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Quantifying the effects of inbreeding is critical to characterizing
the genetic architecture of complex traits. This study highlights
through theory and simulations the strengths and shortcomings
of three SNP-based inbreeding measures commonly used to esti-
mate inbreeding depression (ID). We demonstrate that hetero-
geneity in linkage disequilibrium (LD) between causal variants
and SNPs biases ID estimates, and we develop an approach to cor-
rect this bias using LD and minor allele frequency stratified infer-
ence (LDMS). We quantified ID in 25 traits measured in ∼140,000
participants of the UK Biobank, using LDMS, and confirmed pre-
viously published ID for 4 traits. We find unique evidence of ID
for handgrip strength, waist/hip ratio, and visual and auditory
acuity (ID between −2.3 and −5.2 phenotypic SDs for complete
inbreeding; P < 0.001). Our results illustrate that a careful choice
of the measure of inbreeding combined with LDMS stratification
improves both detection and quantification of ID using SNP data.

inbreeding depression | directional dominance | quantitative genetics |
single-nucleotide polymorphism | homozygosity

Mating between close relatives has detrimental conse-
quences on the survival and fertility of resulting offspring

(1). This overall reduction of fitness, referred to as inbreeding
depression (ID), is observable in a wide range of organisms,
including plants (2), animals (3, 4), and humans (5). In humans,
major abnormalities are more frequent in children from consan-
guineous marriages (6) and genes causing rare diseases can be
mapped by ascertaining children from such matings (7). To date,
although the genetic basis of ID is not completely elucidated,
two main hypotheses are proposed to explain this phenomenon:
homozygosity for partially recessive deleterious mutations and
heterozygous advantage (overdominance) (1, 8). More generally,
ID can be estimated for any complex trait, even if the trait is
not an obvious component of fitness. For polygenic traits, ID
can be detected if there is directional dominance (DD) across
loci, which means that the phenotype of individuals who are
heterozygous deviates from the average phenotypes of homozy-
gous individuals in a consistent direction. For fitness compo-
nents, DD is negative; i.e., on average homozygosity reduces
fitness.

In practice, ID can be estimated from pedigree studies when
the relationships between parents are known (6, 9). However,
given the limited number and the small sizes of such studies in
humans, contemporary efforts (5, 10) to quantify ID have instead
used SNP genotyping platforms to directly estimate inbreeding
coefficients (F). SNP data may allow a more accurate evaluation
of inbreeding (11), in particular for distant and cryptic inbreed-
ing, and allow inference to be drawn from large population data
(10). Conceptually, once a measure of F is derived from SNP
data, ID can subsequently be estimated by correlating phenotype
with the estimated F.

Genome-wide estimators of F fall in two categories: average
homozygosity measures across loci (irrespective of position) and
measures of continuous runs of homozygosity (ROH). Using

ROH, ID has been reported for diseases (12, 13), height (5), and
cognition (10). ROH-based estimates of F (FROH) have been pre-
viously shown to better correlate with the unobserved pedigree-
inbreeding coefficient compared with other measures of inbreed-
ing (14, 15), which has made them a gold standard. However,
the sampling variance of these estimates is large, and conse-
quently large sample sizes (10) are required to detect ID with
FROH measures. In addition, FROH estimation depends on arbi-
trary (although optimized) choices of multiple parameters like
the minimum number of SNPs covered by a ROH, the distance
between two consecutive ROHs, and the number of heterozy-
gous genotypes allowed in each ROH. Setting ROH length cut-
offs ignores the contribution to ID of smaller identity by descent
segments due to distant ancestors.

Therefore, quantifying the theoretical properties (bias and
variance) of ID estimates derived from FROH is challenging.
These two critical limitations led us to consider two other com-
monly used measures of inbreeding (3, 15), namely the excess of
homozygosity inbreeding coefficient (hereafter denoted FHOM)
as estimated in PLINK (16) and the correlation between uniting
gametes (hereafter denoted FUNI) previously introduced as F̂ III

in Yang et al. (17), as potential efficient measures for detecting
and quantifying ID. We present the theory underlying unbiased
estimation of ID and compare through simulations the perfor-
mances of these three measures of inbreeding. We then quan-
tify ID in 25 quantitative traits measured in a large dataset of
∼140,000 individuals from the UK Biobank, using an approach
that is robust to different assumptions on the distribution of
effect sizes, to possible directional effects of minor alleles and
to population stratification.

Significance

Inbreeding depression (ID) is the reduction of fitness in off-
spring of related parents. This phenomenon can be quantified
from SNP data through a number of measures of inbreeding.
Our study addresses two key questions. How accurate are the
different methods to estimate ID? And how and why should
investigators choose among the multiple inbreeding measures
to detect and quantify ID? Here, we compare the behaviors of
ID estimates from three commonly used SNP-based measures
of inbreeding and provide both theoretical and empirical argu-
ments to answer these questions. Our work illustrates how to
analyze SNP data efficiently to detect and quantify ID, across
species and traits.
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Results
Theoretical Determinants of Unbiased Estimation of ID. We assume
that the phenotype of interest is a quantitative trait y with
genetic component that is underlain by random additive and
dominance effects of m independent causal variants. We denote
b=−

∑m
j=1 2pj (1− pj )δj as the expected depression in y result-

ing from complete inbreeding, where pj is the minor allele fre-
quency (MAF) of the jth causal variant and δj the expecta-
tion of its dominance effect. In the absence of epistasis, fitness-
related phenotypes linearly decrease with increasing inbreed-
ing (Eq. S2). This well-established linear relationship naturally
implies the use of linear regression methods to estimate ID.

Least-squares estimates of ID obtained with FUNI converge
with increasing sample size toward bUNI = cov[ y,FUNI]/var[FUNI].
When explicitly calculating cov[ y,FUNI] and var[FUNI] with
respect to the genotypes and the effect size distributions, we
found under classical assumptions (Eq. S4 and Table S1) that
bUNI is unbiased when the average linkage disequilibrium (LD)
among observed SNPs equals the weighted (by effect sizes) aver-
age LD between causal variants and observed SNPs. Although
influenced by the effect size distribution, the consistency of bUNI
toward b is mainly driven by differences in LD between causal
variants and observed SNPs. Therefore, a simple condition under
which bUNI is unbiased is if the causal variants are a random
subset of the observed SNPs. However, if the causal variants
are enriched in high-LD regions of the genome, bUNI will over-
estimate the actual inbreeding depression. In contrast, if the
causal variants are enriched in a low-LD region like DNAse-I
hypersensitive sites or enhancers (18), or if they are enriched
among low-frequency variants, bUNI is expected to underesti-
mate the true effect. This is further illustrated in our first simu-
lation (Fig. 1).

LD heterogeneity between causal variants and SNPs used for
inference has been previously shown to determine the consis-
tency of heritability estimates (19–21). We leveraged this esti-
mation problem to propose a strategy to correct the differen-
tial LD bias when estimating ID. Following a previous approach
(19), we explored how stratifying SNPs according to their LD
score (22) and their MAFs before analyses (details given in
Supporting Information) could correct or at least reduce these
biases. We illustrate in our first simulation that LD score and
MAF (LDMS) stratification performs well in correcting these
biases (Fig. 1).

Fig. 1. Averaged estimates of inbreeding depression (ID) from 1,000 simulated datasets. Datasets were simulated assuming a true ID parameter b = −3
(horizontal gray line) phenotypic SD for complete inbreeding. In scenario 1 the m = 1,000 causal variants were randomly sampled from all observed SNPs,
whereas in scenarios 2 and 3 they were respectively sampled from low- and high-LD regions of the genome. In A the expectation of the dominance effects
(δj for the jth causal variant) is constant (neutral model) whereas in panel B δj is inversely proportional to the variance of the minor allele count at each
causal variant. FHOM, excess homozygosity inbreeding measure; FROH, runs of homozygosity-based inbreeding measures; FUNI, measure of inbreeding based
on correlation between uniting gametes; LDMS, LD and minor allele frequency stratified inference; SEM, SE of the mean.

Similar to that shown with FUNI, we prove that the consis-
tency of ID estimates obtained with FHOM (hereafter denoted
bHOM) is also determined by LD differences between SNPs
and causal variants (Eq. S5). However, the bias of bHOM can-
not simply be predicted by the ratio of the mean LD score
in causal variants over the mean LD score in SNPs (Sup-
porting Information). Nevertheless, our derivations predict that
bHOM behaves similarly to bUNI with respect to LD differ-
ences between causal variants and SNPs. Importantly, we also
prove that possible directional effects of minor alleles (DEMA)
could confound bHOM because of the correlation between minor
allele counts and FHOM (Supporting Information). Such direc-
tional effects could arise as a consequence of directional selec-
tion (when the minor allele is also the derived allele) as pre-
viously reported in human height (23) or simply because of
population stratification (PS).

Simulation Study. The complete description of the simulation
study is given in Supporting Information.
Influence of differential MAF and LD between causal vari-
ants and SNPs. We first considered three scenarios to illus-
trate the influence of LD and MAF heterogeneity between
causal variants and SNPs. In all these scenarios, we assumed
no DEMA, i.e., parameter s=0 in Eq. S3, and that b =
−3 phenotypic SDs. Moreover, we assumed the expectation
of the dominance effects to be either constant, i.e., δj =
−b/

∑m
j=1 2pj (1− pj ), or inversely proportional to the variance

of the minor allele count, i.e., δj =−b/2mpj (1 − pj ). The first
assumption corresponds to neutral traits, whereas the second one
assigns a larger effect to SNPs with lower MAF and therefore
corresponds more to traits under directional selection. Unbi-
asedness is defined below as when the average estimate of ID
over multiple simulation replicates does not significantly differ
from the value of b used for simulation.

Scenario 1. In this scenario the causal variants were randomly
sampled from the 3,857,369 autosomal SNPs that passed the
genotypes quality control (Supporting Information). As predicted
by our derivations, we observed that FUNI-based estimates of b
were unbiased when dominance effects are assumed inversely
proportional to the variances of allele counts, whereas an overes-
timation of ∼14% of b was observed when dominance effects are
assumed constant (Fig. 1A). This overestimation is explained by
the fact that assuming a constant dominance effect, regardless
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of allele frequencies, creates an apparent MAF and LD het-
erogeneity between SNPs and causal variants by relatively up-
weighting common SNPs compared with rarer SNPs (Eq. S3).
We observed that LDMS stratification, which accounts for that
heterogeneity, completely corrected this upward bias as pre-
sented in Fig. 1A. In addition, we found that FHOM produced
unbiased estimates of b when dominance effects are assumed
constant as for a neutral trait (Fig. 1A), but was biased down-
ward (−7% of b) when dominance effects are inversely propor-
tional to the variances of allele counts (Fig. 1B). This downward
bias can be explained using the same reasoning presented above
because in that case assuming dominance effects inversely pro-
portional to the variances of allele counts relatively up-weights
rarer SNPs compared with common ones. This downward bias
could similarly be corrected using LDMS stratification. We also
found that estimates of b obtained with ROH-based measures
of inbreeding were strongly biased: +162% of b using the defi-
nition of ROH from Joshi et al. (10) [hereafter denoted F

(1)
ROH]

and +91% of b using an alternative definition from Gazal et
al. (15) or Howrigan et al. (24) [hereafter denoted as F

(2)
ROH].

The main difference between those two definitions of ROH
is that F

(2)
ROH requires LD pruning of the SNPs before calling

the ROHs, whereas F (1)
ROH explicitly imposes a constraint on the

ROH lengths (here >1.5 Mb). This result highlights that LD
pruning improves ID estimation using ROH-based inbreeding
measures but still remains insufficient to produce unbiased esti-
mates. Indeed, using more stringent LD pruning thresholds did
not change our conclusion (Fig. S1). Overall, we found that
LDMS stratified estimates for FUNI and FHOM were unbiased in
all cases (Fig. 1 A and B), which emphasizes that this strategy
can be safely used even when causal variants are perfectly tagged
by SNPs.

On average over 1,000 simulation replicates we found that
FHOM-associated estimates had smaller standard errors (SE)
compared with FUNI or FROH (F (1)

ROH and F
(2)
ROH) (Fig. S2 A and B).

FHOM consequently yielded the largest statistical power whereas
FUNI was second best with a power on average 10% below that
of FHOM. On the other hand, because of their large SEs, F (1)

ROH

and F
(2)
ROH yielded the smallest statistical power to detect ID.

Finally, we found that LDMS stratified estimates had ∼13%
larger SEs compared with nonstratified estimates. This increase
in SE corresponds on average over all inbreeding measures to
an ∼8% loss of statistical power and is explained by the larger
underlying effective dimensionality (4 LD score strata × 6 MAF
strata = 24 parameters actually estimated; Supporting Informa-
tion) of the LDMS approach compared with the nonstratified
inference.

Scenarios 2 and 3. For the two other scenarios we used
1,358,699 SNPs within exons, introns, 3’-UTRs, 5’-UTRs, and
promoter regions ±500 bp (SI Materials and Methods, URLs).
SNPs within these five genomic (sets of) regions have distinct
MAF and LD distributions as shown in Figs. S3 and S4. In sce-
nario 2, we sampled the causal variants among 542,379 intronic
SNPs with MAF <5% whereas in scenario 3 causal variants were
sampled among 28,341 SNPs within exons, 3’-UTRs, and 5’-
UTRs. Our theoretical derivations predict that FUNI and FHOM
would underestimate the true ID in scenario 2 because causal
variants in that scenario had on average lower LD scores (Fig.
S3). Accordingly, we found over 1,000 simulation replicates an
underestimation of ∼19% of the true ID for FUNI and FHOM (Fig.
1). These downward biases could be reduced below 1% of b using
LDMS stratification (Fig. 1 A and B) and were not significantly
different from 0 (P > 0.5). In scenario 3 causal variants had on
average larger LD scores and MAF (Figs. S3 and S4). We there-
fore expected an overestimation of ID estimates in that scenario
according to our theoretical derivations. This predicted upward

bias was indeed more noticeable in our simulations (∼40% on
average over all inbreeding measures) compared with scenario
2. Still, using LDMS stratification we were able to reduce these
biases down to <15% of b on average over all inbreeding mea-
sures (Fig. 1) and more specifically <10% of b for FUNI. Overall,
LDMS stratification using FUNI yielded the smallest biases com-
pared with all other strategies.
Influence of DEMA. Let αj denote the expectation of the addi-
tive effect of the minor allele at the jth causal variant. We define
s=

∑m
j=1 2pjαj as an overall measure of DEMA. Under this

assumption we prove that estimates of ID obtained with FHOM
are confounded because of the correlation between FHOM and
minor allele counts (Supporting Information). We illustrate and
quantify here that confounding bias. The parameters of this sim-
ulation are similar to scenario 1 of the first simulation, except
that data are now simulated assuming no ID, i.e., b=0 and
using s=10. With s=10, DEMA (which contributes to the addi-
tive genetic variance) accounts in our simulations for ∼0.3%
of the total phenotypic variance (Supporting Information). We
considered two alternatives for the expectation of the additive
effects αj : (i) αj = s/

∑m
j=1 2pj is constant and (ii) αj = s/2mpj

is inversely proportional to the MAF pj . Under both alterna-
tives, we found that estimates of ID obtained with FHOM were
severely biased (between −2 and −3 phenotypic SDs whereas
the true value is 0; Fig. 2A) unlike those derived from other
inbreeding measures. Whether this bias can be corrected is a
difficult question in practice. Indeed, under the simplistic sce-
nario considered here where causal variants are well tagged,
adjusting for a genetic score summing all minor alleles should
completely correct this bias. However, in more realistic situa-
tions where causal variants are only partially tagged, this would
remain insufficient. In contrast, theory shows that FUNI is orthog-
onal to minor allele counts and consequently would not be influ-
enced by such directional effects if these exist. This result has
motivated our decision to restrict real data analyses to FUNI
only even if FHOM had better statistical power in our previous
simulations.

DEMA could also arise as a consequence of PS. To illustrate
that second aspect, we performed another simulation with set-
tings similar to scenario 1 of the first simulation (with b=0 and
s=0) but now include the effect of 10 genotypic principal com-
ponents (PC) as a proxy for PS (Supporting information). When
varying the contribution of PS to the phenotypic variance from
0 to 5%, we observed that PS had a larger influence on esti-
mates derived from FHOM and FROH. These observations are con-
sistent with our theoretical results (at least for FHOM) as they
directly derive from the correlation between FHOM and minor
allele counts, the weighted sum of which constitutes the PC.
The biases of FHOM- and FROH-associated ID estimates were
on average ∼1 phenotypic SD (Fig. 2B) when PS explained 5%
of the phenotypic variance but were significant only for FHOM
(Fig. S5B). On the contrary, the biases observed when using FUNI

never exceeded 0.5 phenotypic SD (Fig. 2B) and were not statis-
tically different from 0 (Fig. S5B). In conclusion, orthogonality
between FUNI and minor allele counts (25) (Supporting Informa-
tion) guarantees that confounding by DEMA or PS is negligible
for ID estimates obtained with this measure.

To summarize this section, we show in our simulations that
biases in ID estimates induced by MAF and LD heterogeneity
between SNPs and causal variants can be corrected using LDMS
stratification. Moreover, we show on average that LDMS correc-
tion performs better when applied to FUNI and that FUNI-based
ID estimates are robust to DEMA and PS. Overall, FUNI offers
the best trade-off between statistical efficiency and unbiasedness
in the situations covered in this simulation study. We therefore
recommend its use and focus hereafter our analyses on real data
to FUNI.
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Fig. 2. Averaged estimates of ID from 1,000 simulated datasets. In A datasets were simulated assuming no ID, i.e., b = 0 and nonnegative expectation for
the additive effects (i.e., αj > 0, for the jth causal variant). In B datasets were simulated assuming no ID (b = 0) and no directional effect of minor alleles
(s = 0) but including the contribution of the first 10 genotypic PCs to model the effect of population stratification. FHOM, excess homozygosity inbreeding
measure; FROH, runs of homozygosity-based inbreeding measures; FUNI, measure of inbreeding based on correlation between uniting gametes; SEM, SE of
the mean.

Analysis of UK Biobank Data. We quantified ID in 25 quantita-
tive traits measured in ∼140,000 (Table 1) participants from
the UK Biobank (Supporting Information). These traits can
be grouped into three categories including physical measures
(standing height, weight, body mass index, waist and hip circum-
ferences, waist/hip ratio, bone mineral density, body fat percent-
age, hand grip strength, systolic blood pressure, diastolic blood
pressure, heart pulse rate, peak expiratory flow, visual acuity
measured on log minimum angle of resolution (MAR) scale,
and auditory acuity measured as the speech reception thresh-
old), cognitive traits and educational attainment (fluid intelli-
gence score, mean time to identify matches, maximum number
of digits remembered, and age when completed full education),
and sex-specific reproductive traits (number of children fathered,
number of live births, age at menarche, and age at menopause)
(Table S2). Some of these traits like standing height, peak expi-
ratory flow (strongly correlated with forced expiratory volume in
1 s: r =0.79, P < 10−10), educational attainment, and cognitive
ability were previously reported to be associated with inbreeding
(10). Beyond quantifying the effect of inbreeding on these traits,
we also aimed to evaluate whether differential LD and MAF dis-

Table 1. Statistically significant estimates of inbreeding depression for eight quantitative traits measured in the UK Biobank.

FUNI FUNI(LDMS)

Traits N Estimate SE P value Estimate SE P value PHET

PEF 117,575 −4.1 (−4.1) 0.62 4.57 ×10−11 −4.12 (−4.19) 0.69 2.25 ×10−9 0.941 (0.81)
(103,781) (0.74) (3.48 ×10−8) (0.84) (6.35 ×10−7)

AA, speech 43,175 5.23 (4.44) 1.04 5.55 ×10−7 5.34 (4.39) 1.16 4.6 ×10−6 0.828 (0.94)
reception threshold (38,449) (1.26) (4.45 ×10−4) (1.45) (2.51 ×10−3)

FIS 45,043 −3.9 (−3.14) 0.97 5.36 ×10−5 −4.72 (−4.32) 1.06 8.52 ×10−6 0.061 (0.07)
(40,089) (1.23) (1.08 ×10−2) (1.42) (2.25 ×10−3)

HGS, average of left 139,623 −2.36 (−2.72) 0.54 1.38 ×10−5 −2.43 (−3.31) 0.6 4.64 ×10−5 0.771 (0.1)
and right hands (122,950) (0.68) (5.79 ×10−5) (0.76) (1.51 ×10−5)

NCF 51,494 −3.09 (−3.69) 0.96 1.27 ×10−3 −4.01 (−4.58) 1.07 1.79 ×10−4 0.039 (0.14)
(45,483) (1.16) (1.44 ×10−3) (1.32) (5.17 ×10−4)

MTCIM 138,902 1.94 (1.7) 0.54 3.66 ×10−4 2.05 (2.1) 0.6 6.14 ×10−4 0.647 (0.26)
(122,334) (0.68) (1.21 ×10−2) (0.77) (6.24 ×10−3)

WHR 140,295 2.35 (3.03) 0.53 1.12 ×10−5 1.97 (2.89) 0.6 7.85 ×10−4 0.121 (0.69)
(123,540) (0.67) (6.18 ×10−6) (0.76) (1.37 ×10−4)

VA, log 29,616 4.04 (5.77) 1.20 7.42 ×10−4 4.39 (6.68) 1.32 9.04 ×10−4 0.518 (0.26)
MAR scale (26,596) (1.51) (1.37 ×10−4) (1.73) (1.14 ×10−4)

Effect sizes and standard errors are expressed in phenotypic SD of the trait. Results presented in parentheses were obtained after removing 16,781 related
individuals and 19 extreme cases of inbreeding (FUNI>0.15). N: sample size in the analysis. PHET is the P value from the LDMS heterogeneity test comparing
nonstratified and LDMS-stratified estimates.

tribution in causal variants influenced classical least-squares esti-
mates and if so to correct these biases using our LDMS inference.
The analyses were performed using linear regression adjusted for
age, sex (for traits not specific to males or females), recruitment
center, Townsend deprivation index (26) as a proxy for socio-
economical status, and the first 10 genotypic PCs. The last three
adjustments were considered to account for geographical and
socio-economic structures in the UK population, which we found
to correlate with levels of inbreeding (Table S3).

After Bonferroni correction (P < 0.05/25 traits = 2× 10−3),
we detected significant ID in eight traits (Table 1), using LDMS
stratified inference based on FUNI. Ranked by decreasing mag-
nitude of depression, these traits are auditory acuity (AA), fluid
intelligence score (FIS), visual acuity (VA), peak expiratory flow
(PEF), number of children fathered (NCF), hand grip strength
(HGS), mean time to correctly identify matches (MTCIM), and
waist/hip ratio (WHR). This analysis included 16,781 related
individuals (estimated to be first, second, or third degree) and
19 participants with extreme inbreeding (FUNI > 0.15). As a sen-
sitivity analysis we reran all analyses without related and inbreed-
ing outliers, which reduced the number of traits passing the
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significance threshold to five. The three traits dropped in this sec-
ondary analysis were AA (P =2.51× 10−3 in secondary analy-
sis), FIS (P =2.25× 10−3 in secondary analysis), and MTCIM
(P =6.24× 10−3 in secondary analysis). To test whether the
differences in ID estimates between full and reduced analyses
are significant, we used a jackknife procedure to compare the
observed differences with differences generated when randomly
excluding 16,800 participants. Over 1,000 resampling events, we
found that the observed differences in ID estimates for the eight
traits highlighted above were not significantly different from those
obtained when excluding random subsets (empirical P > 0.14;
Fig. S6). We consequently believe that the drop of significance
between those two analyses is mainly explained by the reduced
statistical power and not by confounding. In addition, we explored
how much of ID could be captured at genome-wide significant
(GWS) SNPs. We therefore selected trait-specific GWS SNPs
from the genome-wide association studies (GWAS) catalog (SI
Materials and Methods, URLs) and assessed inbreeding depres-
sion for the same traits using FUNI at those loci. We could not,
however, detect any significant association with the traits analyzed
in our study. Even for height, for which ∼700 common GWSs are
now reported (27), the estimate of inbreeding depression at GWS
was only −0.08 SD for complete inbreeding (P =0.072).

We observed for all traits that ID estimates derived from
FROH were systematically larger than those obtained with FUNI
(Table S3). As expected, their SEs were also larger. In particu-
lar, only four and six traits (of eight detected with FUNI) passed
the Bonferroni threshold when using F(1)

ROH and F(2)
ROH, respec-

tively. On the other hand, ID estimates obtained with FHOM were
systematically smaller than those obtained using FUNI (Table
S3), with an average over the eight traits significantly associated
with FUNI, bHOM ≈ 0.64× bUNI. The latter observation would be
expected if the traits analyzed are under directional selection as
observed in our simulations when rarer variants were assumed to
have larger effects.

We observed for most traits that LDMS stratified and nonstrat-
ified FUNI estimates were similar (Table 1), suggesting weak dif-
ferential LD and MAF distributions in SNPs tagging causal vari-
ants. Nonetheless, a marginally significant (LDMS heterogeneity
testP < 0.05; Table 1 and Fig. S7) difference could be observed in
NCF for which the LDMS ID estimate was ∼1 SE larger than the
nonstratified one (Table 1). This also translated into an improve-
ment of the association P value from 1.27× 10−3 to 1.79× 10−4

(Table 1). We subsequently assessed which component(s) in the
LDMS stratification contributed the most to NCF (Fig. S8). We
therefore fitted a first multivariate regression model adjusted for
four inbreeding coefficients specific to each LD score strata com-
ponent and then another multivariate regression model adjusted
for six inbreeding coefficients specific to each MAF stratum. We
chose to fit two different models (for MAF and LD separately)
instead of one including 24 covariates to minimize the effects of
colinearity between inbreeding measures in each LDMS stratum.
We found a nominally significant contribution of SNPs with minor
alleles<5% (bFUNI = −4.01 phenotypic SD; P =0.01) but no sig-
nificant enrichment in LD strata despite a large contribution of
the second-lowest LD score stratum (bFUNI = −1.62 phenotypic
SD; P =0.12). According to our derivations, this enrichment of
ID in lower-frequency SNPs and more generally in low-LD regions
explains why nonstratified analyses produced smaller estimates
compared with the LDMS approach. These results imply a dispro-
portionate contribution of low-frequency SNPs to ID in NCF.

Discussion
We comprehensively quantified the behavior of ID estimators
based on three commonly used measures of inbreeding. Our
study illustrated some of the shortcomings of the most commonly
used ROH-based estimates of ID, which not only are biased but

also have large SE (approximately three times larger compared
with FUNI). This, along with the arbitrary choices underlying the
definition of ROHs, leads us to recommend the use of FUNI
over FROH. Overall, our results suggest that FUNI-based ID esti-
mates are robust to different assumptions about the distribution
of effect sizes, to possible directional effects of minor alleles, and
also to population stratification. The contribution of population
stratification reported in this study needs, however, to be put in
perspective as our simulations and real data analyses were based
upon a relatively homogeneous population within the United
Kingdom. For stronger population stratification (e.g., between
European and Asian populations) FUNI-based ID estimates can
also be biased. This somewhat extreme situation, which would
in general be handled as part of quality control, is discussed in
Supporting Information (Table S4 and Dataset S1).

This study also highlights that differential LD distribution
between causal variants and SNPs could bias ID estimates.
As previously reported for genomic-relatedness-based restricted
maximum-likelihood (GREML) (28) heritability estimates (19–
21), we demonstrate through simulations that an LDMS approach
successfully corrects these biases when estimating ID. More gen-
erally, the flexibility of the LDMS approach in terms of num-
bers and types of MAF/LD strata allows adaptation to any effect
size distribution. Indeed, all SNP-based inbreeding measures
are defined upon an underlying assumption on the distribution
of dominance effects (e.g., when assuming constant dominance
effects, the underlying inbreeding measure is FHOM), which, when
not verified, creates biases in ID estimates even when causal vari-
ants are randomly distributed among observed SNPs. We showed
in our simulations using two distributions of dominance effects
that such biases are explained by MAF and LD heterogeneity
between causal variants and SNPs and therefore can be corrected
using the LDMS approach. This result is important as it guaran-
tees an unbiased estimation of ID regardless of the distribution of
dominance effects.

Beyond methodological considerations, we confirmed in
this study known associations between increased inbreeding
and reduced lung function (PEF), cognitive ability (FIS and
MTCIM), and fertility (NCF), which were previously reported,
however, using different proxy traits (10, 29–31). We also repli-
cated the association between inbreeding and decreased height
(bUNI − LDMS: −1.71 phenotypic SD for complete inbreeding;
P =0.003) even though it was below the Bonferroni threshold.
We did not replicate the association with educational attainment
(EA) measured, as the “age when completed full education.”
However, when measuring EA as whether or not participants
went to college or university as in Joshi et al. (10), we found a
strong although nominally significant negative association (odds
ratio of 0.04, P =0.02).

We report evidence of ID for HGS, VA, AA and WHR.
Although HGS, VA, and AA seem obvious fitness-related traits,
these results still require replication. The association with WHR
is particularly interesting as it illustrates on real data that one
may benefit from using a less variable measure of inbreeding.
Joshi et al. (10) reported a positive effect of inbreeding on WHR
using FROH; however, even with ∼200,000 individuals the effect
did not reach statistical significance (P =0.09). Although het-
erogeneity between the cohorts involved in that meta-analysis
may explain that apparent lack of statistical power, our theoret-
ical and simulation results predict that if the authors had used a
different metric [FUNI instead of F (1)

ROH to reduce the SE] com-
bined with a LD and MAF stratified inference, then such an
effect would have been easily detected. We have not considered
in this study the detection and estimation of nonlinear effects
of inbreeding because of a lack of statistical power to detect
such effects. Nonlinearity is predicted by theory in the pres-
ence of epistasis involving dominance (32) and was implied by
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Szpiech et al. (33), who showed that long runs of homozygosity
were enriched for coding variants that are predicted to be dele-
terious. In conclusion, we have demonstrated that LD and MAF
stratified inference based on FUNI as a measure of inbreeding
minimizes bias relative to the other ID estimation strategies
compared in this study. As illustrated here on real data, we
believe that our approach will lead to more discoveries in forth-
coming and larger studies.

Materials and Methods
Statistical Models and Notations. We consider the following model:

yi = µ+

m∑
j=1

ajxij +

m∑
j=1

djHij + εi , [1]

For individual i, yi is the observed value of the phenotype of interest, and xij

is the minor allele count at the jth causal SNP (xij ∈{0, 1, 2}). We denote pj

the minor allele frequency of the jth causal SNP, Hij = xij(2− xij) is the indica-
tor of heterozygosity, and εi is a residual term capturing nongenetic effects
on the observed phenotype. The additive and dominance effect sizes of the
minor allele at the jth causal SNP are respectively denoted aj and dj . We
assume independence between the m causal variants, between the geno-
types and the effect sizes, and between the genetic and the nongenetic
effects. Finally, we assume the effect sizes to be random and such that
E[aj] =αj and E[dj] = δj .

Measures of Inbreeding. We studied three measures of inbreeding. All these
measures of inbreeding require individual SNP genotypes and can be used
in the absence of any pedigree information. The first inbreeding measure is
the excess of homozygosity measure defined here as

FHOM = 1−
∑p

k=1 xk(2− xk)∑p
k=1 2pk(1− pk)

,

where xk is the minor allele count of SNP k, pk is the minor allele frequency,
and p is the number of genotyped or imputed SNPs available. FHOM is imple-
mented in PLINK2 (command: –het).

The second measure (FUNI) is based on the correlation between uniting
gametes. This measure was defined in Yang et al. (17) as

FUNI =
1

p

p∑
k=1

x2
k − (1 + 2pk) xk + 2p2

k

2pk(1− pk)
.

FUNI is implemented in PLINK2 and GCTA software (command: –ibc).
The last measure is defined as the proportion of the genome within ROH.

More specifically, the inbreeding measure FROH was calculated as the cumu-
lated length (in base pairs) of one individual’s genome within ROHs divided
by 3× 109 (the approximate length of the autosomal genome in base pairs).
We used two definitions of ROHs corresponding to those proposed in Joshi
et al. (10) (definition 1) and Gazal et al. (15) (definition 2). Inbreeding
measures calculated using definition 1 and definition 2 are respectively
denoted as F(1)

ROH and F(2)
ROH. Both definitions used SNPs with MAF> 5% as

previously reported in Joshi et al. (10) and Gazal et al. (15) (Supporting
Information).

UK Biobank Data. We used baseline data from 152,729 men and women
who were genotyped in the first phase of genotyping of the UK Biobank
(34). To ensure ancestry homogeneity, we selected individuals who reported
to be “British,” “Irish,” “white,” or of “any other white background” and
whose coordinates on the first genetic PC were below 0 (Fig. S9). In total,
we included 140,720 participants in this analysis. The Northwest Multicen-
tre Research Ethics Committee (MREC) approved the study and all partici-
pants in the UK Biobank study provided written informed consent. The first
steps of the quality control have been previously described (SI Materials and
Methods, URLs). Phasing and imputation were performed using SHAPEIT
and IMPUTE2 (SI Materials and Methods, URLs), respectively, as previously
described (35). After imputation, we selected 9,493,148 autosomal SNPs with
imputation quality r2 > 0.3, MAF> 1%, and Hardy–Weinberg equilibrium
test P value >10−6. Imputed SNPs were then called to the genotypes hav-
ing the largest posterior probability. Finally, we removed redundancy by LD
pruning SNPs with a squared genotype correlation r2 > 0.9. In total we used
3,857,369 SNPs in this analysis.
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