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Grasping is a highly complex movement that requires the coordi-
nation of multiple hand joints and muscles. Muscle synergies have
been proposed to be the functional building blocks that coordinate
such complex motor behaviors, but little is known about how they
are implemented in the central nervous system. Here we demon-
strate that premotor interneurons (PreM-INs) in the primate cervical
spinal cord underlie the spatiotemporal patterns of hand muscle
synergies during a voluntary grasping task. Using spike-triggered
averaging of hand muscle activity, we found that the muscle fields
of PreM-INs were not uniformly distributed across hand muscles but
rather distributed as clusters corresponding to muscle synergies.
Moreover, although individual PreM-INs have divergent activation
patterns, the population activity of PreM-INs reflects the temporal
activation of muscle synergies. These findings demonstrate that
spinal PreM-INs underlie the muscle coordination required for vol-
untary hand movements in primates. Given the evolution of neural
control of primate hand functions, we suggest that spinal premotor
circuits provide the fundamental coordination of multiple joints
and muscles upon which more fractionated control is achieved by
superimposed, phylogenetically newer, pathways.
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Following the pioneering work of Sherrington early in the 20th
century, it has been proposed that the central nervous system

(CNS) coordinates complex body movements by combining sets
of simpler movements, such as simple reflexes (1). This hy-
pothesis is phenomenologically supported by experimental ob-
servations that a wide range of behaviors can be decomposed
into basic patterns of muscle activity, namely “muscle synergies”
(2–5). However, there remains heated debate regarding whether
these observations reflect a neurophysiological basis or are an
epiphenomenon of task constraints and biomechanics (6–8). This
controversy stems from a lack of direct evidence for (or against)
the neural implementations of muscle synergies in the CNS (9–
11). Previous studies have suggested that output projections of
spinal premotor interneurons (PreM-INs) to motoneuron pools
are the neural basis of coordinated muscle activity (10, 11). For
example, Hart and Giszter demonstrated in spinalized frogs that
PreM-INs have divergent output projections to motoneurons that
match the pattern of muscle synergies extracted during spinal
motor behaviors (e.g., wiping reflexes) (10). Recent optogenetic
approaches also revealed that selective stimulation of a small
population of PreM-INs in isolated mouse spinal cords evokes
coordinated muscle activity of the hindlimb (11). However,
whether these outcomes reflect the situation in the intact, phylo-
genetically newer spinal cord of primates is unknown.
We previously showed that PreM-INs in monkey cervical cords

have divergent postspike effects on a group of hand muscles
during a precision grip task, termed the neuron’s “muscle field”
(12). This finding suggests that PreM-INs contribute to the syn-
ergistic control of primate hand movements (9, 13–15), but this
question has not been examined directly. We hypothesize that if
PreM-INs underlie the generation of muscle synergies, then (i)
the distribution of muscle fields will exhibit significant clustering

corresponding to extant muscle synergies, rather than being uni-
form, and (ii) the activities of PreM-INs will be temporally asso-
ciated with the muscle synergies. To test these hypotheses, we
examined (i) how the muscle fields of PreM-INs correlate with
muscle synergies extracted during voluntary hand movements,
and (ii) how the firing of PreM-INs correlates with the temporal
activity of muscle synergies.

Results
Two macaque monkeys were trained to perform a precision grip
task, in which they were required to grip and release two spring-
loaded levers with their index finger and thumb to target posi-
tions (12, 16). During the task, we recorded single-unit activity
from cervical spinal neurons and electromyographic (EMG) ac-
tivity from 12 hand muscles (Fig. S1). Using spike-triggered av-
eraging of rectified EMGs, we identified 23 PreM-INs that
produced postspike effects in the recorded muscles (18 excit-
atory and 5 inhibitory PreM-INs). About half of the neurons
displayed postspike effects on multiple muscles (9/18 excitatory
and 2/5 inhibitory PreM-INs; for complete data, see Table S1).
For example, Fig. 1A illustrates the muscle field of an excitatory
PreM-IN. This PreM-IN has a muscle field encompassing six
muscles, including intrinsic hand muscles (first dorsal inteross-
eous, adductor pollicis, abductor pollicis brevis, and abductor
digiti minimi) and digit flexors (flexor digitorum superficialis and
radial part of the flexor digitorum profundus) but not digit or wrist
extensors (extensor digitorum-2,3, extensor digitorum communis,
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and extensor carpi ulnaris). Importantly, these muscles in the
muscle field are synergistically activated during a precision grip
task (17).
We next quantified the basic patterns of coordinated muscle

activity by applying a standard decomposition analysis (non-
negative matrix factorization) (18). Each outcome component is
referred to as a muscle synergy. We found that a linear combi-
nation of three muscle synergies (Syn1 to 3) accounted for 89%
(monkey E) and 91% (monkey A) of the original EMG variance
(Figs. S2 and S3). We confirmed that these three muscle syner-
gies were consistent over the experimental period of neural re-
cordings (4 wk; Fig. S4; see also SI Text and Fig. S5). We also
found that most of the muscle synergies were similar between
monkeys but that some were specific to each monkey (e.g., Syn3
in Fig. S3E). Therefore, we only compared muscle synergies to
PreM-INs recorded in the same monkey.

Spatial Similarity Between PreM-INs and Muscle Synergies. We ex-
amined how PreM-IN muscle fields correlated with the spatial
weights of muscle synergies. Fig. 1B illustrates a muscle field of the
sample PreM-IN, which is expressed as the amplitude of postspike
facilitations (Fig. 1B, Left) and the weights of extracted muscle
synergies (Syn1 to 3; Fig. 1B, Right). We quantified the similarity
as the cosine of the angle between the two weight vectors, and
refer to this as the “spatial similarity” (2). The sample muscle field
showed the highest similarity with Syn1, which was also weighted
toward intrinsic hand and digit flexors. This similarity suggests that
the muscle field of PreM-INs underlies the generation of the
spatial pattern of the muscle synergy. We calculated the spatial
similarity of all neuron–synergy pairs and plotted them in a 3D
muscle synergy space (Fig. 2A), in which each axis represents the
similarity with each muscle synergy (Syn1 to 3). We expected that
if the muscle fields of PreM-INs contributed to the generation of
the muscle synergies, they should show clustered distributions in
the muscle synergy space. Fig. 2A illustrates such a distribution of
excitatory PreM-INs from each monkey (Top: monkey E, n = 14;
Bottom: monkey A, n = 4). These plots demonstrate that PreM-
INs systematically cluster in the muscle synergy space. In monkey
E (Fig. 2A, Top), the data were separated into three clusters
(Clus1 to 3; k-means clustering, silhouette value 0.79, P < 0.05,
permutation test; Materials and Methods). Note that each cluster

distributes along each axis; that is, Clus1, 2, and 3 distribute along
the axes of Syn1, 2, and 3, respectively. Therefore, we defined the
axis that each cluster corresponds to as the “preferred synergy” of
each cluster. Similar separation was observed in the excitatory
PreM-INs of monkey A (Fig. 2A, Bottom). The clustering analysis
showed that there were two clusters in the muscle synergy space
(Clus1 and 2; k-means clustering), although their index of sepa-
ration (silhouette value) did not reach statistical significance (sil-
houette value 0.87, P = 0.14, permutation test). This is probably
due to an inappropriate estimation of the chance level by using the
smaller sampling of PreM-INs in monkey A (n = 4), as the sil-
houette value itself is as high as in monkey E. Therefore, we kept
this clustering for the following analyses. Importantly, we con-
firmed that all individual PreM-INs from both monkeys had a
greater similarity with the preferred synergies than the non-
preferred synergies (Fig. 2B). These results indicate that the
muscle fields of PreM-INs are not randomly distributed across
hand muscles but distributed as clusters that correspond to the
component muscle synergies. Please note that, although the
PreM-INs exhibited clear clustering in the muscle synergy space,
their muscle fields exhibited substantial variability within each
cluster (Fig. S6). This kind of clustering was not observed in in-
hibitory PreM-INs (Fig. S7A).

Temporal Similarity Between PreM-INs and Muscle Synergies. Given
the clear clustering of PreM-INs in muscle synergy space, we
hypothesized that the firing activity of each excitatory PreM-IN
would mediate a temporal profile of its preferred muscle synergy.
To test this hypothesis, we examined the similarity between the
temporal profiles of each PreM-IN and muscle synergy, which we
refer to as the “temporal similarity.” Fig. 2C illustrates the tem-
poral activity of a sample PreM-IN and the three muscle synergies
(Syn1 to 3). This neuron shows a phasic burst at grip onset fol-
lowed by tonic firing activity. When we calculated the temporal
similarity of this firing profile with the temporal profiles of Syn1 to
3, the similarity was highest with Syn1, which was the neuron’s
preferred synergy as defined by spatial similarity analysis. Such a
correspondence between spatial and temporal similarities suggests
that the activity of this sample PreM-IN mediates the temporal
profile of the preferred synergy. However, contrary to our expec-
tations, when we plotted the temporal similarities of all excitatory
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PreM-INs, we did not find any clear separations of clusters within
muscle synergy space (Fig. 2C; silhouette value 0.46 and 0.79 for
monkeys E and A, respectively, P > 0.20). This suggests that in-
dividual PreM-INs do not directly represent the temporal profile of
their preferred synergy but that they have diverse temporal pat-
terns. This diversity is also evident when we plot the temporal
profiles of all PreM-INs aligned with the temporal profiles of their
preferred synergy (Fig. S8). Despite this diversity of temporal
profiles, when we compared the temporal similarities of preferred
and nonpreferred synergies defined by spatial similarities, the pre-
ferred synergies had significantly higher temporal similarity than
the nonpreferred (Fig. 2D; Wilcoxon signed-rank test, P < 0.05).

These results suggest that although individual neurons have diverse
temporal profiles, the population of PreM-INs reflects the temporal
features of the preferred synergy. Again, inhibitory PreM-INs did
not display a prominent clustering of temporal similarities in muscle
synergy space (Fig. S7B).

Population Coding of Muscle Synergies by PreM-INs. Our conclusion
regarding the population coding of muscle synergies was further
supported by a direct comparison of the population activity of
PreM-INs and the activity of muscle synergies (Fig. 3). This
comparison was performed only in monkey E, which had a suf-
ficient number of sampled PreM-INs. Fig. 3A (Right) shows the
temporal profile of three muscle synergies (Syn1 to 3) normal-
ized to grip onset (time 0) and release onset (time 1). The 3D
plot (Fig. 3A, Left) illustrates an averaged trajectory of grip
movement expressed by the activity of muscle synergies (“synergy
trajectory”). This trajectory displays the relative temporal re-
lationship of synergy activities. First, at the beginning of the grip
(blue-green), the trajectory moves mostly in the Syn1–2 plane.
Then, at the end of the grip (orange-red), it moves in the Syn2–
3 plane. This temporal relationship of muscle synergies was
reproduced by the population activity of PreM-INs (Fig. 3B).
Population activities were calculated for each PreM-IN cluster
(Clus1 to 3; Fig. 3B, Right), and the temporal relationship is
expressed as a 3D trajectory of the population activities (“neural
trajectory”; Fig. 3B, Left). The neural trajectory showed a similar
temporal profile to that of the synergy trajectory, first moving
mainly in the Clus1–2 plane at grip onset and then in the Clus2–
3 plane at the end of the grip. The goodness of fit (R2) between
the neural and synergy trajectories was 0.61, indicating that
∼60% of the temporal profile of the muscle synergy can be
explained by the population activity of PreM-INs. This R2 sig-
nificantly exceeded the chance level that would be expected if the
PreM-INs were randomly assigned to one of three clusters (P <
0.01, permutation test). This result supports the idea that the
population activity of PreM-INs represents the temporal activity
of muscle synergies.

Discussion
In this study, we demonstrate that the muscle fields of excitatory
PreM-INs in awake behaving primates are not randomly dis-
tributed across hand muscles but distributed as clusters corre-
sponding to muscle synergies. Furthermore, the population activity
of excitatory PreM-INs correlates with the temporal profiles of
muscle synergies during voluntary hand movements. These find-
ings are consistent with previous hypotheses derived from obser-
vations of the lumbar spinal cord of reduced animal preparations
[e.g., spinalized frogs (10) and isolated mouse spinal cords (11)]
that PreM-INs underlie the generation of muscle synergies. Our
study provides direct evidence that the activity of PreM-INs un-
derlies coordination of muscle activity during dexterous hand
movements in primates.

Neural Control of Voluntary Hand Movements in Primates. It is
generally believed that the direct corticomotoneuronal (CM)
pathway, which is a phylogenetically newer pathway in higher
primates, plays a critical role in the fractionation of muscle ac-
tivity during dexterous hand movements (19–21). However, the
present study demonstrated that PreM-INs, which are phyloge-
netically older, have spatiotemporal properties that correlate with
muscle synergies during voluntary hand movements. Therefore,
it is likely that these two systems have specialized functions for
the control of primate hand movements, namely “fractionated
control” and “synergistic control,” respectively.
The interaction of these two putative control systems might be

the source of the exceptional versatility of primate hand move-
ments. For example, a power grip (e.g., gripping a hammer) is
characterized by the predominant coactivation of hand muscles
(22). It is known that power grip requires less involvement of the
CM system (19), and therefore might result more from the
PreM-IN system. Conversely, fine control of individual finger
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Fig. 2. Spatial and temporal similarity between excitatory PreM-INs and
muscle synergies. (A) Spatial similarity of excitatory PreM-INs with muscle
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movements (e.g., control of a fingertip force of a single digit) (23,
24) requires higher fractionation of individual muscles and
probably depends more on the CM system. Indeed, muscle
synergies are not active during fine individual finger movements
in some cases (23, 24). Precision grip requires the fractionation
of hand muscles as well as their coactivation (17, 21), and thus
might depend on cooperation of both the CM and PreM-IN
systems. These examples suggest that the optimal balance of
the two control systems may vary according to task requirements.
Optimization of balanced control may be an important factor
also for the acquisition of new motor skills. For example, Berger
et al. demonstrated that learning a new movement that is com-
patible with existing muscle synergies occurs much more quickly
than learning a movement requiring new muscle synergies (25).
This implies that establishing, modifying, or masking muscle syn-
ergies requires more training. This might explain our everyday
experience that highly fractionated movements require extensive
practice (e.g., using chopsticks requires more extensive training
than using spoons). This conceptual framework of balanced con-
trol systems may help future studies to clarify how our nervous
system controls and acquires versatile hand functions.

Neural Implementation of Hand Muscle Synergies with PreM-INs.
Despite our findings that PreM-INs underlie the generation of
muscle synergies, we also found that individual PreM-INs asso-
ciated with a given muscle synergy exhibit substantial spatiotem-
poral diversity with respect to that muscle synergy’s activation
(Fig. 2C and Figs. S6 and S8). This was a surprising result because
previous studies have often modeled each muscle synergy as a
single functional unit, or “module,” in which constituent spinal
INs were assumed to be synchronously recruited (for reviews, see
refs. 6 and 26). Our finding demonstrates that this is not the case,
at least for the control of primate hand movements. Why are the
individual PreM-INs so heterogeneous? One possible explanation
is that the modules are not organized such that CNS inputs are
simply distributed to target motoneurons. Instead, the CNS may
organize the modules as active pattern generators, as proposed
for locomotor circuits (26, 27), which would intrinsically generate
spatiotemporal patterns of target muscle activity. In such dynamic
modules, PreM-INs may be individually activated to create the
desired muscle synergy activity. Alternatively, it is possible that
the CNS does not organize muscle synergies as explicit modules.
Sussillo et al. demonstrated that a chaotic recurrent network
could be trained to imitate complex animal behaviors by adjusting
network connections as well as “readout” weights to muscles (28).
In such networks, individual elements (i.e., neurons) show het-
erogeneous activities similar to actual neural recordings in pri-
mate motor cortices (29, 30). From this perspective, the clustering
muscle field of PreM-INs identified in the present study might
reflect the outcome of the optimization to effectively read out
significant motor commands from complex neural networks to
coordinate complex hand movements. Whatever the organization
of the entire network, the present findings require the revision of

previous hypotheses on the neural implementation of muscle
synergies that assume synchronous modules for the control of
voluntary hand movements.
In this study, we tested the correlation between the spatiotem-

poral properties of PreM-IN and muscle synergies during a single
type of behavior (i.e., precision grip). Of course, primates exhibit a
much wider variety of hand movements, so futures studies should
combine spinal recordings with different movements. These should
aim to elucidate (i) how the clusters of PreM-INs identified in
the present study are generalized to the other types of hand
movements, (ii) how many and what variety of clusters can be
identified when a wider variety of hand movements are tested, and
(iii) the long-term plasticity of clusters required to acquire new
motor skills.
In summary, this study shows that the population activity of

spinal PreM-INs is spatially and temporally correlated with hand
muscle synergies during voluntary hand movements in primates.
These findings suggest that spinal PreM-INs underlie the gen-
eration of hand muscle synergies, and thus contribute to the
coordination of dexterous hand movements in primates.

Materials and Methods
Dataset. The dataset analyzed for the present study was the subject of
previous reports (12, 31, 32). We analyzed the data of two monkeys (monkey
A:Macaca fuscata, 6.8 kg; monkey E:Macaca mulatta, 5.6 kg). All procedures
were approved by the Animal Research Committee at the National Institute
for Physiological Sciences.

Behavioral Task. The monkeys were trained to grip spring-loaded levers with
their index finger and thumb (precision grip task; Fig. S1A) (12, 16). Lever
positions were displayed on a computer screen as cursors, and monkeys were
required to track targets in a step-tracking task. Each trial consisted of a rest
period (1.0 to 2.0 s), lever grip, lever hold (1.0 to 2.0 s), and lever release.
Successful completion of a trial was rewarded with a drop of applesauce. The
force required to reach the target positions was adjusted individually for the
index finger and thumb (monkey E: 0.6 to 1.1 N for index, 0.1 to 0.3 N for
thumb; monkey A: 0.4 to 2.0 N for index, 1.0 to 3.0 N for thumb).

Data Recordings. Unilateral laminectomy of vertebrae cervical (C)4 to C7 was
performed under isoflurane or sevoflurane anesthesia and aseptic condi-
tions, and a spinal recording chamber was implanted over the laminectomy
(33). Single-unit activity from C6 to thoracic (T)1 was recorded with a tung-
sten or Elgiloy microelectrode using standard techniques (Fig. S1B) (12, 31,
32). Action potential timing was detected online using a spike-sorting device
(MSD; Alpha Omega Engineering).

EMGs from 12 hand and armmuscles were recorded simultaneously. EMGs
were recorded by pairs of stainless steel wires (AS 631; Cooner Wire)
implanted s.c. in the forelimb muscles (Fig. S1C), including the intrinsic hand
muscles (first dorsal interosseous, adductor pollicis, abductor pollicis brevis,
and abductor digiti minimi), extrinsic digit flexors (flexor digitorum super-
ficialis and the radial and ulnar parts of the flexor digitorum profundus),
wrist flexors (flexor carpi radialis and flexor carpi ulnaris), extrinsic digit
extensors (extensor digitorum-2,3 and extensor digitorum communis), and a
wrist extensor (extensor carpi ulnaris). Neural signals and spike timings were
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sampled at 25 kHz. EMGs were band pass-filtered (5 Hz to 3 kHz) and
sampled at 5 kHz. We also sampled grip force and timing of behavioral
events at 1 kHz simultaneous with the neural and EMG signals.

Identification of Postspike Effects of Spinal Interneurons. The spike-triggered
average of the rectified EMG was calculated to identify the postspike effects
of individual spinal interneurons on the recorded EMGs (12, 31, 32). We ana-
lyzed only neurons with ≥2,000 recorded spikes (range, 2,138 to 67,946 spikes;
mean ± SD, 12,583 ± 15,201 spikes). Spike-triggered averages were compiled
by averaging segments of rectified EMG activity from 30 ms before to 50 ms
after each trigger (Fig. S1D). Spikes were accepted as triggers only if the root
mean square (RMS) of the EMG from 30ms before to 50ms after the spike was
greater than 1.25 times the RMS noise level in that EMG channel. The spike-
triggered average was smoothed with a flat five-point finite impulse response
filter. The baseline trend was subtracted using the increment-shifted averages
method (34), and significant spike-triggered average effects were identified
with multiple-fragment statistical analysis (35). The test window was set to
12 ms at 3 to 15 ms after the spinal neuron spike.

Potential cross-talk between simultaneously recorded EMGswas evaluated
by combining a cross-correlation method (20) and the third-order differen-
tiation of EMG signals (36). Spike-triggered average effects, potentially
resulting from cross-talk between EMG recordings, were eliminated from
the dataset. To distinguish postspike effects from synchrony effects (37),
we measured the onset latency and peak width at half-maximum (PWHM);
effects with onset latency >3.5 ms and PWHM <7 ms were identified as
postspike effects (12). Neurons that showed postspike effects on at least one
muscle were identified as PreM-INs (Fig. S1E). If neurons showed a large
“motor-unit” signature in the spike-triggered average of the unrectified
EMG with only 50 spikes (38), they were identified as putative motoneurons
and excluded from the dataset.

Extraction of Muscle Synergies. Muscle synergies were extracted from the
EMGs using nonnegative matrix factorization (NMF) (39). First, we removed
electrical cross-talk between EMG signals using a blind-signal separation for
the third-order differentiated EMG signals (36). Then, the NMF was applied
to the processed EMG signals. The separated EMGs were high pass-filtered
(cutoff 50 Hz), rectified, low pass-filtered (20 Hz), linearly smoothed
(100 time points), and down-sampled to 100 Hz. The EMG amplitudes were
normalized to their mean value and the mean amplitude was set as unitary
(=1). The NMF algorithm was initialized with random weight and activity
matrices, the elements of which were drawn from a uniform distribution
between 0 and 1; the values of these matrices were iteratively updated
using the multiplicative rule until convergence, defined as having 20 con-
secutive iterations that resulted in a change of EMG-reconstruction variance,
accounted for (R2) < 0.01%. Because the solutions for the synergies and their
coefficients could fall into a local minimum, we repeated the synergy
extraction 10 times from different initial values and selected the synergies
that showed the highest R2 for further analyses. The synergy weights and
activities were normalized to set the mean amplitude of synergy activity
to unitary (=1).

We extracted muscle synergies from 480-s-long continuously recorded
EMG signals from four different weeks in each monkey (days 1, 9, 13, and
20 for monkey E and days 1, 6, 14, and 19 for monkey A after the start of
spinal recording) that cover an entire experimental period for each monkey
(31 and 27 d for monkey E and A, respectively). Then, we made a grand
average of each muscle synergy by averaging it across the dataset. These
grand averaged muscle synergies were applied to individual datasets
to estimate the temporal activity of muscle synergies (SI Materials and
Methods).

Number of Muscle Synergies. We identified the number of muscle synergies
based on the method proposed by Cheung et al. (40). The NMF algorithm
requires the number of muscle synergies to be determined a priori. Therefore,
we successively increased the number of synergies extracted from 1 to the
number of muscles recorded (Fig. S2). The R2 values for each number of muscle
synergies (i.e., n = 1 to 12) were obtained with fourfold cross-validation by
first extracting synergies from three out of four 120-s datasets (the training
sets) and then fitting the extracted synergies to the other unused quarter (the
testing set). R2 was calculated as R2 = 1 − SSE/SST, where SSE is the sum of the
squared residuals and SST is the sum of the squared difference of each EMG
data point from the overall mean EMG. We averaged the R2 values in the
testing set and plotted them against the number of synergies extracted
(R2 curve; Fig. S2A, original data). We also drew a similar R2 curve for the
shuffled (i.e., uncorrelated) EMG data, which were obtained by randomly
shuffling data across times and muscles (Fig. S2A, shuffled data). The R2

curve for the shuffled data increased almost linearly, such that the increment
of R2 (ΔR2) was similar over the different number of muscle synergies (Fig.
S2B). We used the shuffle ΔR2 values as an estimate of chance. The basic
premise of Cheung et al.’s method is that the number of muscle synergies
can be defined by the cusp of the R2 curve—or the number beyond which
any further increase in the number of muscle synergies yields an R2 increase
smaller than expected by chance (40). In the original study, they used 75% of
shuffle ΔR2 as the threshold to detect the smaller original ΔR2. Here we used
a more statistically based method to detect the significant decrease of
original ΔR2 by applying t tests between the original and shuffled data. We
defined the number of muscle synergies at the point just before the ΔR2 of
the original data dropped significantly below the ΔR2 of the shuffled data
(Fig. S2B). We also comprehensively tested other algorithms proposed by
other studies (5, 9, 13, 18, 40–44) to compare how the algorithm used affects
the estimation of the number of muscle synergies (SI Text and Fig. S5).

Consistency of Muscle Synergies Between Different Experimental Days. To
confirm the long-term consistency of the extracted muscle synergies, we
compared the number of muscle synergies and the similarity of the extracted
synergies between the different experimental weeks (Fig. S4). Similarity
between the muscle synergies was quantified by calculating the cosine of
the angle between the weighting vectors. The order of muscle synergy is
arbitrary in the NMF algorithm, so the muscle synergies in weeks 2 to 4 were
matched to the muscle synergy with the highest similarity in week 1.

Similarity of Muscle Synergies Between Monkeys. We quantified the similarity
ofmuscle synergies betweenmonkeys E and A by calculating the cosine of the
angle (similarity) between two vectors of muscle synergies from the two
monkeys (Fig. S3E). To find the significant limits of this similarity, we
obtained the chance level of the similarity by randomizing the muscle syn-
ergy weights of the muscles in each synergy, and then calculated the simi-
larity in all synergy pairs to obtain the median. We repeated this procedure
10,000 times and set the 95th percentile of this distribution, 0.64, as the
significance limit. Therefore, if the muscle synergy similarity was higher than
this, we concluded that the muscle synergy pair was more closely related
than expected by chance.

Spatial and Temporal Similarities Between PreM-INs and Muscle Synergies.
Similarities between PreM-INs and muscle synergy were examined for their
spatial and temporal aspects. Similarity in the PreM-IN muscle field and
synergy weight was quantified as the cosine of the angle between two
vectors in the muscle dimension (spatial similarity). The muscle field was
quantified as a vector of the postspike effect size. The size of the postspike
effect was measured as the mean percent increase (MPI) by averaging the
spike-triggered average amplitude from the onset to the offset, subtracting
the baseline mean, and then dividing the result by the baseline mean and
multiplying by 100. Muscle synergy was expressed as a vector of weighting
factors. The index of similarity ranged from 1 to −1, where 1 (or −1) indicates
that the vectors are parallel in the same (or opposite) direction, and 0 indi-
cates that the vectors are orthogonal (no correlation).

The similarity between PreM-IN activity andmuscle synergywas quantified
as the cosine of the angle between vectors of temporal profiles of activities in
the time dimension (temporal similarity). We compiled the response profiles
by aligning each signal to grip onset (from 1 s before to 3 s after grip onset)
and averaging across trials. Grip onset was defined as the time at which the
rate of change of the total grip force exceeded 2 N/s. Again, the index of
similarity ranges from 1 to −1, where 1 (or −1) indicates that the vectors are
parallel in the same (or opposite) direction, and 0 indicates that the vectors
are orthogonal (no correlation).

Cluster Analysis of Spatial and Temporal Similarities. Cluster analysis was ap-
plied independently for the spatial and temporal similarities in 3D muscle
synergy space (Fig. 2 A and C). First, we explored the cluster size by iteratively
clustering the PreM-INs into the number of clusters ranging from 1 to 10. For
each cluster, we used the k-means algorithm with the squared Euclidean
distance calculation. We evaluated the clustering performance by calculating
the average silhouette value (45). If the silhouette value showed local maxima,
we defined the first local maximum as the cluster size of the PreM-INs.

We validated the clustering performance with a permutation test. We
randomly assigned original spatial or temporal similarity values to one of
three muscle synergies. This procedure removed any correlations between
PreM-IN andmuscle synergies. We then calculated the silhouette value for the
shuffled data. We repeated this procedure 10,000 times and obtained the
baseline distribution of the silhouette values. For the k-means clustering, we
fixed the cluster size to the same as that of the original dataset, namely three
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clusters for the excitatory PreM-INs of monkey E and two clusters for the
excitatory PreM-INs of monkey A (Fig. 2A). We set the 95th percentile of this
distribution as the significance limit of the silhouette value. Because no
cluster was identified for the inhibitory PreM-INs (Fig. S7), no significance test
was applied to these data.

Synergy and Neural Trajectories.We examined how the population activity of
the PreM-IN clusters reproduced the muscle synergy activities. This analysis
was performed only for monkey E because insufficient data were obtained
from monkey A (Table S1). First, we averaged the temporal profile of the
synergy activity. To correct the trial-to-trial variation of the grip interval, that
is, the interval between grip onset and release onset, we segmented the
interval into 100 bins and averaged the signals within each bin. Grip and
release onset were defined as the time at which the rate of change of the
total grip force exceeded 2 N/s and fell below −2 N/s, respectively. Using this
procedure, the time was normalized from 0 (grip onset) to 1 (release onset).
We used the same scaling factor to extend the normalization from −0.5
before grip onset to 0.5 after release onset. We performed this normalization
for each trial and averaged them across the trials. After the time normalization,
we smoothed the profile with a Gaussian kernel (SD 5 time points) and then
averaged the profiles from different data recordings. To focus the comparison
on the temporal characteristics, we also normalized the amplitudes of the
profile: We linearly scaled the amplitude from the baseline activity (mean
amplitude between 0.5 and 0.4 time units before grip onset; =0) to the maxi-
mum (=1) amplitude.

We calculated the population activity of PreM-INs independently for each
cluster. The population averages of PreM-INs were obtained by weighting
the individual activity profile (in spikes per s) by the norm of the postspike
facilitation size (in units of MPI, ranging from 1.4 to 26.1%), that is, PreM-INs
with larger postspike effects were weighted more heavily. Time and am-
plitude were normalized, and Gaussian smoothing was applied in the same
way as to the muscle synergies.

To compare the temporal modulations of muscle synergy activity and
PreM-IN cluster activity, we plotted the two trajectories in 3D space, whichwe
termed synergy and neural trajectories. The goodness of fit between the
trajectories was calculated by concatenating the three individual temporal
profiles into single vectors. The significance of the similarity was tested with a
permutation test. We randomly assigned the PreM-INs to one of the clusters,
computed the population activity, and then calculated the similarity with the
synergy trajectory. We repeated this procedure 10,000 times and obtained
the baseline distribution of the R2. The significance limit was set to the 95th
percentile of this distribution.
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