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Data with a relatively small number of study individuals and a
very large number of potential explanatory features arise partic-
ularly, but by no means only, in genomics. A powerful method of
analysis, the lasso [Tibshirani R (1996) J Roy Stat Soc B 58:267–
288], takes account of an assumed sparsity of effects, that is, that
most of the features are nugatory. Standard criteria for model
fitting, such as the method of least squares, are modified by
imposing a penalty for each explanatory variable used. There
results a single model, leaving open the possibility that other
sparse choices of explanatory features fit virtually equally well.
The method suggested in this paper aims to specify simple mod-
els that are essentially equally effective, leaving detailed interpre-
tation to the specifics of the particular study. The method hinges
on the ability to make initially a very large number of separate
analyses, allowing each explanatory feature to be assessed in
combination with many other such features. Further stages allow
the assessment of more complex patterns such as nonlinear and
interactive dependences. The method has formal similarities to so-
called partially balanced incomplete block designs introduced 80
years ago [Yates F (1936) J Agric Sci 26:424–455] for the study
of large-scale plant breeding trials. The emphasis in this paper
is strongly on exploratory analysis; the more formal statistical
properties obtained under idealized assumptions will be reported
separately.

sparse effects | genomics | statistical analysis

Suppose that an outcome, for example disease status or sur-
vival time, is measured on a limited number of individu-

als and that a large number of potential explanatory variables
are available. Standard statistical methods such as least squares
regression or, for binary outcomes, logistic regression need mod-
ification, essentially to take account of an assumption necessary
for progress, namely of sparsity, that only a limited number of the
explanatory variables have an effect. Important methods have
been developed in which, for example, a least squares criterion is
suitably penalized, based on the number of explanatory variables
included. See, for example, ref. 1 and, for a careful account of
the underlying mathematical theory, ref. 2. The outcome of such
analyses is a single regression-type relation. For a very recent dis-
cussion from a different perspective and under strong assump-
tions, see ref. 3. The formal probabilistic behavior of the proce-
dure in this paper under idealized conditions will be discussed in
a separate paper.

This paper adopts a different, less formal, and more explo-
ratory approach in which judgment is needed at various stages. In
this the conclusion is typically that a number of different simple
models fit essentially equally well and that any choice between
them requires additional information, for example new or differ-
ent data or subject-matter knowledge. That is, informal choices
are needed at various points in the analysis. Although the choices
could be reformulated into a wholly automatic procedure this has
not been done here.

The combinatorial arrangements used in the method are
essentially partially balanced incomplete block designs (4), in
particular so-called cubic and square lattices, first developed in
the context of plant breeding trials involving a very large num-

ber of varieties from which a small number are to be chosen for
detailed study and agricultural use.

Outline of Method
Consider the analysis of data from n independent individuals on
each of which a large number, v , of explanatory variables is mea-
sured together with a single outcome, y . To be specific, consider
analyses based on linear least squares regression. In typical appli-
cations n might be roughly 100 and v perhaps 1,000 or more. The
idea is to begin with a large number of least squares analyses each
involving a much smaller number, p, of variables. The procedure
in outline is as follows:

• Some variables, for example, intrinsic variables such as gender,
might be included in all of the regressions described below and
others entered several or many times because of a prior assess-
ment of their importance.

• Arrange the variables either in a p× p square or a p× p× p
cube, where preferably p≤ 15. Extensions to four or more
dimensions are possible. We describe here the cubic case. It is
immaterial if some positions in the cube are empty or if some
rows, columns, and so on have more than p entries, so that
there is no loss of generality in the restriction of v , say, to be a
perfect cube.

• The rows, the columns, and so forth of the cube form 3p2 sets
each of p variables. Fit a least squares regression to each set.

• From each such component analysis select a small number of
variables for further study. This might be the two variables
with most significant effect, or all those variables, if any, that
had Student t statistics exceeding some arbitrary threshold, for
example the 5% point of a formal test.

• Thus, each explanatory variable has been examined three
times, always in the presence of a different set of explanatory
variables. Those variables never selected or selected only once
should, in the absence of strong prior counter evidence, be
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Fig. 1. Outcome (1 = cases, 0 = controls) as a function of the two potentially interacting variables (logarithmic scale). Four anomalous individuals in the
control group are represented by red triangles.

discarded. The next step depends on the number v ′ of vari-
ables remaining as selected twice or three times. If, say, v ′ is
∼100, a second phase similar to the first, probably based on
representing v ′ as a square, should be used, aiming to reduce

Table 1. Variable numbers (proportion of models in SI Appendix, Tables S1–S15 containing this variable),
gene names, and biological function of the retained candidate variables

Variable no.
(occurrence rate) Gene name Description and biological function

7235 (0.96) ESYT2-007 Tethers the endoplasmic reticulum to the cell membrane;
plays a role in FGF signalling and may play a role in cellular lipid transport

48433 (0.94) LTBP1 Latent transforming growth factor beta binding protein;
diseases associated with LTBP1 include geleophysic dysplasia

25125 (0.75) PRR5L Associates with the mTORC2 complex that regulates cellular
processes including survival and organization of the cytoskeleton

29679 (0.61) — mRNA
48415 (0.61) RP11-542K23.10 RNA gene
25744 (0.61) NDEL1 Plays a role in multiple processes including cytoskeletal organization,

cell signaling and neuron migration, outgrowth, and maintenance
27642 (0.53) SRFBP1 Serum response factor binding protein; may play a role in biosynthesis

and/or processing of SLC2A4 in adipose cells
45991 (0.33) MAZ MYC-associated zinc-finger protein
36409 (0.31) SERTAD1 Stimulates E2F1/TFDP1 transcriptional activity
48549 (0.29) COL9A2 Collagen type IX alpha 2 chain; mutations in this gene

are associated with multiple epiphyseal dysplasia
44276 (0.27) GLS Plays an essential role in generating energy for metabolism

33385 (0.26) LFNG Encodes evolutionarily conserved glycosyltransferases; mutations in this gene
have been associated with autosomal recessive spondylocostal dysostosis 3

37443 (0.22) WDR20 Regulates the activity of the USP12-UAF1 deubiquitinating enzyme complex

46771 (0.19) PLAGL2 Zinc-finger protein that recognizes DNA and/or RNA
27920 (0.18) ANKRD24 Protein coding gene
25470 (0.14) SPEN Encodes a hormone inducible transcriptional repressor
11643 (0.08) NAT10 Protein coding gene with numerous biological functions

Gene function information was obtained from GeneCards, www.genecards.org.

the number of potentially important explanatory variables to
perhaps roughly 10 to 20.

• The next phase involves more detailed analysis of the selected
variables. Their correlation matrix should be calculated and
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for any pair of variables with a correlation exceeding, say 0.90,
the corresponding scatter plot should be examined. Depending
on the nature of the pair of variables, it may be decided to omit
one or to replace the pair by the average of their standard-
ized values or to proceed with both. For each of the selected
variables that is not binary a regression should be fitted with
a single squared term added and a probability plot produced
of the corresponding t statistics. Anomalous points should be
checked and, for example, if necessary the corresponding vari-
ables transformed. Next, the linear by linear interactions of
pairs of variable should be checked in a similar way. See, for
example, ref. 5.

• The final phase of the analysis is to find very small sets of
variables that give adequate fit. Suppose discussion has been
reduced to r explanatory variables including possible interac-
tion terms, squared terms, and so on. Provided r is sufficiently
small, a sensibly cautious approach is to fit all 2r models and
reject those clearly inconsistent with the data. This might be
done, for example, through a likelihood ratio test against the
model involving all r candidate variables. It is implicit that if a
model involving a subset S of explanatory variables is consis-
tent with the data, so too is a model involving any larger subset
S ′⊃S. This reduces the computational burden of the search
to that of finding primitive subsets.

• The computational demands of the procedure are small once
the relevant code is written. Code is available from the authors
upon request.

Illustration of Method
We illustrate by example how the procedure might be used and
interpreted in practice, emphasizing exploratory aspects and the
need for careful judgment at various stages.

Description of Data. In a study of osteoarthritis, a set of 106
patients clinically and radiographically diagnosed with primary
symptomatic osteoarthritis at multiple joint sites were selected
for gene expression analysis alongside 33 healthy controls (6).
Samples from each patient were subjected to transcriptional pro-
filing using microarrays containing probes for over 48,800 genes.
The raw gene expression data, scored on a positive scale, are
available from the Gene Expression Omnibus under accession
number GDS5363. Data on the males, one from the cases and
nine from the controls, are discarded, leaving a sample of 129
females.

Analysis. We arrange the variable indices in a 9× 9× 9× 9× 8
hypercube and fit a linear logistic model to the log-transformed
explanatory variables by maximum likelihood, using the sets of
variables indexed by each dimension of the hypercube; 2,531
variables are classified as significant at the 1% level in at least
three of the five analyses in which they appear. We arrange the
corresponding variable indices in a 8× 8× 8× 4 hypercube and
repeat the procedure twice more, successively reducing the num-
ber of potential candidate explanatory variables to 779, 66, and,
finally, 17. We do not put forward our choices of significance
level and the dimension of the initial hypercube as definitive;
significance tests are used informally as an aid to interpretation
and are calibrated to reduce the number of candidate explana-
tory variables to roughly 15 to 20.

For each pair among the 17 potential candidate explana-
tory variables we fit a logistic model using the log-transformed
variables and interaction terms between them. For all pairs of
variables whose t statistics exceed 2 in absolute value, scatter
plots check the plausibility of the interaction. We simultane-
ously check whether anomalous points in different plots cor-
respond to the same individuals. Fig. 1 displays the retained
interactions and anomalous controls. The anomalous individu-
als are consistently anomalous across variable pairs and are dis-

carded from the subsequent analysis. Allowing for interactions,
the resulting set of r candidate explanatory variables consists
of 17 variables on the log scale and interactions between four
pairs of them. SI Appendix, Tables S1–S15 detail many mod-
els of reasonable dimension whose fit is not significantly worse
than that of the model fitted to all r candidate explanatory vari-
ables, where significance is measured using an F test at the
1% level.

Among the variables identified, 33385 and 46771 are identi-
fied also by ref. 6 as being highly differentially expressed between
cases and controls. The biological descriptions of all variables
appearing in SI Appendix, Tables S1–S15 are provided in Table
1 together with the proportion of models containing each
variable.

There are compact messages to be extracted from SI Appendix,
Tables S1–S15. Of all models specified, 96% involve the vari-
able 7235 (ESYT2-007) and 94% involve the variable 48433
(LTBP1); 78% of models not involving variable 48433 instead
contain variable 48549 (COL9A2). In fact, only 1% of all
models involve neither 48433 nor 48549. It is notable, given
the nature of osteoarthritis, that ESYT2-007 plays a role in
fibroblast growth factor signaling essential for bone devel-
opment and that mutations in this gene have been associ-
ated with various congenital bone diseases (7). LTBP1 has
been associated with geleophysic dysplasia, an inherited con-
dition characterized by abnormalities involving the bones and
joints. Mutations in COL9A2 have been associated with mul-
tiple epiphyseal dysplasia, a disorder of cartilage and bone
development. The most commonly occurring interaction term
is between variables 25744 (NDEL1) and 25125 (PRR5L).
We do not know whether this interaction is biologically
interpretable.

For comparison, we fit a logistic model to all v variables,
the latter measured on a log scale. The lasso penalty is used.
Although the number of variables selected by the lasso depends
on the degree of penalization imposed, the smallest set of
selected variables able to achieve the same negligible resid-
ual deviance as the models specified in SI Appendix, Tables
S1–S15 has cardinality 9. The intersection of this set with the
set of 17 variables in Table 1 is empty, although one of the
nine variables, 41799, which corresponds to the gene H3F3B,
is identified in ref. 6 as being highly differentially expressed
between cases and controls. The discrepancy is attributable to
the fact that many of the representations detailed define sep-
arating hyperplanes, achieving arbitrarily good fit for arbitrar-
ily large regression coefficients. Because the `1 norm penalty
of the lasso does not admit such solutions, a lasso model of
the same dimension as any of those presented makes classi-
fication errors and has worse fit. Incidentally, note that the
lasso was conceived as an approximation to another subsets
selection estimator (8), which unfortunately is computationally
infeasible.

Conclusion
The approach here is that if there are alternative reason-
able explanations of the data one should aim initially to spec-
ify as many as is feasible. This view is in contraposition to
that implicit in the use of the lasso (9) and similar meth-
ods, from each of which there results a single model. Spec-
ification of reasonable alternative explanations requires judg-
ment, in particular in the assessment of anomalies, such as
nonlinearities and interactions. Here we have used significance
tests as an informal guide. The essence of our approach is
exploratory, leaving full interpretation to detailed subject-matter
discussion.
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