cell and B-cell markers, coexist (16). The 

diagnosis of biphenotypic (divergent morphologic and immunophenotypic features 

uniformly present in one blast population)/bilineal (distinct blast populations in a single 

patient) leukemia was excluded by the authors according to the WHO classification which 

describes the mixed phenotype acute leukemia (MPAL) based on the expression of strictly 

specific T-lymphoid (cytoplasmic CD3) and myeloid (MPO) antigens, the latter shown by 
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either flow cytometry or cytochemistry and/or clear evidence of monocytic differentiation. 

B-cell lineage assignment in MPAL relies on the strong expression of CD19 together with 

another B cell-associated marker or, in cases with weak CD19, on the expression of at least 

three B-lineage markers. The European Group for the Immunological Classification of 

Leukemia (EGIL) defines MPAL by a scoring system based on the number and specificity 

degree of lymphoid and myeloid markers expressed by leukemic cells, with point values are 

greater than 2 for myeloid and 1 for lymphoid lineages. 2: B-lymphoid (CD79a, CD22, 

cyIgM) T-lymphoid (CD3) myeloid (MPO); 1: B-lymphoid (CD10, CD19), T-lymphoid 

(CD2, CD5), myeloid (CD13, CD33); 0.5: B-lymphoid (TdT), T-lymphoid (TdT, CD7), 

myeloid (CD14, CD15, CD11b, CD11c). Therefore, the reported cases seemingly represent 

a lineage switch at relapse, a phenomenon that is occasionally observed (17). By definition, 

this occurs when acute leukemias that meet the standard FAB criteria for a lineage 

(lymphoid or myeloid) at the time of initial diagnosis meet the criteria for the opposite 

lineage upon relapse. A lineage switch is an uncommon type of mixed leukemia, observed in 

6–9% of relapsed acute leukemia (18,19). In ALL, most AML relapses occur during 

treatment within the first year of diagnosis, as is the case in this report.

The second question is how to explain the lineage switch at relapse. A lineage switch may 

represent either a relapse of the original clone with heterogeneity at the morphologic level or 

high plasticity (capacity of changing cell fate without altering genotype), or the emergence 

of a new leukemic clone (20). The relapsed disease maintained the MLL rearrangement in 

both cases. Lineage switching has been reported to occur more frequently in children than 

adults with most cases involving the conversion of ALL to AML (17). Changes in cell 

potentials can be explained by mechanisms operating at different levels: (I) at the cell-

intrinsic level, possibly defined by epigenetic cues (which MLL fusions are capable of 

mediating); and (II) at the cell/environment interface including therapeutic pressure.

Kawamoto and Katsura have suggested that a myeloid potential is retained in erythroid, T-, 

and B-cell branches even after these lineages have segregated from each other (21,22). 

MLL-positive B-ALL show expression profiles consistent with early hematopoietic 

progenitors, raising the possibility that early bipotential or oligopotential progenitor cells 

may serve as a substrate for leukemogenic translocations and account for lineage switching 

events (23). Alternatively, the MLL translocation might induce a stem/progenitor cell 

phenotype, irrespective of the cell lineage targeted by the translocation, enabling the cellular 

environment to promote lineage conversions (18). Therapy may also facilitate or induce a 

subsequent lineage switch. Clonal selection induced by therapy might suppress or eradicate 

the leukemic clone that is apparent at the time of diagnosis, favoring expansion of a subclone 

with a different phenotype and/or disrupting the hematopoietic environment to add further 

selective pressure. In a human-based MLL leukemia mouse model, the microenvironment 

has been shown to be critical to lineage outcome, with manipulation of the in vivo cytokine 

milieu influencing the commitment of both lineage-restricted and multipotent leukemia 

initiating cells (24). The severe cytokine release syndrome (CRS) observed in the reported 

patients with high levels of IL-6 might have contributed to environmental changes that 

ultimately supports a lineage switch in a MLL+ clone (25). An elegant model of MLL-AF9-

induced AML showed the importance of the microenvironment in providing instructive 

signals for leukemic lineage fates (26). It is possible that the human microenvironment and 
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the fusion protein cooperate in promoting the lineage phenotype arising from a primitive 

leukemic stem cell.

A lineage switch from CD19+ to CD19− may thus account for resistance to CD19 CAR 

therapy. This mechanism stands in contrast to two other previously described immune 

escape mechanisms, based on either post-transcriptional editing or mutational loss of CD19 

itself.

Jacoby et al. reported that murine E2a:PBX1-driven pre-B ALL CD19+ cells treated with 

CD19 CAR T cells may undergo early and late relapse following CD19 CAR therapy. Early 

post CAR relapses retained a pre-B phenotype with isolated loss of CD19 extracellular 

expression by flow cytometry, loss in CD19 exon1 and 2 mRNA but intact mRNA for all 

other CD19 exons. In contrast, late relapses demonstrated complete loss of CD19 protein 

and mRNA expression with concomitant loss of the major B cell transcription factors PAX5 

and EBF1 suggesting loss of the B-cell developmental program. Late post CD19 CAR 

relapses typically gained myeloid, stem cell or T cell phenotypic markers, consistent with a 

lineage switch, which was confirmed by RNA-seq of multiple late relapse samples. The 

authors demonstrated intermediate phenotype of post-CD19 CAR relapse in vivo with co-

expression of both myeloid (Gr1, CD11b) and B cell markers (B220, CD22) on the same 

cells, suggesting a differentiation rather than a selection process. Leukemic relapse with 

CD19 expression loss that retain a B-cell program rapidly regain CD19 upon in vivo passage 

in the absence of CD19 CAR pressure. However, relapses due to lineage reprogramming 

retained a stable myeloid phenotype upon serial passage without regain of CD19 or other B 

cell markers (27).

Another example of CD19 post-transcriptional editing involves the clustering of nonsense 

and missense mutations in exon2 of CD19. Frameshift mutations clustered in the non-

constitutive exon2 eliminate full-length CD19, but allow expression of the isoform that is 

mostly cytosolic (hidden from T cells) and its membrane fraction does not trigger killing by 

CART-19. However this isoform rescues defects in cell proliferation and pre-BCR signaling 

associated with CD19 loss (28). A case report of lineage switch from CD19+ALL to 

CD19−AML was also described following CD19-targeted therapy with blinatumomab (29).

In general, acquired resistance of tumor cells to immunotherapy may proceed as a 

Darwinian selection for genetic or epigenetic heritable traits that pre-exist in the tumor mass 

before a therapeutic intervention. This outcome is likely the consequence of genomic and 

epigenetic instability of transformed cells (MLL translocation for instance) as well as some 

therapeutic interventions that affect mutational load or tumor microenvironmental 

conditions. In the case of immunotherapy, tumor cells may also alter their gene expression in 

response to interactions with immune cells, such as PDL1 up-regulation in response of IFN-

gamma, which may alter the risk of selecting for resistant clones.

The multiplicity of mechanisms accounting for antigen escape calls for adapted 

modifications to CAR therapy. The use of CD19 CARs targeting CD19 essential exons has 

been previously suggested (30), but this would only address a subset of CD19 losses. A 

more promising approach entails the targeting of a second, independently expressed antigen. 
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Thus, most CD19-negative relapses appear to retain expression of CD22, for which CARs 

have now been developed (31). For the cases reviewed here, this approach would require the 

identification of suitable AML targets. Four AML CAR targets have been reported to date. 

Lewis (Le)-Y, a difucosylated carbohydrate antigen, was targeted in a phase I study in four 

patients with relapsed AML. Infusion of a second generation CD28-based CAR resulted in 

stable/transient remission of three patients, who ultimately progressed despite T cell 

persistence (32). CD123 is the high-affinity interleukin-3 receptor α-chain. A partial 

remission was induced in a patient with FLT3-ITD+ AML treated with a third generation 

CD123-CD28/CD137/CD27/CD3z CAR (33). Preclinical studies have however revealed 

significant myeloablation attributed to CD123 expression in early hematopoietic stem/

progenitor cells (34). CD33 is a myeloid-specific sialic acid-binding receptor, that has been 

targeted by gentuzumab ozogamicin (35), which has shown survival benefit (36,37). 

Preclinical activity of CD33 CAR+ CIK cells resulted in slowing disease progression (38) 

and CD33 CAR+ T showed significant effector functions in vitro and in vivo with reduction 

of myeloid progenitors in mice (39). One AML patient treated with CD33 CAR T cells at 

the Chinese PLA General Hospital, showed transient efficacy and mild fluctuations in 

bilirubin (40). Folate receptor-β is another myeloid-lineage antigen, that has also been 

proposed as a target in AML (41,42). None of these CARs has yet been thoroughly 

evaluated in clinical trials, and all pose varying concerns owing to their expression in normal 

tissues. The quest for suitable AML targets is still awaiting its champions.
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