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Endogenous electric fields (EFs) are involved in developmental
regulation and wound healing. Although the phenomenon is
known for more than a century, it is not clear how cells perceive
the external EF. Membrane proteins, responding to electrophoretic
and electroosmotic forces, have long been proposed as the sensing
molecules. However, specific charge modification of surface pro-
teins did not change cell migration motility nor directionality in EFs.
Moreover, symmetric alternating current (AC) EF directs cell migra-
tion in a frequency-dependent manner. Due to their charge and
ability to coalesce, glycolipids are therefore the likely primary EF
sensor driving polarization of membrane proteins and intracellular
signaling. We demonstrate that detergent-resistant membrane
nanodomains, also known as lipid rafts, are the primary response
element in EF sensing. The clustering and activation of caveolin
and signaling proteins further stabilize raft structure and feed-
forward downstream signaling events, such as rho and PI3K
activation. Theoretical modeling supports the experimental results
and predicts AC frequency-dependent cell and raft migration. Our
results establish a fundamental mechanism for cell electrosensing
and provide a role in lipid raft mechanotransduction.
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During development and wound healing, cells experience
electrical currents (1–3). The electric field (EF) results in

polarized cell organization and induces directional cell mi-
gration (galvanotaxis or electrotaxis), morphological changes
(galvanotropism), and alterations in gene expression (4, 5). In
development, the electrical currents arise from regulation of
ion channels that lead to ion flux and establish polarization
and morphogenesis (1, 6). EF is also generated from the
disruption of membrane potentials at wound sites and pro-
motes oriented cell division and migration, facilitating wound
healing (7, 8). Suppression of the electrical currents can lead
to impaired healing and failed development (9, 10).
How do cells perceive the external EFs? As the plasma

membrane consists of mostly negatively charged molecules
that move in the plane of the membrane, the external field
induces electrophoresis and electroosmosis of these molecules
(11–13). A number of membrane proteins have been found to
polarize in direct current (DC) EF, including acetyl choline
receptors, VEGF/EGF receptors, and integrins (14–17). In ad-
dition, electrical stimulations are found to regulate ion channel
activities with higher activation toward the cathode (18). Through
these polarized surface receptors, the external EFs activate in-
tracellular signaling, such as src kinase (src), small GTPases, and
phosphoinositol kinase pathways, which are polarized in the EF-
induced migration direction (7, 17).
Although the preferential distribution and activation of cell

membrane proteins in EF support the notion that charged cell
surface molecules are influenced by the electrophoretic and
electroosmotic forces, Finkelstein et al. (19) report that modifi-
cation of membrane protein charges with avidin conjugation
does not change cell migration motility nor directionality in EF.
Interestingly, the classical neurominidase treatment, which
removes sialic acids from both glycoproteins and glycolipids,

indeed inhibits directional migration. These results suggest
that glycolipid redistribution in EF can be an alternative can-
didate as the primary EF sensor in cell membrane. Moreover,
we previously reported that symmetric alternating current (AC)
at 50 Hz drives directional cell migration (17). Glycolipids are
capable of congregating into structures such as lipid rafts that
can increase in size by recruiting proteins and lipids. EFs may
induce glycolipid movement and density increase due to pref-
erential distribution in the field, leading to increases in lipid
raft size (20). If raft size increases during movement in EF, the
concomitant decrease in raft motility will result in polarization
of the raft structures and lead to directional migration.
Lipid rafts, detergent-resistant membrane nanodomains, are

highly dynamic and heterogeneous in composition and interaction
(21). They are essential in many cell membrane processes and
modulate activation of integrin and many of the aforementioned
growth factor receptors that polarize in EF (22–24). Rich in
gangliosides, lipid rafts are linked to sialic acids and negatively
charged. In addition to cholesterol, lipid raft proteins, such as
caveolin (Cav), further stabilize lipid raft structure and control
lipid raft dynamics (25, 26). In the current study, we hypothesize
that lipid rafts are the primary sensor to EF stimulation due to
their charge and ability to coalesce. Preferential distribution of
lipid rafts in EF polarizes membrane proteins such as integrin and
Cav, and the clustering and activation of these proteins further
stabilize raft structure and feed-forward raft polarization, leading
to directional cell migration.

Results and Discussion
We quantified the distribution of lipid rafts upon field exposure
with fluorescent cholera toxin B (CTxB) to confirm the
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polarization of lipid rafts in applied DC and AC EFs. In DC
fields, lipid rafts indeed polarized toward the cathode with time,
corresponding with the migration directionality of fibroblasts

and mesenchymal stem cells (MSCs) (Fig. 1 and SI Appendix,
Fig. S1). In the anodally migrating CL1-5 adenocarcinoma cells,
rafts were polarized toward the anode (27) (Fig. 1C). In the
randomly migrating CL1-0 cells, no preferential raft distribution
was found. Superresolution microscopy revealed a significant
increase of raft sizes with DC EF exposure in MSCs, indicative of
raft clustering (control = 0.028 ± 0.005 μm2, EF = 0.032 ±
0.007 μm2, n = 19–24, P = 0.014; Fig. 1D). When lipid rafts were
disrupted by cholesterol depletion with methyl β-cyclodextrin
(MβCD) or saturation, migration directionality was suppressed,
whereas the influence on motility, as quantified by migration
speed, was minor (Fig. 2). These data support our hypothesis
that EF-induced migration directionality corresponds with mem-
brane raft clustering and polarization.
We previously reported that integrin mediates directional cell

migration in applied EFs (17). The polarized distribution of
integrin in response to EF was abolished with raft disruption,
whereas raft polarization in EF was less influenced by functional
blocking of integrin (Fig. 3A). To further determine if lipid rafts
indeed act upstream of integrin or other active cellular mecha-
nisms, we disrupted the actin cytoskeleton with cytochalasin D
to monitor raft distribution. Although cytochalasin treatment
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Fig. 1. Applied EF directs cell migration and lipid raft polarization.
(A) Sample lipid raft labeling with CtxB. (Scale bar, 10 μm.) (B) Schematic for AI
calculation, which was calculated as the difference of normalized fluorescent
intensity between the region toward the cathode and the anode. (C) Gal-
vanotactic behaviors of hMSC, CL1-0, and CL1-5 cells, and lipid raft distri-
bution after 1 h of exposure to DC EF (n = 51–265, *P < 0.0001 vs. 0 V).
(D) Superresolution microscopy images of representative cells labeled with
CTxB for lipid raft. [Scale bar, 10 μm and (Inset) 1 μm.]
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Fig. 3. Lipid rafts act upstream of intracellular structure and signaling mecha-
nisms. (A) Integrin blocking partially suppressed lipid raft polarization in response
to applied EF, whereas lipid raft disruption diminished integrin polarization in EF
(n = 32–58, *P < 0.005 vs. 0 V, §P < 0.05 vs. control). (B) Actin cytoskeleton dis-
ruption enhanced polarized lipid raft and integrin distribution in EF (n = 20–262,
*P < 0.0001 vs. 0 V, §P < 0.0001 vs. control). (C) Lipid raft disruption attenuated
polarized RhoA, Src, and PI3K distribution (n = 4–73, *P < 0.01 vs. 0 V, §P <
0.02 vs. control), whereas (D) RhoA, Src, or PI3K inhibition (with C3 exoenzyme,
PP2, and LY294002, respectively) did not suppress lipid raft redistribution (n = 70–
127, *P < 0.0001 vs. 0 V, §P < 0.001 vs. control).
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significantly suppressed cell motility and directionality (SI Ap-
pendix, Fig. S1B), actin disruption enhanced raft and integrin
polarization (Fig. 3B). In addition, no preferential lamellipodia
extension toward the cathode (SI Appendix, Fig. S1A) or mi-
crotubule organizing center polarization (28) was found with
EF exposure. As cytoskeleton structures, especially actin, reg-
ulate membrane domains and protein organization (29, 30), the
increase of raft polarization with cytochalasin treatment sup-
ports the restrictive role of submembranous cytoskeleton struc-
tures in the diffusion of membrane proteins (31).
To understand the interaction between integrin and lipid raft,

dual labeling with CTxB and antibody against active β1 integrin
(clone 12G10, Abcam) found no changes in raft and integrin
colocalization after EF stimulation (P = 0.775; SI Appendix, Fig.
S1C). Due to the pentavalent nature of CTxB, we tested the
effects of CTxB on raft size and integrin interactions by treating
the control cells with CTxB before formalin fixation. Indeed,
CTxB treatment increased raft size by 15% (CTxB incubation
after fixation, 0.028 ± 0.005 μm2; CTxB incubation before fixa-
tion, 0.032 ± 0.007 μm2, P = 0.039) and reduced integrin and raft
colocalization by 36% (CTxB incubation after fixation, 0.242 ±
0.090; CTxB incubation before fixation, 0.156 ± 0.103, P =
0.019). As both CTxB and formalin fixation can artificially in-
duce raft clustering (32), the reported raft size and colocalization
may not reflect the actual values. Nonetheless, our results
demonstrate that both CTxB and electrical stimulation increase
raft clustering. Furthermore, EF-induced clustering has a dif-
ferent effect on integrin partitioning from the chemically in-
duced clustering. These data suggest that EF may play an
additional role in integrin and raft interaction, and integrin is not
merely a passive passenger on the raft during EF-induced raft
clustering. Clustering and activation of other molecules may also

participate in the dynamics. Future studies should determine if
inactive integrin association with raft, the ratio of active/inactive
integrins, or recruitment of different integrin species change with
EF-induced raft clustering. Our results demonstrate that exog-
enous EF alters raft and integrin interactions.
Polarization of intracellular signaling molecules, including

RhoA, src, and PI3K, mediates EF-induced directionality (7, 17).
To understand the role of raft in the polarization of these
downstream factors, we examined their distribution in applied
EF after raft disruption and found polarization of these signaling
proteins was abolished (Fig. 3C). Pharmacological inhibition of
these molecules, on the other hand, had no effect on lipid raft
polarization in EF (Fig. 3D and SI Appendix, Fig. S2), further
demonstrating that lipid raft polarization acted upstream of
these intracellular signaling events.
An integral inner membrane protein, Cav stabilizes lipid raft

structures and interacts with β1 integrin to activate RhoA
through inactivation of p190RhoGTPase (33). In applied DC
EF, Cav-1 polarized toward the cathode, similar to the ganglio-
sides of lipid raft (Fig. 4A). EF stimulation for 1 h significantly
increased Cav oligomerization (Fig. 4B), indicating a clustering
effect in response to the applied EF. Cholesterol depletion with
MβCD inhibited Cav-1 polarization (Fig. 4A). Knockdown of
Cav-1 abolished migration directionality in response to applied
EF (Fig. 4C). As Cav regulates membrane cholesterol content
(34), we replenished membrane cholesterol in the Cav-1 knock-
down cells and found a similar suppression of directionality,
indicating that Cav indeed participated in EF-induced raft re-
distribution (SI Appendix, Fig. S3). Cav-1 knockdown also
inhibited RhoA and PI3K polarization in EF, demonstrating the
key role of Cav-1 in EF-induced directional signaling (Fig. 4E).
Interestingly, although inhibitors for PI3K and src did not
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suppress Cav polarization in EF, functional blocking of integrin
reduced Cav polarization (Fig. 4D and SI Appendix, Fig. S2).
Inhibition of raft and integrin polarization from Cav-1 knock-
down cells suggested reciprocal interactions among raft, integrin,
and Cav-1, and the integrity of all three components was nec-
essary for EF-directed migration. Activation of integrin by ex-
tracellular matrix proteins has been shown to change integrin
partitioning (35–37), stabilize lipid rafts (38), and modulate EF-
induced motility and directionality (4, 39). Integrin activation
may also induce src signaling that phosphorylates Cav (40).
However, as the src-family inhibitor used in this study (PP2) acts
on all known Cav kinases (src, fyn, and abl) (41, 42), Cav phos-
phorylation is unlikely to be involved in integrin and Cav asso-
ciation in EF. Furthermore, as PP2 has no effect on raft or Cav
polarization (Fig. 3D and SI Appendix, Fig. S2), src does not
mediate Cav interactions to stabilize lipid raft.
Stemming from the experimental observations, we built a

theoretical framework based on previous models to describe
the qualitative electrodynamic behavior of lipid rafts in mem-
branes. The model calculated lipid raft displacement in DC and
AC EFs based on parameters extracted in fibroblasts. Detailed
analyses can be found in SI Appendix. The applied EF can induce
three forces acting on lipid rafts (12, 43, 44): the electrical force
due to an external EF (FE) (45), the hydrodynamic force resulting
from the aqueous medium (FHA) (46), and the drag force in

membrane (FDM) (47). Drift velocity of lipid rafts was obtained by
expressing FE, FHA, and FDM. As illustrated in Fig. 5A, raft velocity
decreased exponentially with increasing radius. Equilibrium
location of lipid rafts was therefore determined by the rate of
lipid raft size increases and EF-driven drifts. The direction of
the field when lipid raft reached critical size (where its velocity
approximates zero) governed the equilibrium location of the
raft, predicting a frequency-dependent directionality of lipid
raft distribution in DC and AC fields. Fig. 5B depicted that
rafts were preferentially distributed toward the cathode in DC
fields, confirming our experimental findings (Fig. 1). The
model also predicted that while in AC fields, rafts would be
located toward the cathode at low frequency (10 Hz), toward
the anode at intermediate frequency (50 Hz), and exhibit low
directionality at high frequency (250 Hz). Indeed, experimental
results matched the finding and demonstrated that raft dis-
tribution and migration directionality exhibited AC frequency
dependence in fibroblasts (Fig. 5C). Previous studies also de-
scribed frequency-dependent surface protein polarization in
AC EF (48).
Lipid rafts have been shown to mediate mechanotransduction

through spatial or allosteric regulation of protein functions (37,
49). However, it is not clear what initially leads to the changes in
raft organization. In this study, we demonstrate that lipid rafts
are the primary sensing mechanism to external EF and regulate
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downstream protein signaling. A recent study reports that cav-
eolae disassembles and reassembles in response to membrane
stretch and relaxation, which can lead to raft reorganization
(50). In addition, kinetic disruption of lipid rafts activates
phospholipase D2 by mixing the enzyme with its substrate (51).
These studies support our notion that lipid rafts play a principle
role in mechanosensing. How does the interaction between lipid
raft and scaffolding proteins influence raft dynamics in EF? For
instance, EF stimulation increases oligomeric Cav content, which
can be part of the curved caveolae structures or smaller Cav
scaffolds (52). Although the oligomers are mostly associated with
caveolae, noncaveolar Cav oligomers have also been reported
(52). Further in-depth investigations using tools in protein and
lipid dynamics and superresolution imaging will be needed to
delineate the role of Cav and caveolae in integrin activation and
EF-induced migration.
EF-induced migration has been described for over a century

and is implicated in wound healing, development, and metasta-
sis. Although the intracellular signaling machinery is similar to
other cell migration mechanisms, the identity of a single critical
macromolecule for sensing the field remains unknown. Using
theoretical model and experimental results, we demonstrate that
lipid rafts are the primary sensing element in EF-induced cell
polarization and migration. As illustrated in Fig. 6, these mem-
brane nanodomains act as mobile complexes that polarize, co-
alesce, and partition membrane proteins such as integrin and
Cav. Raft, integrin, and Cav are all necessary for downstream
intracellular signaling, including RhoA and PI3K, to polarize the
cell for directed migration. Our findings establish a fundamental
mechanism for cell electrosensing and provide a role in lipid
raft mechanotransduction.

Methods and Materials
Detailed methods are described in SI Appendix.

Electrical Stimulation. The galvanotaxis chamber, as described previously (53),
consisted of a modified parallel-plate flow chamber where the medium inlet
and outlet were connected to agarose salt bridges. Constant DC EF was
applied at a field strength of 6 V/cm (3 mA) with a Keithley SourceMeter,
and AC sinusoid waves were applied at a peak intensity of 1.2 V at 50 Hz
using a custom stimulator (Dynaprog).

Migration Analysis. Images of cell location were captured every 15 min
on an inverted microscope (Leica). Cell migration was measured by
manually determining the centroid with time and calculating the dis-
placement and direction (angle between the EF direction and the cell
translocation vector). Migration speed was calculated as the net displace-
ment per hour, and migration directionality was calculated as the cosine of
the migration angle where a negative value indicates migration toward
the cathode.

Image Analysis. A custom LabView program (National Instruments) allowed
manual selection of cell area (via the bright-field channel) and automated
partition of four quadrants (Fig. 1B). The mean fluorescent intensity was
calculated for each quadrant and normalized to overall cell intensity.
Asymmetry index (AI) was calculated by subtracting the normalized in-
tensity of the anodal quadrant from the cathodal quadrant (17). A posi-
tive AI value indicates a preferential anodal distribution of the labeled
molecules, and a negative value of AI indicates cathodal distribution. For
stimulated emission depletion (STED) images, a custom Matlab program
segmented and measured raft sizes.

Cav Oligomerization Assay. A modified galvanotaxis chamber was made by
adapting the parallel plate geometry in a 10-cm culture dish with PDMS
molding. Cells were cultured overnight and stimulated for 1 h. To determine
the degree of Cav oligomerization, total cell lysates harvested with RIPA
buffer were denatured in gel loading buffer at 70 °C for 10 min (54). Proteins
were separated via standard SDS/PAGE procedures and blotted on PVDF
membrane. The whole membrane was probed with Cav-1 antibody (Cell
Signaling), and bands above 250 kDa (representing Cav oligomers) and at
22 kDa (Cav monomers) were detected (54).

Membrane Modeling. When an EF is applied, three forces acted on lipid rafts
(12, 43, 44): the electrical force due to an FE (45), the hydrodynamic force
resulting from the aqueous medium (FHA) (46), and the drag force in
membrane (FDM) (47). Drift velocity of the lipid rafts can be obtained by
expressing FE, FHA, and FDM in the forms with lipid raft velocity, as shown
in Eq. 1:

V
*

=

dðrÞ«0«rðζa − ζEOFÞ~E
ηa

dðrÞ+gðrÞ , [1]

where d(r) and g(r) are the drag coefficients associated with the hydrophilic
portion in the aqueous phase and with the portion embedded in the
membrane, respectively.

The drag coefficient d(r) is related to the shape, size, and orienta-
tion of the hydrophilic portion with respect to the aqueous flow (45, 55)
and was obtained by using COMSOL Multiphysics software. For the cy-
lindrical hydrophilic portion with a height of 1 nm, the obtained d(r) is 2 ×
10−11 ln(r) + 5 × 10−10. The hydrophobic portion-associated drag force
coefficient, g(r), can be obtained by using the Saffman–Delbrück approxi-
mation and is expressed below (55–57):
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where r is the lipid raft radius, γ = 0.58, b1 = 2.75, b2 = 0.61, c1 = 0.74, and
c2 = 0.52. Detailed descriptions and definitions of additional symbols can
be found in SI Appendix.

Statistical Analysis. SPSS 22 (IBM) was used to perform ANOVA with LSD
post hoc tests (α = 0.05). All results represent more than two separate cell
preparations. Error bars represent SEMs.
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